首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Backgroundα1-Acid glycoprotein (AGP), an acute phase reactant, is extensively glycosylated at five Asn-linked glycosylation sites. In a number of pathophysiological states, including inflammation, rheumatoid arthritis, and cancer, alterations of Asn-linked glycans (N-glycans) have been reported. We investigated alteration of N-glycans at each of glycosylation sites of AGP in the sera of patients with acute and chronic inflammation.MethodsAGP purified from sera was digested with Glu-C and the liberated glycopeptides were isolated by reverse phase HPLC. N-glycans released with peptide N-glycosidase F and followed by neuraminidase treatment were analyzed by matrix-assisted laser desorption ionization-time of flight mass spectrometry.ResultsSite-specific differences in branching structures were observed among N-glycosylation sites 1, 3, 4 and 5. Within the sera of patients with acute inflammation, increases in bi-antennary and decreases in tri- and tetra-antennary structures were observed, as well as increases in α1,3-fucosylation, at most glycosylation sites. In the sera of patients with chronic inflammation, increased rates of tri-antennary α1,3-fucosylation at sites 3 and 4 and tetra-antennary α1,3-fucosylation at sites 3, 4 and 5 were detected. Although there were no significant differences between acute and chronic sera in site directed branching structures, significant differences of α1,3-fucosylation were detected in tri-antennary at sites 2, 4 and 5 and in tetra-antennary at sites 3 and 4.ConclusionLittle variation in the N-glycan composition of the glycosylation sites of AGP was observed among healthy individuals, while the sera of patients with acute inflammation demonstrated increased numbers of bi-antennary and α1,3-fucosylated N-glycan structures at each glycosylation site.  相似文献   

2.
Qian Y  Zhang X  Zhou L  Yun X  Xie J  Xu J  Ruan Y  Ren S 《Glycoconjugate journal》2012,29(5-6):399-409
Human LOX-1/OLR 1 plays a key role in atherogenesis and endothelial dysfunction. The N-glycosylation of LOX-1 has been shown to affect its biological functions in vivo and modulate the pathogenesis of atherosclerosis. However, the N-glycosylation pattern of LOX-1 has not been described yet. The present study was aimed at elucidating the N-glycosylation of recombinant human LOX-1 with regard to N-glycan profile and N-glycosylation sites. Here, an approach using nonspecific protease (Pronase E) digestion followed by MALDI-QIT-TOF MS and multistage MS (MS(3)) analysis is explored to obtain site-specific N-glycosylation information of recombinant human LOX-1, in combination with glycan structure confirmation through characterizing released glycans using tandem MS. The results reveal that N-glycans structures as well as their corresponding attached site of LOX-1 can be identified simultaneously by direct MS analysis of glycopeptides from non-specific protease digestion. With this approach, one potential glycosylation site of recombinant human LOX-1 on Asn(139) is readily identified and found to carry heterogeneous complex type N-glycans. In addition, manual annotation of multistage MS data utilizing diagnostic ions, which were found to be particularly useful in defining the structure of glycopeptides and glycans was addressed for proper spectra interpretation. The findings described herein will shed new light on further research of the structure-function relationships of LOX-1?N-glycan.  相似文献   

