首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pseudomonas cepacia organisms were recently recovered from a povidone-iodine antiseptic solution. During the subsequent investigation, laboratory studies were initiated to determine the survival time of these organisms in the iodophor solution, which contains 1% titratable iodine. The solution was sampled weekly upon receipt in our laboratory, and P. cepacia was subsequently recovered through 29 weeks of sampling. Current laboratory data and lot production date information from the manufacturer indicate that P. cepacia survived for up to 68 weeks from the time of manufacture. Scanning electron microscopic examination of contaminated solution demonstrated bacterial cells embedded in extracellular material.  相似文献   

2.
Contamination of solutions and lotions with Pseudomonas cepacia is a growing concern among health professionals. The identification of P. cepacia usually requires a long series of biochemical tests. In an effort to develop a more direct method, we evaluated plate count agar containing 9-chloro-9-(4-diethylaminophenyl)-10-phenylacridan and polymyxin B sulfate at respective concentrations of 1 and 75 micrograms/ml as a medium for selectively isolating P. cepacia. The medium inhibited the growth of all gram-negative bacilli and gram-positive cocci tested except P. cepacia and Serratia marcescens. These two microorganisms could easily be differentiated by their colony morphology and their reactions in the oxidase test. When nonsterilized water samples were inoculated with P. cepacia and spread or streaked on the selective medium, all P. cepacia organisms were recovered. These results demonstrate the usefulness of 9-chloro-9-(4-diethylaminophenyl)-10-phenylacridan and polymyxin B sulfate in the detection of P. cepacia. We believe that this selective medium could be useful in isolating P. cepacia from mixed bacterial flora that might be present in environmental water and water-related samples, such as solutions and lotions.  相似文献   

3.
Burkholderia cepacia and Pseudomonas aeruginosa are opportunistic pathogens that commonly cause pulmonary infections in cystic fibrosis patients and occasionally co-infect patients' lungs. Both organisms possess quorum-sensing systems dependent on N-acyl homoserine lactone (N-acyl-HSL). Cross-feeding assays demonstrated that P. aeruginosa and B. cepacia were able to utilize heterologous N-acyl-HSL signaling molecules. The ability of quorum-sensing genes from one species to complement the respective quorum-sensing mutations in the heterologous species was also examined. These studies suggest that B. cepacia CepR can use N-acyl-HSLs synthesized by RhlI and LasI and that P. aeruginosa LasR and RhlR can use N-acyl-HSLs synthesized by CepI. It is possible that a mixed bacterial population of B. cepacia and P. aeruginosa can coordinately regulate some of their virulence factors and influence the progression of lung disease due to infection with these organisms.  相似文献   

4.
The effect of concentrated cell-free extracellular material from stationary-phase cultures of Burkholderia cepacia 10661 and Pseudomonas aeruginosa PAO1 on virulence factor production in B. cepacia was assessed. While increasing concentrations of the B. cepacia exoproduct caused a slight increase in siderophore, lipase, and protease production in the producing organism, a significant in productivity was observed for all three virulence factors with the addition of the PAO1 exoproduct. Moreover, the addition of the exoproduct from a strain of P. aeruginosa producing reduced amounts of autoinducer caused only a slightly greater response than that of the control. Both B. cepacia 10661 and P. aeruginosa PAO1, along with two matched clinical isolates of both organisms obtained from a cystic fibrotic patient, were shown to produce variable amounts of three different types of autoinducer. The potential for interspecies signalling in microbial pathogenicity is discussed.  相似文献   

