首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Ant seed dispersal distances are typically small, averaging less than 1 m in published studies. Here, a new record (180 m) for ant seed dispersal distance is reported, and preliminary observations are made on the interaction between meat ants Iridomyrmex viridiaeneus Viehmeyer (Hymenoptera: Formicidae) and diaspores of the sandhill wattle, Acacia ligulata A. Cunn. ex Benth. (Fabaceae) in Kinchega National Park, New South Wales (NSW), Australia. Iridomyrmex viridiaeneus moved diaspores over distances of 7–180 m (mean 93.9 m) from the source trees to their nests, removed the arils underground and discarded the seeds over a 3000‐m2 area surrounding the nest. A germination trial determined that the viability of discarded seeds was 40%, with 80% of the viable seeds in a dormant condition. Although the cumulative effects of I. viridiaeneus on A. ligulata recruitment require further investigation, this study and others raise the possibility that myrmecochorous systems in the Australian arid zone may be characterized by longer dispersal distances than those in other parts of the world. Long‐distance seed movement by ants lends credence to the hypothesis that distance dispersal (in contrast to directed dispersal) could be of benefit to myrmecochorous plants.  相似文献   

2.
Pizo  Marco A.  Oliveira  Paulo S. 《Plant Ecology》2001,157(1):37-52
Ants are often attracted to diaspores not adapted for dispersal by ants. These diaspores may occasionally benefit from this interaction. We selected six nonmyrmecochorous plant species (Virola oleifera, Eugenia stictosepala, Cabralea canjerana, Citharexylum myrianthum, Alchornea glandulosa and Hyeronima alchorneoides) whose diaspores differ in size and lipid content, and investigated how these features affect the outcome of ant-diaspore interactions on the floor of a lowland Atlantic forest of Southeast Brazil. A total of 23 ant species were seen interacting with diaspores on the forest floor. Ants were generally rapid at discovering and cleaning the diaspore pulp or aril. Recruitment rate and ant attendance were higher for lipid-rich diaspores than for lipid-poor ones. Removal rate and displacement distance were higher for small diaspores. The large ponerine ant Pachycondyla striata, one of the most frequent attendants to lipid-rich arillate diaspores, transported the latter into their nests and discarded clean intact seeds on refuse piles outside the nest. Germination tests with cleaned and uncleaned diaspores revealed that the removal of pulp or aril may increase germination success in Virola oleifera, Cabralea canjerana, Citharexylum myrianthum and Alchornea glandulosa. Gas chromatography analyses revealed a close similarity in the fatty acid composition of the arils of the lipid-rich diaspores and the elaiosome of a typical myrmecochorous seed (Ricinus communis), corroborating the suggestion that some arils and elaiosomes are chemically similar. Although ant-derived benefits to diaspores – secondary dispersal and/or increased germination – varied among the six plant species studied, the results enhanced the role of ant-diaspore interactions in the post-dispersal fates of nonmyrmecochorous seeds in tropical forests. The size and the lipid-content of the diaspores were shown to be major determinants of the outcome of such interactions.  相似文献   

3.
1. Myrmecochory sensu stricto is an ant–plant mutualism in which non‐granivorous ants disperse plant diaspores after feeding on their nutrient‐rich seed appendage, the elaiosome. Phenological traits associated with the diaspore can influence the behaviour of ants and thus their ultimate efficiency as seed dispersers. 2. This study investigated how a contrasting availability of seeds (20 vs. 200 seeds) from the diplochorous Chelidonium majus (Papaveraceae, Linnaeus) plant species influences the behaviour of Myrmica rubra (Formicidae, Linnaeus) ants, from the retrieval of seeds until their dispersal outside the ant nest. 3. Regardless of seed abundance, the ants collected the first diaspores at similar rates. Then, seed retrieval sped up over time for large seed sources until satiation took place with only one‐third of the tested colonies wholly depleting abundant seed sources. 4. No active recruitment by trail‐laying ants was triggered, even to an abundant seed source 5. In both conditions of seed abundance, the majority of the diaspores retrieved inside the nest were discarded with the elaiosome removed and were dispersed at similar distances from the nest. 6. The paper concludes with a discussion of how the quantity of seeds released by a plant with a dual mode of dispersal can potentially influence the behaviour of ant dispersers and hence the dispersal efficiency derived from myrmecochory.  相似文献   