3.
Lysosomal alpha-mannosidase is a broad specificity exoglycosidase involved in the ordered degradation of glycoproteins. The bovine enzyme is used as an important model for understanding the inborn lysosomal storage disorder alpha-mannosidosis. This enzyme of about 1,000 amino acids consists of five peptide chains, namely a- to e-peptides and contains eight N-glycosylation sites. The N(497) glycosylation site of the c-peptide chain is evolutionary conserved among LAMANs and is very important for the maintenance of the lysosomal stability of the enzyme. In this work, relying on an approach based on mass spectrometric techniques in combination with exoglycosidase digestions and chemical derivatizations, we will report the detailed structures of the N-glycans and their distribution within six of the eight N-glycosylation sites of the bovine glycoprotein. The analysis of the PNGase F-released glycans from the bovine LAMAN revealed that the major structures fall into three classes, namely high-mannose-type (Fuc(0-1)Glc(0-1)Man(4-9)GlcNAc(2)), hybrid-type (Gal(0-1)Man(4-5)GlcNAc(4)), and complex-type (Fuc(0-1)Gal(0-2)Man(3)GlcNAc(3-5)) N-glycans, with core fucosylation and bisecting GlcNAc. To investigate the exact structure of the N-glycans at each glycosylation site, the peptide chains of the bovine LAMAN were separated using SDS-PAGE and in-gel deglycosylation. These experiments revealed that the N(497) and N(930) sites, from the c- and e-peptides, contain only high-mannose-type glycans Glc(0-1)Man(5-9)GlcNAc(2), including the evolutionary conserved Glc(1)Man(9)GlcNAc(2) glycan, and Fuc(0-1)Man(3-5)GlcNAc(2), respectively. Therefore, to determine the microheterogeneity within the remaining glycosylation sites, the glycoprotein was reduced, carboxymethylated, and digested with trypsin. The tryptic fragments were then subjected to concanavalin A (Con A) affinity chromatography, and the material bound by Con A-Sepharose was purified using reverse-phase high-performance liquid chromatography (HPLC). The tandem mass spectrometry (ESI-MS/MS) and the MALDI analysis of the PNGase F-digested glycopeptides indicated that (1) N(692) and N(766) sites from the d-peptide chain both bear glycans consisting of high-mannose (Fuc(0-1)Man(3-7)GlcNAc(2)), hybrid (Fuc(0-1) Gal(0-1)Man(4-5)GlcNAc(4)), and complex (Fuc(0-1)Gal(0-2)Man(3)GlcNAc(4-5)) structures; and (2) the N(367) site, from the b-peptide chain, is glycosylated only with high-mannose structures (Fuc(0-1)Man(3-5)GlcNAc(2)). Taking into consideration the data obtained from the analysis of either the in-gel-released glycans from the abc- and c-peptides or the tryptic glycopeptide containing the N(367) site, the N(133) site, from the a-peptide, was shown to be glycosylated with truncated and high-mannose-type (Fuc(0-1)Man(4-5)GlcNAc(2)), complex-type (Fuc(0-1)Gal(0-1)Man(3)GlcNAc(5)), and hybrid-type (Fuc(0-1)Gal(0-1)Man(5)GlcNAc(4)) glycans.  相似文献   

4.
Glycoengineering is increasingly being recognized as a powerful tool to generate recombinant glycoproteins with a customized N-glycosylation pattern. Here, we demonstrate the modulation of the plant glycosylation pathway toward the formation of human-type bisected and branched complex N-glycans. Glycoengineered Nicotiana benthamiana lacking plant-specific N-glycosylation (i.e. β1,2-xylose and core α1,3-fucose) was used to transiently express human erythropoietin (hEPO) and human transferrin (hTF) together with modified versions of human β1,4-mannosyl-β1,4-N-acetylglucosaminyltransferase (GnTIII), α1,3-mannosyl-β1,4-N-acetylglucosaminyltransferase (GnTIV) and α1,6-mannosyl-β1,6-N-acetylglucosaminyltransferase (GnTV). hEPO was expressed as a fusion to the IgG-Fc domain (EPO-Fc) and purified via protein A affinity chromatography. Recombinant hTF was isolated from the intracellular fluid of infiltrated plant leaves. Mass spectrometry-based N-glycan analysis of hEPO and hTF revealed the quantitative formation of bisected (GnGnbi) and tri- as well as tetraantennary complex N-glycans (Gn[GnGn], [GnGn]Gn and [GnGn][GnGn]). Co-expression of GnTIII together with GnTIV and GnTV resulted in the efficient generation of bisected tetraantennary complex N-glycans. Our results show the generation of recombinant proteins with human-type N-glycosylation at great uniformity. The strategy described here provides a robust and straightforward method for producing mammalian-type N-linked glycans of defined structures on recombinant glycoproteins, which can advance glycoprotein research and accelerate the development of protein-based therapeutics.  相似文献   

5.
Plants synthesize N-glycans containing the antigenic sugars α(1,3)-fucose and β(1,2)-xylose. Therefore it is important to monitor these N-glycans in monoclonal antibodies produced in plants (plantibodies). We evaluated several techniques to characterize the N-glycosylation of a plantibody produced in tobacco plants with and without the KDEL tetrapeptide endoplasmic reticulum retention signal which should inhibit or drastically reduce the addition of α(1,3)-fucose and β(1,2)-xylose. Ammonium hydroxide/carbonate-based chemical deglycosylation and PNGase A enzymatic release were investigated giving similar 2-aminobenzamide-labeled N-glycan HPLC profiles. The chemical release does not generate peptides which is convenient for MS analysis of unlabeled pool but its main drawback is that it induces degradation of α1,3-fucosylated N-glycan reducing terminal sugar. Three analytical methods for N-glycan characterization were evaluated: (i) MALDI-MS of glycopeptides from tryptic digestion; (ii) negative-ion ESI-MS/MS of released N-glycans; (iii) normal-phase HPLC of fluorescently labeled glycans in combination with exoglycosidase sequencing. The MS methods identified the major glycans, but the HPLC method was best for identification and relative quantitation of N-glycans. Negative-mode ESI-MS/MS permitted also the correct identification of the linkage position of the fucose residue linked to the inner core N-acteylglucosamine (GlcNAc) in complex N-glycans.  相似文献   