5.
Plants may serve as reservoirs for human-associated bacteria (H-AB) in long-term space missions containing bioregenerative life support systems. The current study examined the abilities of five human-associated potential pathogens, Pseudomonas aeruginosa, Pseudomonas cepacia, Staphylococcus aureus, Streptococcus pyogenes and Escherichia coli, to colonize and grow in the rhizosphere of hydroponically grown wheat, a candidate crop for life support. All of these bacteria have been recovered from past NASA missions and present potential problems for future missions. The abilities of these organisms to adhere to the roots of axenic five-day-old wheat (Triticum aestivum L. cv. Yecora rojo) were evaluated by enumeration of the attached organisms after a one hour incubation of roots in a suspension (approximately 10(8) cfu ml-1) of the H-AB. Results showed that a greater percentage of P. aeruginosa cells adhered to the wheat roots than the other four H-AB. Similarly incubated seedlings were also grown under attempted axenic conditions for seven days to examine the potential of each organism to proliferate in the rhizosphere (root colonization capacity). P. cepacia and P. aerogiunosa showed considerable growth, E. coli and S. aureus showed no significant growth, and S. pyogenes died off in the wheat rhizosphere. Studies examining the effects of competition on the survival of these microorganisms indicated that P. aeruginosa was the only organism that survived in the rhizosphere of hydroponically grown wheat in the presence of different levels of microbial competition.  相似文献   

6.
TB-T medium provides a high degree of selectivity for and detection of Pseudomonas cepacia biotypes upon initial plating from soil. TB-T medium consists of a basal medium with glucose as the sole carbon source and asparagine as the sole nitrogen source. The selectivity of TB-T medium is based on the combination of trypan blue (TB) and tetracycline (T) (pH 5.5). On TB-T medium, 216 of 300 isolates (72%) from five different soil types were identified as P. cepacia. The remaining 28% were facultative organisms that could be separated readily from P. cepacia by anaerobic glucose fermentation and by their inability to grow at 41 degrees C. Molds were controlled on low soil dilutions by adding crystal violet, nystatin, or both. Elimination of either ingredient or elevation of the pH to 7.5 resulted in a pronounced loss of selectivity. The efficiency of recovery varied considerably among P. cepacia strains but was high enough for some strains (76 to 86%) to permit quantitative studies. TB-T medium combines a defined formulation with high selectivity and allows recovery of P. cepacia biotypes from low soil dilutions (10(1) to 10(3)).  相似文献   

7.
TB-T medium provides a high degree of selectivity for and detection of Pseudomonas cepacia biotypes upon initial plating from soil. TB-T medium consists of a basal medium with glucose as the sole carbon source and asparagine as the sole nitrogen source. The selectivity of TB-T medium is based on the combination of trypan blue (TB) and tetracycline (T) (pH 5.5). On TB-T medium, 216 of 300 isolates (72%) from five different soil types were identified as P. cepacia. The remaining 28% were facultative organisms that could be separated readily from P. cepacia by anaerobic glucose fermentation and by their inability to grow at 41 degrees C. Molds were controlled on low soil dilutions by adding crystal violet, nystatin, or both. Elimination of either ingredient or elevation of the pH to 7.5 resulted in a pronounced loss of selectivity. The efficiency of recovery varied considerably among P. cepacia strains but was high enough for some strains (76 to 86%) to permit quantitative studies. TB-T medium combines a defined formulation with high selectivity and allows recovery of P. cepacia biotypes from low soil dilutions (10(1) to 10(3)).  相似文献   

8.
Although the detachment of cells from biofilms is of fundamental importance to the dissemination of organisms in both public health and clinical settings, the disinfection efficacies of commonly used biocides on detached biofilm particles have not been investigated. Therefore, the question arises whether cells in detached aggregates can be killed with disinfectant concentrations sufficient to inactivate planktonic cells. Burkholderia cepacia and Pseudomonas aeruginosa were grown in standardized laboratory reactors as single species and in coculture. Cluster size distributions in chemostats and biofilm reactor effluent were measured. Chlorine susceptibility was assessed for planktonic cultures, attached biofilm, and particles and cells detached from the biofilm. Disinfection tolerance generally increased with a higher percentage of larger cell clusters in the chemostat and detached biofilm. Samples with a lower percentage of large clusters were more easily disinfected. Thus, disinfection tolerance depended on the cluster size distribution rather than sample type for chemostat and detached biofilm. Intact biofilms were more tolerant to chlorine independent of species. Homogenization of samples led to significantly increased susceptibility in all biofilm samples as well as detached clusters for single-species B. cepacia, B. cepacia in coculture, and P. aeruginosa in coculture. The disinfection efficacy was also dependent on species composition; coculture was advantageous to the survival of both species when grown as a biofilm or as clusters detached from biofilm but, surprisingly, resulted in a lower disinfection tolerance when they were grown as a mixed planktonic culture.  相似文献   