4.
Ants frequently interact with fleshy fallen diaspores (fruits or seeds) not adapted for ant‐dispersal. Such interactions are usually considered as opportunistic, but recent evidence has indicated that these ants may differ in their effects on diaspore survival and plant recruitment. We investigated if partner choices are recognizable among genera of ants and plants, and if ant and plant traits may influence such preferences in cerrado (savanna‐like vegetation) from southeast Brazil. During a 2‐yr period, 521 ant–diaspore interactions were recorded through various methods, yielding 71 ant species and 38 plant species. Exploitation of fallen diaspores was common among several ant genera, and included carnivorous, omnivorous, and fungivorous ants. Contrary to others areas around the world, where true myrmecochory (seed dispersal by ants) is common among shrubs, ants also exploited diaspores from several cerrado trees. Plant life form, diaspore size, and ant body size did not seem to explain the pattern of interactions observed. Two subsets of preferential interactions, however, segregated fungivorous ants from another group composed of carnivorous and omnivorous ants, probably influenced by the chemical composition of the plant diaspores. Omnivorous ants usually remove the fleshy portion of diaspores on spot and probably provide limited benefits to plants. Carnivorous and fungivorous ants usually remove the whole diaspore to the nest. As each of these ant groups may influence the fitness of diaspores in different ways, there are possible subtle pathways for the evolution of partner choices between ants and these non‐myrmecochorous diaspores.  相似文献   

5.
Complex of adaptations of myrmecochorous plants to the ant dispersal composes so called myrmecochorous syndrome. To study the effect of some morphological and anatomical adaptations on diaspore attractiveness for ants, the field experiments with diaspores and their extracts were carried out. It was shown that chemical cues attracting ants are located in different parts of diaspores: in elaiosome only (C. cava) or in elaiosome, coverage of external layer of the fruit and in the fruit collar (P. obscura). Anatomy of adaptive structure of diaspores is also discussed together with the results of field experiments.  相似文献   

6.
To elucidate roles of an omnivorous ant, Tetramorium tsushimae Emery, against pre-dispersal seed consumers in the seed dispersal of Chamaesyce maculata (L.) Small, the effects of the seed injury by a stinkbug, Nysius plebeius Distat, on the seed removal by the ant and the germination rate were examined in laboratory experiments. The ants of T. tsushimae removed more frequently non-injured seeds than injured seeds. Therefore, low removal frequency of injured seeds by T. tsushimae ants might facilitate the increase in removal frequency of non-injured seeds, consequently leading to efficient seed dispersal of C. maculata. The germination rate of injured seeds that N. plebeius nymphs sucked was conspicuously lower than the non-injured seeds. The germination rate of seeds that T. tsushimae ants carried out of their nest was similar to that of the non-injured seeds. Thus, seed removal by T. tsushimae ants has hardly effects on the germination of these seeds. Therefore, the preferential removal of non-injured seeds by T. tsushimae ants might contribute to the dispersal success of C. maculata seeds. These results might show a novel interaction between myrmecochorous plants and ants in which the assessment of seed quality by ants contributes to the reproductive success of plants.  相似文献   

7.
Carex pedunculata is the first North American species of the Cyperaceae that is identified as a myrmecochore. Many morphological and phenological features of this species and its breeding system are interpreted as adaptive for seed dispersal by ants. In laboratory tests, workers of the ant species Aphaenogaster rudis carry the diaspores to the nest, eat the elaiosomes, carry larvae to the elaiosomes to feed, and deposit diaspores whose elaiosomes have been eaten with other nest debris. The achenes then germinate. Achenes will also germinate without any handling by ants. Workers will also transport diaspores with uneaten elaiosomes when the nest is disturbed. Greenhouse tests show that seedling growth is greatly inhibited if a diaspore remains near the parent plant and cohort seedlings. Field studies of natural populations identify rotting logs (the location of ant nests) as forest floor microsites for colonization of C. pedunculata and other myrmecochores. Ant nesting behavior may pattern much of the herb stratum. This species is self-compatible, and single seeds may start successful new populations. Three processes contribute to population growth: vegetative growth, germination of untransported diaspores, and germination of ant-transported diaspores.  相似文献   