6.
CrataBL is a glycoprotein isolated from Crataeva tapia bark, containing two N-glycosylation sites. It has been identified to present lectin activity with some specificity for binding glucose over galactose. However, to date, no information on the effects of glycosylation or CrataBL monosaccharide-binding sites and monosaccharide specificity has been obtained. Thus, molecular docking and molecular dynamics simulations were employed to characterize the glycosylated CrataBL conformation and dynamics in aqueous solutions, as well as the molecular basis for its binding specificity. The obtained results indicate both local and distant conformational stabilization effects of N-linked glycans over CrataBL protein moiety. Regarding its lectin activity, molecular docking calculations were performed in two possible binding sites, identified through sequence-based, structure-based and evolutionary information, using α- and β-anomeric states of the monosaccharides. The obtained poses were further refined through molecular dynamics simulations, suggesting that positively-charged amino acids dictate the binding preference for glucose over galactose in both sites. In addition, a possible preference for β-monosaccharides was proposed. Such data are expected to contribute to a better comprehension of the lectins monosaccharide-binding activities and carbohydrate-binding site structures.  相似文献   

7.
N-acetylglucosaminyltransferase V (GnT-V) catalyzes the addition of a beta1,6-linked GlcNAc to the alpha1,6 mannose of the trimannosyl core to form tri- and tetraantennary N-glycans and contains six putative N-linked sites. We used mass spectrometry techniques combined with exoglycosidase digestions of recombinant human GnT-V expressed in CHO cells, to identify its N-glycan structures and their sites of expression. Release of N-glycans by PNGase F treatment, followed by analysis of the permethylated glycans using MALDI-TOF MS, indicated a range of complex glycans from bi- to tetraantennary species. Mapping of the glycosylation sites was performed by enriching for trypsin-digested glycopeptides, followed by analysis of each fraction with Q-TOF MS. Predicted tryptic glycopeptides were identified by comparisons of theoretical masses of peptides with various glycan masses to the masses of the glycopeptides determined experimentally. Of the three putative glycosylation sites in the catalytic region, peptides containing sites Asn 334, 433, and 447 were identified as being N-glycosylated. Asn 334 is glycosylated with only a biantennary structure with one or two terminating sialic acids. Sites Asn 433 and 447 both contain structures that range from biantennary with two sialic acids to tetraantennary terminating with four sialic acids. The predominant glycan species found on both of these sites is a triantennary with three sialic acids. The appearance of only biantennary glycans at site Asn 433, coupled with the appearance of more highly branched structures at Asn 334 and 447, demonstrates that biantennary acceptors present at different sites on the same protein during biosynthesis can differ in their accessibility for branching by GnT-V.  相似文献   

8.
BACKGROUND: alpha(1)-Acid glycoprotein (AGP), an acute phase reactant, is extensively glycosylated at five Asn-linked glycosylation sites. In a number of pathophysiological states, including inflammation, rheumatoid arthritis, and cancer, alterations of Asn-linked glycans (N-glycans) have been reported. We investigated alteration of N-glycans at each of glycosylation sites of AGP in the sera of patients with acute and chronic inflammation. METHODS: AGP purified from sera was digested with Glu-C and the liberated glycopeptides were isolated by reverse phase HPLC. N-glycans released with peptide N-glycosidase F and followed by neuraminidase treatment were analyzed by matrix-assisted laser desorption ionization-time of flight mass spectrometry. RESULTS: Site-specific differences in branching structures were observed among N-glycosylation sites 1, 3, 4 and 5. Within the sera of patients with acute inflammation, increases in bi-antennary and decreases in tri- and tetra-antennary structures were observed, as well as increases in alpha1,3-fucosylation, at most glycosylation sites. In the sera of patients with chronic inflammation, increased rates of tri-antennary alpha1,3-fucosylation at sites 3 and 4 and tetra-antennary alpha1,3-fucosylation at sites 3, 4 and 5 were detected. Although there were no significant differences between acute and chronic sera in site directed branching structures, significant differences of alpha1,3-fucosylation were detected in tri-antennary at sites 2, 4 and 5 and in tetra-antennary at sites 3 and 4. CONCLUSION: Little variation in the N-glycan composition of the glycosylation sites of AGP was observed among healthy individuals, while the sera of patients with acute inflammation demonstrated increased numbers of bi-antennary and alpha1,3-fucosylated N-glycan structures at each glycosylation site.  相似文献   