9.
Pseudomonas cepacia G4 degrades trichloroethylene (TCE) via a degradation pathway for aromatic compounds which is induced by substrates such as phenol and tryptophan. P. cepacia G4 5223 PR1 (PR1) is a Tn5 insertion mutant which constitutively expresses the toluene ortho-monooxygenase responsible for TCE degradation. In groundwater microcosms, phenol-induced strain G4 and noninduced strain PR1 degraded TCE (20 and 50 microM) to nondetectable levels (< 0.1 microM) within 24 h at densities of 10(8) cells per ml; at lower densities, degradation of TCE was not observed after 48 h. In aquifer sediment microcosms, TCE was reduced from 60 to < 0.1 microM within 24 h at 5 x 10(8) PR1 organisms per g (wet weight) of sediment and from 60 to 26 microM over a period of 10 weeks at 5 x 10(7) PR1 organisms per g. Viable G4 and PR1 cells decreased from approximately 10(7) to 10(4) per g over the 10-week period.  相似文献   

10.
Laboratory investigations were conducted to study potential mechanisms for prolonged survival of Pseudomonas aeruginosa in poloxamer-iodine (PxI). P. aeruginosa organisms isolated from PxI and adapted for growth in distilled water or found as part of a mixed microbial population from water in a manufacturing plant did not survive more than 15 s after challenge in stock PxI solution. Batches of PxI were compounded in the laboratory to determine the survival and growth of P. aeruginosa during the various stages of preparation. No P. aeruginosa organisms were recovered from the finished product at 1 min after the addition of iodine-iodide. However, we found P. aeruginosa in PxI 48 h after adding sterile PxI to the inside of a naturally contaminated polyvinyl chloride water distribution pipe. These organisms (10(4) CFU/ml) survived for as long as 98 days in contaminated stock PxI after it was removed from the polyvinyl chloride pipe. Both decreasing the free iodine level through addition of potassium iodide and increasing the free iodine level through dilution of the product resulted in an increased length of survival of P. aeruginosa in contaminated PxI solution. Comparative survival studies with pipes of different composition revealed that other materials may exert an effect similar to polyvinyl chloride. We concluded that polyvinyl chloride and perhaps other materials may play an important role in the survival of P. aeruginosa in iodophors and may be one source of resistant microbial populations when used in manufacturing plants which produce these antimicrobial solutions.  相似文献   

11.
Laboratory investigations were conducted to study potential mechanisms for prolonged survival of Pseudomonas aeruginosa in poloxamer-iodine (PxI). P. aeruginosa organisms isolated from PxI and adapted for growth in distilled water or found as part of a mixed microbial population from water in a manufacturing plant did not survive more than 15 s after challenge in stock PxI solution. Batches of PxI were compounded in the laboratory to determine the survival and growth of P. aeruginosa during the various stages of preparation. No P. aeruginosa organisms were recovered from the finished product at 1 min after the addition of iodine-iodide. However, we found P. aeruginosa in PxI 48 h after adding sterile PxI to the inside of a naturally contaminated polyvinyl chloride water distribution pipe. These organisms (10(4) CFU/ml) survived for as long as 98 days in contaminated stock PxI after it was removed from the polyvinyl chloride pipe. Both decreasing the free iodine level through addition of potassium iodide and increasing the free iodine level through dilution of the product resulted in an increased length of survival of P. aeruginosa in contaminated PxI solution. Comparative survival studies with pipes of different composition revealed that other materials may exert an effect similar to polyvinyl chloride. We concluded that polyvinyl chloride and perhaps other materials may play an important role in the survival of P. aeruginosa in iodophors and may be one source of resistant microbial populations when used in manufacturing plants which produce these antimicrobial solutions.  相似文献   