8.
Ant behaviour and seed morphology: a missing link of myrmecochory   总被引:2,自引:2,他引:0  
Gómez C  Espadaler X  Bas JM 《Oecologia》2005,146(2):244-246
Seed dispersal by ants (myrmecochory) is mediated by the presence of a lipid-rich appendage (elaiosome) on the seed that induces a variety of ants to collect the diaspores. When seeds mature or fall onto the ground, these ant species transport them to their nest. After eating the elaiosome, the seed is discarded in nest galleries or outside, in the midden or farther away, where seeds can potentially germinate. The final location of seeds with their elaiosomes removed was evaluated to assess the importance of possible handles (structures that ants can grasp to carry) in transporting ants during re-dispersal experiments of seeds from nests of six species of ants. The results indicate that seeds remained within the nest because the ants were not able to transport them out of the nest. As a consequence of the elaiosome being removed, small ant species could not take Euphorbia characias seeds out of their nests. Only large ant species could remove E. characias seeds from their nests. Attaching an artificial handle to E. characias seeds allowed small ant species to redistribute the seeds from their nests. On the other hand, Rhamnus alaternus seeds that have a natural handle after the elaiosome removal were removed from the nests by both groups of ant species. If a seed has an element that acts as a handle, it will eventually get taken out of the nest. The ants’ size and their mandible gap can determine the outcome of the interaction (i.e. the pattern of the final seed shadow) and as a consequence, could influence the events that take place after the dispersal process.  相似文献   

9.
Experimental plantings of the seeds of the two species Viola odorata and V. hirta were carried out to determine relative importance of three effects of myrmecochory: 1) clumping of seeds, 2) scarification of the testa and elaiosome removal, and 3) relocation into ant nests. The study site was a beech-larch wood in southern England. Data show that clumping slightly reduces seedling emergence, scarification and elaiosome removal slightly enhances it, while the nest environment significantly increases the rate of seedling emergence. Only the last effect is statistically significant. Seedlings from nests have larger first adult leaves. The possible impact of ant manipulation of seeds on seedling recruitment into myrmecochorous populations is discussed.  相似文献   

10.
Seed dispersal by ants is an important means of migration for plants. Many myrmecochorous plants have specialized appendages in their seeds called elaiosome, which provides nutritional rewards for ants, and enable effective seed dispersal. However, some nonmyrmecochorous seeds without elaiosomes are also dispersed by ant species, suggesting the additional mechanisms other than elaiosomes for seed dispersal by ants. The seeds of the achlorophyllous and myco‐heterotrophic herbaceous plant Monotropastrum humile are very small without elaiosomes; we investigated whether odor of the seeds could mediate seed dispersal by ants. We performed a bioassay using seeds of M. humile and the ant Nylanderia flavipes to demonstrate ant‐mediated seed dispersal. We also analyzed the volatile odors emitted from M. humile seeds and conducted bioassays using dummy seeds coated with seed volatiles. Although elaiosomes were absent from the M. humile seeds, the ants carried the seeds to their nests. They also carried the dummy seeds coated with the seed volatile mixture to the nest and left some dummy seeds inside the nest and discarded the rest of the dummy seeds outside the nest with a bias toward specific locations, which might be conducive to germination. We concluded that, in M. humile seeds, volatile odor mixtures were sufficient to induce seed‐carrying behavior by the ants even without elaiosomes.  相似文献   

11.

Background

Seed dispersal of ant-dispersed plants (myrmecochores) is a well studied ecosystem function. Recently, slugs have been found to act as seed dispersers of myrmecochores. The aim of our study was to (1) further generalize the finding that gastropods feed on seeds of myrmecochores and hence may act as seed dispersers, (2) to test whether gastropod body mass and the volume of diaspores have an influence on the seed dispersal potential.

Methodology and Principal Findings

We assessed the seed dispersal potential of four slug and snail species with a set of seven myrmecochorous plant species from seven different plant families common to Central European beech forests. Diaspores differed in shape and size. Gastropods differed in their readiness to feed on diaspores and in the proportion of seeds that were swallowed as a whole, and this readiness generally decreased with increasing diaspore size. Smaller Arionid slugs (58 mm body length; mean) mostly fed on the elaiosome but also swallowed small diaspores and therefore not only act as elaiosome consumers, a nutrient rich appendage on myrmecochorous diaspores, but may also disperse seeds. Large Arionid slugs (>100 mm body length) swallowed diaspores of all sizes. Diaspores swallowed by gastropods were defecated without damage. Within-species variability in body size also affect seed dispersal potential, as larger individuals of the red slug (Arion rufus) swallowed more diaspores of wood anemone (Anemone nemorosa) than smaller ones.