9.
Site-specific N-glycan characterization of human complement factor H   总被引:1,自引:0,他引:1  
Human complement factor H (CFH) is a plasma glycoprotein involved in the regulation of the alternative pathway of the complement system. A deficiency in CFH is a cause of severe pathologies like atypical haemolytic uraemic syndrome (aHUS). CFH is a 155-kDa glycoprotein containing nine potential N-glycosylation sites. In the current study, we present a quantitative glycosylation analysis of CFH using capillary electrophoresis and a complete site-specific N-glycan characterization using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESIMS/MS). A 17.9-kDa mass decrease, observed after glycosidase treatment, indicated that N-glycosylation is the major post-translational modification of CFH. This mass difference is consistent with CFH glycosylation by diantennary disialylated glycans of 2204 Da on eight sites. CFH was not sensitive to endoglycosidase H (Endo H) deglycosylation, indicating the absence of hybrid and oligomannose structures. Quantitative analysis showed that CFH is mainly glycosylated by complex, diantennary disialylated, non-fucosylated glycans. Disialylated fucosylated and monosialylated non-fucosylated oligosaccharides were also identified. MS analysis allowed complete characterization of the protein backbone, verification of the glycosylation sites and site-specific N-glycan identification. The absence of glycosylation at Asn199 of the NGSP sequence of CFH is shown. Asn511, Asn700, Asn784, Asn804, Asn864, Asn893, Asn1011 and Asn1077 are glycosylated essentially by diantennary disialylated structures with a relative distribution varying between 45% for Asn804 and 75% for Asn864. Diantennary monosialylated glycans and triantennary trisialylated fucosylated and non-fucosylated structures have also been identified. Interestingly, the sialylation level along with the amount of triantennary structures decreases from the N- to the C-terminal side of the protein.  相似文献   

10.
Intercellular adhesion molecule-1 (ICAM-1) is a heavily N-glycosylated transmembrane protein comprising five extracellular Ig-like domains. The soluble isoform of ICAM-1 (sICAM-1), consisting of its extracellular part, is elevated in the cerebrospinal fluid of patients with severe brain trauma. In mouse astrocytes, recombinant mouse sICAM-1 induces the production of the CXC chemokine macrophage inflammatory protein-2 (MIP-2). MIP-2 induction is glycosylation dependent, as it is strongly enhanced when sICAM-1 carries sialylated, complex-type N-glycans as synthesized by wild-type Chinese hamster ovary (CHO) cells. The present study was aimed at elucidating the N-glycosylation of mouse sICAM-1 expressed in wild-type CHO cells with regard to sialylation, N-glycan profile, and N-glycosylation sites. Ion-exchange chromatography and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) of the released N-glycans showed that sICAM-1 mostly carried di- and trisialylated complex-type N-glycans with or without one fucose. In some sialylated N-glycans, one N-acetylneuraminic acid was replaced by N-glycolylneuraminic acid, and approximately 4% carried a higher number of sialic acid residues than of antennae. The N-glycosylation sites of mouse sICAM-1 were analyzed by MALDI-Fourier transform ion cyclotron resonance (FTICR)-MS and nanoLC-ESI-FTICR-MS of tryptic digests of mouse sICAM-1 expressed in the Lec1 mutant of CHO cells. All nine consensus sequences for N-glycosylation were found to be glycosylated. These results show that the N-glycans that enhance the MIP-2-inducing activity of mouse sICAM-1 are mostly di- and trisialylated complex-type N-glycans including a small fraction carrying more sialic acid residues than antennae and that the nine N-glycosylation sites of mouse sICAM-1 are all glycosylated.  相似文献   