12.
The leading cause of morbidity and mortality in cystic fibrosis (CF) continues to be lung infections with Pseudomonas aeruginosa biofilms. Co-colonization of the lungs with P aeruginosa and Burkholderia cepacia can result in more severe pulmonary disease than P. aeruginosa alone. The interactions between P. aeruginosa biofilms and B. cepacia are not yet understood; one possible association being that mixed species biofilm formation may be part of the interspecies relationship. Using the Calgary Biofilm Device (CBD), members of all genomovars of the B. cepacia complex were shown to form biofilms, including those isolated from CF lungs. Mixed species biofilm formation between CF isolates of P. aeruginosa and B. cepacia was readily achieved using the CBD. Oxidation-fermentation lactose agar was adapted as a differential agar to monitor mixed biofilm composition. Scanning electron micrographs of the biofilms demonstrated that both species readily integrated in close association in the biofilm structure. Pseudomonas aeruginosa laboratory strain PAO1, however, inhibited mixed biofilm formation of both CF isolates and environmental strains of the B. cepacia complex. Characterization of the soluble inhibitor suggested pyocyanin as the active compound.  相似文献   

13.
Strains of saccharolytic and nonsaccharolytic Pseudomonas species were examined by a new single-step gas chromatographic characterization procedure. Cells were digested in a methanolic solution of tetramethylammonium hydroxide pentahydrate, and the digestates were subjected to gas-liquid chromatographic analysis. The chromatograms were examined for similarities and differences in their overall patterns. A single component was defined for use as an internal qualitative and quantitative standardizing component in order to develop relative retention time-relative peak height profiles of each organism. Comparison of these profiles enabled the characterization of strains of Pseudomonas aeruginosa, P. putida, P. cepacia, P. pseudomallei, P. stutzeri, P. pseudoalcaligenes, P. alcaligenes, P. diminuta, P. denitrificans, and P. acidovorans. The P. maltophilia and P. putrefaciens digestates showed chromatograms which were superficially similar yet easily distinguished as belonging to different species. The chromatograms of these two organisms were very different from those of other pseudomonads.  相似文献   

14.
Burkholderia cepacia complex strains are genetically related but phenotypically diverse organisms that are important opportunistic pathogens in patients with cystic fibrosis (CF,) as well as pathogens of onion and banana, colonizers of the rhizospheres of many plant species, and common inhabitants of bulk soil. Genotypic identification and pathogenicity characterization were performed on B. cepacia complex isolates from the rhizosphere of onion and organic soils in Michigan. A total of 3,798 putative B. cepacia complex isolates were recovered on Pseudomonas cepacia azelaic acid tryptamine and trypan blue tetracycline semiselective media during the 2004 growing season from six commercial onion fields located in two counties in Michigan. Putative B. cepacia complex isolates were identified by hybridization to a 16S rRNA gene probe, followed by duplex PCR using primers targeted to the 16S rRNA gene and recA sequences and restriction fragment length polymorphism analysis of the recA sequence. A total of 1,290 isolates, 980 rhizosphere and 310 soil isolates, were assigned to the species B. cepacia (160), B. cenocepacia (480), B. ambifaria (623), and B. pyrrocinia (27). The majority of isolates identified as B. cepacia (85%), B. cenocepacia (90%), and B. ambifaria (76%) were pathogenic in a detached onion bulb scale assay and caused symptoms of water soaking, maceration, and/or necrosis. A phylogenetic analysis of recA sequences from representative B. cepacia complex type and panel strains, along with isolates collected in this study, revealed that the B. cenocepacia isolates associated with onion grouped within the III-B lineage and that some strains were closely related to strain AU1054, which was isolated from a CF patient. This study revealed that multiple B. cepacia complex species colonize the onion rhizosphere and have the potential to cause sour skin rot disease of onion. In addition, the onion rhizosphere is a natural habitat and a potential environmental source of B. cenocepacia.  相似文献   