Conclusions and Significance

Our results help to generalize the finding that gastropods consume and potentially disperse seeds of myrmecochores. The dispersal potential of gastropods is strongly influenced by diaspore size in relation to gastropod size.  相似文献   

12.
Mutualisms are one of the main forces shaping species spatial patterns at all geographic scales. In generalised mutualisms, however, the dependence among partners is highly variable in time and space, and therefore, the effect of diffuse mutualisms on species geographic distributions is unclear. Myrmecochorous seeds in Brazilian semi‐arid vegetation are dispersed by several ant species. However, large‐seeded species are especially dependent on dispersal by the giant ant Dinoponera quadriceps, which is the main disperser of such diaspores and the species that provide the longest dispersal distance among ant species in this system. Hence, we hypothesise that the presence of D. quadriceps shapes the distribution of large‐seeded, but not the distribution of small‐seeded myrmecochorous plant species. To evaluate this hypothesis, we modelled the potential distribution of two large‐seeded (which are predominantly dispersed by D. quadriceps) and two small‐seeded (which are barely dispersed by D. quadriceps) Euphorbiaceae species and the potential distribution of D. quadriceps. We analysed the relationship between the occurrence suitability of D. quadriceps and the occurrence suitability of plant species. We found that the potential distribution of both large‐seeded and small‐seeded myrmecochorous plants was unrelated to D. quadriceps occurrence suitability. It means that the disproportional benefits provided by high‐quality disperser at local scales may not emerge at broader geographical scales. In Caatinga vegetation, diaspores are submitted to strong abiotic filters that constraint seed germination and establishment after the dispersal phase. Such abiotic filters may dilute the initial benefit provided by long‐distance dispersers. Therefore, we suggest that in dry environments like the Caatinga, the benefits of long‐distance removals should be outweighed by the risk of reach new habitats with unfavourable conditions for germination and establishment.  相似文献   

13.
Members of the genus Rhytidoponera and, to a lesser extent, certain Melophorus spp. are keystone mutualists for the dispersal of seeds in the southwest of Western Australia, with important ramifications for the ecology and speciation of plants in this biodiversity hotspot. For this reason, it is important to understand the autecology of the relevant ant species and the way in which they interact with plant seeds. This paper addresses key aspects of the ecology of three such ant species, Rhytidoponera violacea (Forel), R. inornata Crawley and Melophorus turneri perthensis Wheeler. Data are presented on their geographic distribution, seasonality of foraging, diurnal activity, response to fire, nest site preference, nest structure, colony size, feeding habits, foraging response to seed availability, and seedling emergence from nests. The role of all three species as seed dispersers is confirmed, and all three species have ecologies that are well-suited for dispersal and survival of native plant seeds. Preservation of this interaction is important for the conservation of plants, and it is fortuitous that all three species are able to survive disturbance and return to rehabilitated areas. However, the smaller R. inornata, and to a lesser extent, the larger R. violacea, are vulnerable to invasive ant [Pheidole megacephala (Fabricius)] incursions. M. turneri perthensis is able to coexist with the invasive ant unless this is at high densities, probably as a result of its ability to forage during high temperatures when the invasive species is inactive.  相似文献   

14.
True myrmecochory involves the dispersal of elaiosome-bearing seeds by ants. Between the guild of ants that are attracted to these seeds, only a few of them will act as effective dispersers, that is, transporting the seeds to suitable sites (the nests) for germination and plant establishment. Ant communities are known to be highly hierarchical, and subordinate ants quickly deliver resources to their nest rather than consuming it on-site, thereby avoiding encounters with more dominant species. As a result of a series of studies that were carried out during summer in semi-arid Northwest Argentina, we have found that the most important seed disperser of the myrmecochorous plant Jatropha excisa Griseb. (Euphorbiaceae), the ant Pogonomyrmex cunicularius pencosensis Forel, was the most subordinate species during interspecific interactions. The daily timing of release of the J. excisa seeds through ballistic dispersal increased their probability of being removed by the highly thermophilic P. cunicularius pencosensis. Foraging during the warmest hours of the day allowed P. cunicularius pencosensis ants to avoid the risk of interference competition with dominant species, which also behaved as elaiosome predators. As a conclusion, subordinance behaviour appears to be integral to successful myrmecochory, and also the timing of seed release plays a key role in shaping the dynamics of myrmecochorous interactions. Therefore, ant-dispersed plants should not only favour their discovery by subordinate ants, but also should present their seeds at those times of the day when the behaviourally dominant ants are less active.  相似文献   