11.
Glycoproteins play important roles in various biological processes including intracellular transport, cell recognition, and cell-cell interactions. The change of the cellular glycosylation profile may have profound effects on cellular homeostasis and malignancy. Therefore, we have developed a sensitive screening approach for the comprehensive analysis of N-glycans and glycosylation sites on human serum proteins. Using this approach, N-linked glycopeptides were extracted by double lectin affinity chromatography. The glycans were enzymatically cleaved from the peptides and then profiled using capillary hydrophilic interaction liquid chromatography coupled online with ESI-TOF MS. The structures of the separated glycans were determined by MALDI quadrupole ion-trap TOF mass spectrometry in both positive and negative modes. The glycosylation sites were elucidated by sequencing of PNGase F modified glycopeptides using nanoRP-LC-ESI-MS/MS. Alterations of glycosylation were analyzed by comparing oligosaccharide expression of serum glycoproteins at different disease stages. The efficiency of this method was demonstrated by the analysis of pancreatic cancer serum compared to normal serum. Ninety-two individual glycosylation sites and 202 glycan peaks with 105 unique carbohydrate structures were identified from approximately 25 mug glycopeptides. Forty-four oligosaccharides were found to be distinct in the pancreatic cancer serum. Increased branching of N-linked oligosaccharides and increased fucosylation and sialylation were observed in samples from patients with pancreatic cancer. The methodology described in this study may elucidate novel, cancer-specific oligosaccharides and glycosylation sites, some of which may have utility as useful biomarkers of cancer.  相似文献   

12.
A general strategy for the structural evaluation of N-glycosylation, a common post-translational protein modification, is presented. The methods for the release of N-linked glycans from the gel-separated proteins, their isolation, purification and matrix-assisted laser desorption/ionisation-mass spectrometry (MALDI-MS) analysis of their mixtures were optimised. Since many glycoproteins are available only at low quantities from sodium dodecyl sulphate-polyacrylamide gel electrophoresis or two-dimensional gels, high attention was paid to obtain N-glycan mixtures representing their actual composition in human plasma by in-gel deglycosylation. The relative sensitivity of solid MALDI matrices for MS analysis of acidic N-glycans was compared. The most favourable results for native acidic N-glycans were obtained with 2,4,6-trihydroxyacetophenone monohydrate/diammoniumcitrate as a matrix. This matrix provided good results for both neutral and acidic mixtures as well as for methylated N-glycans. In the second part of this paper the potential of such an optimised MS strategy alone or in combination with high pH anion-exchange chromatography profiling for the clinical diagnosis of congenital disorders of glycosylation is presented.  相似文献   

13.
Human alpha one proteinase inhibitor (alpha1-PI) was cloned and expressed in Aspergillus niger, filamentious fungus that can grow in defined media and can perform glycosylation. Submerged culture conditions were established using starch as carbon source, 30% dissolved oxygen concentration, pH 7.0 and 28 degrees C. Eight milligrams per liter of active alpha1-PI were secreted to the growth media in about 40 h. Controlling the protein proteolysis was found to be an important factor in the production. The effects of various carbon sources, pH and temperature on the production and stability of the protein were tested and the product was purified and characterized. Two molecular weights variants of the recombinant alpha1-PI were produced by the fungus; the difference is attributed to the glycosylated part of the molecule. The two glycoproteins were treated with PNGAse F and the released glycans were analyzed by HPAEC, MALDI/TOF-MS, NSI-MS(n), and GC-MS. The MALDI and NSI- full MS spectra of permethylated N-glycans revealed that the N-glycans of both variants contain a series of high-mannose type glycans with 5-20 hexose units. Monosaccharide analysis showed that these were composed of N-acetylglucos-amine, mannose, and galactose. Linkage analysis revealed that the galactosyl component was in the furanoic conformation, which was attaching in a terminal non-reducing position. The Galactofuranose-containing high-mannnose type N-glycans are typical structures, which recently have been found as part of several glycoproteins produced by Aspergillus niger.  相似文献   