15.
The factors which affect the production of extracellular DNA by genetically altered strains of Escherichia coli, Pseudomonas aeruginosa, Pseudomonas cepacia, and Bradyrhizobium japonicum in aquatic environments were investigated. Cellular nucleic acids were labeled in vivo by incubation with [3H]thymidine or [3H]adenine, and production of extracellular DNA in marine waters, artificial seawater, or minimal salts media was determined by detecting radiolabeled macromolecules in incubation filtrates. The presence or absence of the ambient microbial community had little effect on the production of extracellular DNA. Three of four organisms produced the greatest amounts of extracellular nucleic acids when incubated in low-salinity media (2% artificial seawater) rather than high-salinity media (10 to 50% artificial seawater). The greatest production of extracellular nucleic acids by P. cepacia occurred at pH 7 and 37 degrees C, suggesting that extracellular-DNA production may be a normal physiologic function of the cell. Incubation of labeled P. cepacia cells in water from Bimini Harbor, Bahamas, resulted in labeling of macromolecules of the ambient microbial population. Collectively these results indicate that (i) extracellular-DNA production by genetically altered bacteria released into aquatic environments is more strongly influenced by physiochemical factors than biotic factors, (ii) extracellular-DNA production rates are usually greater for organisms released in freshwater than marine environments, and (iii) ambient microbial populations can readily utilize materials released by these organisms.  相似文献   

16.
The factors which affect the production of extracellular DNA by genetically altered strains of Escherichia coli, Pseudomonas aeruginosa, Pseudomonas cepacia, and Bradyrhizobium japonicum in aquatic environments were investigated. Cellular nucleic acids were labeled in vivo by incubation with [3H]thymidine or [3H]adenine, and production of extracellular DNA in marine waters, artificial seawater, or minimal salts media was determined by detecting radiolabeled macromolecules in incubation filtrates. The presence or absence of the ambient microbial community had little effect on the production of extracellular DNA. Three of four organisms produced the greatest amounts of extracellular nucleic acids when incubated in low-salinity media (2% artificial seawater) rather than high-salinity media (10 to 50% artificial seawater). The greatest production of extracellular nucleic acids by P. cepacia occurred at pH 7 and 37 degrees C, suggesting that extracellular-DNA production may be a normal physiologic function of the cell. Incubation of labeled P. cepacia cells in water from Bimini Harbor, Bahamas, resulted in labeling of macromolecules of the ambient microbial population. Collectively these results indicate that (i) extracellular-DNA production by genetically altered bacteria released into aquatic environments is more strongly influenced by physiochemical factors than biotic factors, (ii) extracellular-DNA production rates are usually greater for organisms released in freshwater than marine environments, and (iii) ambient microbial populations can readily utilize materials released by these organisms.  相似文献   

17.
AIMS: To investigate the dynamics of binary culture biofilm formation through use of both the Sorbarod model of biofilm growth and the constant depth film fermenter (CDFF). METHODS AND RESULTS: Pseudo steady-state biofilm cultures of laboratory and clinical strains of Pseudomonas aeruginosa, selected on the basis of their ability to produce a Burkholderia cepacia growth-inhibitory substance, were established on Sorbarod filters and challenged with corresponding planktonic grown cultures of B. cepacia. Reverse challenges were also conducted. Both B. cepacia and P. aeruginosa were able to form steady-state monoculture biofilms after 48 h growth. When steady-state biofilms of B. cepacia NTCT 10661 were challenged with planktonically grown P. aeruginosa PAO1 known to produce a B. cepacia growth-inhibitory substance, the immigrant population was rapidly and almost completely bound to the biofilm, displacing B. cepacia. By contrast, established biofilms of P. aeruginosa PAO1 resisted immigration of B. cepacia 10661. Similar experiments conducted with a nongrowth inhibitory substance producing clinical pairing of P. aeruginosa 313113 and B. cepacia 313113 led to the formation of stable, mixed biofilm populations in both instances. Moreover, co-inoculation with these clinical isolates resulted in a stable, mixed steady-state biofilm. Similar observations were made for biofilms generated in CDFFs. In such instances following pan-swapping between two monoculture CDFFs, B. cepacia 313113 was able to integrate into an established P. aeruginosa 313113 biofilm to form a stable binary biofilm. CONCLUSIONS: Establishment of a mixed species community follows a specific sequence of inoculation that may either be due to some degree of match between co-colonizers or that P. aeruginosa predisposes uncolonized sections of the surface to permit B. cepacia colonization. SIGNIFICANCE AND IMPACT OF THE STUDY: Colonization of a surface with one bacterial species confers colonization resistance towards other species. Disinfection of a surface might well increase the probability of pathogen harbourage.  相似文献   