15.
The modes of seed dispersal in the prostrate annual, Chamaesyce maculata, with multiple overlapping generations were investigated. We found that C. maculata has two modes of seed dispersal; autochory in the summer and myrmecochory in the autumn. Seasonally different modes of seed dispersal have not been known in other plant species. The large proportion of seeds produced in the summer was positioned further than the expanse of the parent plants by automatic mechanical seed dispersal. Therefore, autochory would be effective for avoiding competition between parent and offspring plants. No autochory occurred in the seeds produced in the autumn. The seeds of C. maculata without an elaiosome were dispersed by seed-collecting ants in the autumn. Although 18 ant species in total visited the plants of C. maculata at the 50 sites investigated, only two ant species, Tetramorium tsushimae and Pheidole noda frequently carried the seeds of C. maculata. The low frequency of seeds carried out of the nest by P. noda suggests that the workers of P. noda carry the seeds as food into their nest. So, P. noda might be a less effective seed disperser for C. maculata, corresponding to the effectiveness of seed dispersal by harvester ants. However, T. tsushimae ants frequently carried the seeds into and out of their nest, suggesting that T. tsushimae do not regard the seeds of C. maculata as a food resource. Thus, T. tsushimae may be an effective seed disperser for C. maculata.  相似文献   

16.
Surveys of Viola dispersal mechanisms result in the distinction of two major adaptive syndromes: one purely myrmecochorous for the exploitation of seed-transporting ants, the other partially myrmecochorous (= diplochorous) for the explosive ejection of seeds followed by ant exploitation. Diplochory is exhibited by the majority of Viola species, but myrmecochory is exhibited only by eleven species with limited Eurasian distribution. Morphological and experimental evidence suggests the hypothesis that Viola is basically myrmecochorous but that different selective pressures, especially seed predation, have produced a clear divergence in dispersal systems. The majority of species, the diplochores, have evolved a system which combines ballistic and ant seed dispersal with predator avoidance. Diplochory itself may be a response to predation pressure. The minority of species are purely myrmecochorous, possibly highly coevolved with specific ant species, thus limiting the distribution of the Viola species concerned.  相似文献   

17.
Myrmecochorous plants have a set of morphological, anatomical, biochemical and phenological features connected to ant dispersal. This complex of plant adaptations is called myrmecochorous syndrome. Present review is based on literature data and original field and laboratory experiments of the authors. The diversity of plant adaptations and its role for ant attraction are analysed. The main feature of myrmecochorous syndrome is elaiosome (a fat body) connected with diaspore. Elaisomes differ by shape, colours, size, anatomy and origin. Different parts of ovule, pericarp or even flower may serve as an initial tissue for elaiosome origin. Fats of elaiosome have a particular complex of fat acids, mainly 1,2-diolein, that attract ant workers. Seed setting periods, synchronizing with maximum ant activity, strictly determined size of diaspores also help in ant attraction. If a plant is not obligate myrmecochore and has some additional mechanism for diaspore dispersal, some characters of myrmecochorous syndrome may be absent or less expressed.  相似文献   