14.
Yarrowia lipolytica is a dimorphic yeast that efficiently secretes various heterologous proteins and is classified as "generally recognized as safe." Therefore, it is an attractive protein production host. However, yeasts modify glycoproteins with non-human high mannose-type N-glycans. These structures reduce the protein half-life in vivo and can be immunogenic in man. Here, we describe how we genetically engineered N-glycan biosynthesis in Yarrowia lipolytica so that it produces Man(3)GlcNAc(2) structures on its glycoproteins. We obtained unprecedented levels of homogeneity of this glycanstructure. This is the ideal starting point for building human-like sugars. Disruption of the ALG3 gene resulted in modification of proteins mainly with Man(5)GlcNAc(2) and GlcMan(5)GlcNAc(2) glycans, and to a lesser extent with Glc(2)Man(5)GlcNAc(2) glycans. To avoid underoccupancy of glycosylation sites, we concomitantly overexpressed ALG6. We also explored several approaches to remove the terminal glucose residues, which hamper further humanization of N-glycosylation; overexpression of the heterodimeric Apergillus niger glucosidase II proved to be the most effective approach. Finally, we overexpressed an α-1,2-mannosidase to obtain Man(3)GlcNAc(2) structures, which are substrates for the synthesis of complex-type glycans. The final Yarrowia lipolytica strain produces proteins glycosylated with the trimannosyl core N-glycan (Man(3)GlcNAc(2)), which is the common core of all complex-type N-glycans. All these glycans can be constructed on the obtained trimannosyl N-glycan using either in vivo or in vitro modification with the appropriate glycosyltransferases. The results demonstrate the high potential of Yarrowia lipolytica to be developed as an efficient expression system for the production of glycoproteins with humanized glycans.  相似文献   

15.
The soluble ovomucin obtained from the liquid part of thick white by gel filtration on a Sepharose 4B was an aggregated and polymerized molecule (intrinsic viscosity was 365 ml/g and molecular weight was 8.3 × 106) and it was unable to dissociate the soluble ovomucin into two components without modifications.

Molecular weight and reduced viscosity of the soluble ovomucin decreased markedly with time of sonication. By the sonication for 10 min, it was successful to fractionate it into carbohydrate rich and poor component by density gradient electrophoresis, cellulose acetate electrophoresis and DEAE-cellulose column chromatography.

Concerning carbohydrate and amino acid compositions of two components obtained from the sonicated soluble ovomucin, it was found that the carbohydrate poor component corresponded to the reduced S-component or the reduced α-ovomucin, and the carbohydrate rich component to the reduced F-component or the reduced β-ovomucin.

It was considered that the sonicated soluble ovomucin was an intermediate of the aggregated, polymerized ovomucin (the soluble ovomucin) and the monomeric ovomucin (the sonicated and reduced soluble ovomucin).  相似文献   

16.
N-cadherin is calcium-dependent cell adhesion molecule that mediates cell-cell adhesion and also modulates cell migration and tumor invasion. N-cadherin is a heavily glycosylated protein. Many studies have demonstrated that malignant transformation of a number of cell types correlates with changes of cell surface N-linked oligosacharides. We have studied the carbohydrate profile of N-cadherin synthesized in human melanoma cell lines and the effect of this protein and complex N-glycans on in vitro migration of melanoma cells from the primary tumor site—WM35 and from different metastatic sites WM239 (skin), WM9 (lymph node), and A375 (solid tumor). N-cadherin was immunoprecipitated with anti-human N-cadherin polyclonal antibodies. Characterization of its carbohydrate moieties was carried out by SDS-PAGE electrophoresis and blotting, followed by immunochemical identification of the N-cadherin polypeptides and on-blot deglycosylation using PNGase F for glycan release. N-glycans were separated by matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) and their structures identified by the computer matching of the resulting masses with those derived from a sequence database. The assay of in vitro chemotaxic cell migration was performed using QCM? Cell Invasion Assay (Chemicon). N-cadherin from WM35 (primary tumor site) possessed high-mannose and biantennary complex type glycans with α2–6 linked sialic acid. N-cadherin from WM239, WM9, and A375 cell lines possessed mostly tri- or tetra-antennary complex type glycans. In addition, N-cadherin from WM9 (lymph node metastatic site) and A375 (solid tumor metastatic site) contained heavily α-fucosylated complex type chains with α2,3 linked sialic acid. Blocking of N-cadherin-mediated intercellular interaction by N-cadherin-specific antibodies significantly (of about 40%) inhibited migration of melanoma cells. Inhibition of synthesis of complex type N-glycans by swainsonine (mannosidase II inhibitor) led to 50% decrease of cell migration. The results indicated differences between N-cadherin glycans from primary and metastatic sites and confirmed influence of N-cadherin and complex -type N-glycans on in vitro migration of melanoma cells. Published in 2004.  相似文献   