18.
Iodine sensitivity of bacteria isolated from iodinated water systems   总被引:2,自引:0,他引:2  
Fourteen bacterial isolates, predominantly Pseudomonas sp., from two water systems disinfected by iodinated anion-exchange resins were studied and compared with an isolate of Pseudomonas aeruginosa from a povidone-iodine solution and four other isolates. Pseudomonas cepacia and P. aeruginosa grown in brain heart infusion were 3 to 5 logs less sensitive to 1 mg/L I2 (pH 7.2, 1 min) when compared with cultures grown in phosphate buffer. Another P. cepacia isolate was the least sensitive culture when grown in brain heart infusion (1 log decrease) but was more sensitive after cultivation in phosphate buffer (5 logs). Isolates from an iodinated potable water system, including P. cepacia, Staphyloccus warneri, and a Bacillus sp., were all less sensitive to iodine than a "resistant" P. aeruginosa and three other isolates when grown in brain heart infusion. A clinical isolate of P. aeruginosa exhibited intermediate sensitivity. The sensitivity of bacteria to iodine is thus highly variable, depending on the organism as well as the growth conditions.  相似文献   

19.
A study was conducted to determine the role of inoculum size of a bacterium introduced into nonsterile lake water in the biodegradation of a synthetic chemical. The test species was a strain of Pseudomonas cepacia able to grow on and mineralize 10 ng to 30 micrograms of p-nitrophenol (PNP) per ml in salts solution. When introduced into water from Beebe Lake at densities of 330 cells per ml, P. cepacia did not mineralize 1.0 microgram of PNP per ml. However, PNP was mineralized in lake water inoculated with 3.3 X 10(4) to 3.6 X 10(5) P. cepacia cells per ml. In lake water containing 1.0 microgram of PNP per ml, a P. cepacia population of 230 or 120 cells per ml declined until no cells were detectable at 13 h, but when the initial density was 4.3 X 10(4) cells per ml, sufficient survivors remained after the initial decline to multiply at the expense of PNP. The decline in bacterial abundance coincided with multiplication of protozoa. Cycloheximide and nystatin killed the protozoa and allowed the bacterium to multiply and mineralize 1.0 microgram of PNP, even when the initial P. cepacia density was 230 or 360 cells per ml. The lake water contained few lytic bacteria. The addition of KH2PO4 or NH4NO3 permitted biodegradation of PNP at low cell densities of P. cepacia. We suggest that a species able to degrade a synthetic chemical in culture may fail to bring about the same transformation in natural waters, because small populations added as inocula may be eliminated by protozoan grazing or may fail to survive because of nutrient deficiencies.  相似文献   

20.
A study was conducted to determine the role of inoculum size of a bacterium introduced into nonsterile lake water in the biodegradation of a synthetic chemical. The test species was a strain of Pseudomonas cepacia able to grow on and mineralize 10 ng to 30 micrograms of p-nitrophenol (PNP) per ml in salts solution. When introduced into water from Beebe Lake at densities of 330 cells per ml, P. cepacia did not mineralize 1.0 microgram of PNP per ml. However, PNP was mineralized in lake water inoculated with 3.3 X 10(4) to 3.6 X 10(5) P. cepacia cells per ml. In lake water containing 1.0 microgram of PNP per ml, a P. cepacia population of 230 or 120 cells per ml declined until no cells were detectable at 13 h, but when the initial density was 4.3 X 10(4) cells per ml, sufficient survivors remained after the initial decline to multiply at the expense of PNP. The decline in bacterial abundance coincided with multiplication of protozoa. Cycloheximide and nystatin killed the protozoa and allowed the bacterium to multiply and mineralize 1.0 microgram of PNP, even when the initial P. cepacia density was 230 or 360 cells per ml. The lake water contained few lytic bacteria. The addition of KH2PO4 or NH4NO3 permitted biodegradation of PNP at low cell densities of P. cepacia. We suggest that a species able to degrade a synthetic chemical in culture may fail to bring about the same transformation in natural waters, because small populations added as inocula may be eliminated by protozoan grazing or may fail to survive because of nutrient deficiencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号