18.
Seed dispersal by ants (i.e. myrmecochory) is usually considered as a mutualism: ants feed on nutritive bodies, called elaiosomes, before rejecting and dispersing seeds in their nest surroundings. While mechanisms of plant dispersal in the field are well documented, the behaviour of the ant partner was rarely investigated in details. Here, we compared in laboratory conditions the foraging behaviour of two ant species, the omnivorous Lasius niger and the insectivorous Myrmica rubra to which seeds of two European myrmecochorous plants (Chelidonium majus and Viola odorata) were given. Ant colonies were simultaneously presented three types of items: entire seeds with elaiosome (SE), seeds without elaiosome (S) and detached elaiosomes (E). The presence of elaiosomes on seeds did not attract workers from a distance since ants first contact equally each type of items. Although ants are mass-recruiting species, we never observed any recruitment nor trail-laying behaviour towards seeds. For ants having contacted seed items, their antennation, manipulation and seed retrieval behaviour strongly varied depending on the species of each partner. Antennation behaviour, followed by a loss of contact, was the most frequent ant-seed interaction and can be considered as a “hesitation” clue. For both plant species, insectivorous Myrmica ants removed items in larger number and at higher speed than Lasius. This fits with the hypothesis of a convergence between odours of elaiosomes and insect preys. For both ant species, the small Chelidonium seeds were retrieved in higher proportion than Viola ones, confirming the hypothesis that ants prefer the higher elaiosome/diaspore-ratio. Thus, in these crossed experiments, the ant-plant pair Myrmica/Chelidonium was the most effective as ants removed quickly almost all items after a few antennations. The presence of an elaiosome body increased the seed removal by ants excepting for Myrmica which retrieved all Chelidonium seeds, even those deprived of their elaiosome. After 24 h, all the retrieved seeds were rejected out of the nest to the refuse piles. In at least half of these rejected items, the elaiosome was discarded by ants. Species-specific patterns and behavioural differences in the dynamics of myrmecochory are discussed at the light of ant ecology. Received 10 September 2007; revised 5 February 2008; accepted 5 March 2008.  相似文献   

19.
Myrmecochory (seed dispersal by ants) is a common seed dispersal strategy of plants in fire‐prone sclerophyll vegetation of Australia, yet there is little understanding of how fire history may influence this seed dispersal mutualism. We investigated the initial fate of seeds of two myrmecochorous plant species, the small‐seeded Pultenaea daphnoides J.C. Wendl. and the large‐seeded Acacia pycnantha Benth., in replicated burnt (3.25 years since fire) and unburnt (53 years since fire) forest plots in the Mount Lofty Ranges, South Australia. Specifically we measured (i) seed removal rates; (ii) the frequency of three ant–seed interactions (seed removal, elaiosome robbery and seed ignoring); (iii) the relative contribution of different ant species to ant–seed interactions; and (iv) the abundance of common interacting ant species. Rates of seed removal from depots and the proportion of seeds removed were higher in recently burnt vegetation and the magnitude of these effects was greater for the smaller‐seeded P. daphnoides. The overall proportion of elaiosomes robbed was higher in unburnt vegetation; however, the decrease in elaiosome robbery in burnt vegetation was greater for P. daphnoides than for A. pycnantha. Ants ignored seeds more frequently in burnt vegetation and at similar rates for both seed species. In total, 20 ant species were observed interacting with seeds; however, three common ant species accounted for 66.3% of ant–seed interactions. Monomorium sydneyense almost exclusively robbed elaiosomes, Rhytidoponera metallica typically removed seeds and Anonychomyrma nr. nitidiceps showed a mix of the three behaviours towards seeds. Differences in the proportions of seeds removed, elaiosomes robbed and seeds ignored appeared to be largely driven by an increase in abundance of A. nr. nitidiceps and a decrease in abundance of M. sydneyense in burnt vegetation. Understanding how these fire‐driven changes in the initial fate of myrmecochorous seeds affect plant fitness requires further investigation.  相似文献   

20.
Both rewards and signals are important in mutualisms. In myrmecochory, or seed dispersal by ants, the benefits to plants are relatively well studied, but less is known about why ants pick up and move seeds. We examined seed dispersal by the ant Aphaenogaster rudis of four co-occurring species of plants, and tested whether morphology, chemical signaling, or the nutritional quality of fatty seed appendages called elaiosomes influenced dispersal rates. In removal trials, ants quickly collected diaspores (seeds plus elaiosomes) of Asarum canadense, Trillium grandiflorum, and Sanguinaria canadensis, but largely neglected those of T. erectum. This discrepancy was not explained by differences in the bulk cost-benefit ratio, as assessed by the ratio of seed to elaiosome mass. We also provisioned colonies with diaspores from one of these four plant species or no diaspores as a control. Colonies performed best when fed S. canadensis diaspores, worst when fed T. grandiflorum, and intermediately when fed A. canadense, T. erectum, or no diaspores. Thus, the nutritional rewards in elaiosomes affected colony performance, but did not completely predict seed removal. Instead, high levels of oleic acid in T. grandiflorum elaiosomes may explain why ants disperse these diaspores even though they reduce ant colony performance. We show for the first time that different elaiosome-bearing plants provide rewards of different quality to ant colonies, but also that ants appear unable to accurately assess reward quality when encountering seeds. Instead, we suggest that signals can trump rewards as attractants of ants to seeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号