17.
Abstract Hope rests on the envelope proteins of human immunodeficiency virus (HIV) as protective vaccines and thus their antibody binding sites are of prime interest. 2G12 and other human antibodies bind to a cluster of oligomannose N-glycans. Owing to the extreme number and density of N-glycosylation sites gp160 and its recombinant form gp140 represent challenging tasks for site-specific glycosylation analysis. We have conducted a glycosylation analysis of CN54gp140 by liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) using an ion trap as well as a Q-TOF instrument and standard software for glycopeptide identification. First, a deglycosylated sample of the protease digest served to locate the elution positions of peptides covering all of the 27 potential N-glycosylation sites. Then, the assignments of the similarly eluting glycopeptides were verified by collision-induced decay MS/MS experiments with elevated fragmentation energy. The acquisition of site-specific glycan profiles was facilitated by the use of buffered eluent, which rounds up all glycoforms of a peptide into one peak. Calculation of the molecular mass drawn on the weighted averages of the glycans at each site led to the actual mass of gp140 of approximately 120 kDa.  相似文献   

18.
Tobacco-based transient expression was employed to elucidate the impact of differential targeting to subcellular compartments on activity and quality of gastric lipase as a model for the production of recombinant glycoproteins in plants. Overall N-linked glycan structures of recombinant lipase were analyzed and for the first time sugar structures of its four individual N-glycosylation sites were determined in situ by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) on a trypsin digest without isolation or deglycosylation of the peptides. Three glycosylation sites contain both complex-type N-glycans and high-mannose-type structures, the fourth is exclusively linked to high-mannose glycans. Although the overall pattern of glycan structures is influenced by the targeting, our results show that the type of glycans found linked to a given Asn residue is largely influenced by the physico-chemical environment of the site. The transient tobacco system combined with MALDI-TOF-MS appears to be a useful tool for the evaluation of glycoprotein production in plants.  相似文献   

19.
Yu T  Guo C  Wang J  Hao P  Sui S  Chen X  Zhang R  Wang P  Yu G  Zhang L  Dai Y  Li N 《Glycobiology》2011,21(2):206-224
The glycosylation profile of a recombinant protein is important because glycan moieties can play a significant role in the biological properties of the glycoprotein. Here we determined the site-specific N-glycosylation profile of human lactoferrin (hLF) and recombinant human lactoferrin (rhLF) expressed in the milk of transgenic cloned cattle. We used combined approaches of monosaccharide composition analysis, lectin blot, glycan permethylation and sequential exoglycosidase digestion and analyzed samples using high-performance ion chromatography and mass spectrometry (MS). N-glycans from hLF are comprised entirely of highly branched, highly sialylated and highly fucosylated complex-type structures, and many contain Lewis(x) epitopes. Six of these structures are reported here for the first time. However, N-glycans from rhLF are of the high mannose-, hybrid- and complex-type structures, with less N-acetylneuraminic acid and fucose. Some contain a terminal N-acetylgalactosamine-N-acetylglucosamine (LacdiNAc) disaccharide sequence. Monosaccharide composition analysis of rhLF revealed small amounts of N-glycolylneuraminic acid, which were not detected by MS. hLF and rhLF appear to be glycosylated at the same two sites: Asn138 and Asn479. The third putative glycosylation site, at Asn624, is unglycosylated in both hLF and rhLF. The relative abundance of each N-glycan at each site was also determined. The different N-glycosylation profile of rhLF when compared with that of hLF is in consistent with the widely held view that glycosylation is species- and tissue/cell-specific. These data provide an important foundation for further studies of glycan structure/function relationships for hLF and rhLF and help to better understand the glycosylation mechanism in bovine mammary epithelial cells.  相似文献   

20.
The N-glycosylation of structural unit 1 of Rapana venosa hemocyanin was studied. Enzymatically liberated N-glycans were analyzed by matrix-assisted laser desorption ionization-time-of-flight-mass spectrometry (MALDI-TOF-MS) and capillary electrophoresis (CE)-MS following 8-aminopyrene-1,3,6-trisulfonate labeling and labeling with 3-aminopyrazole, a new dedicated sugar reagent. Structural information was obtained by exoglycosidase sequencing, on-line MS/MS, permethylation, and amidation. A mixture of high-mannose and complex glycans with so far unknown and unusual acidic terminal structures was revealed. As the hemocyanin protein sequence is currently unknown, de novo sequencing of the glycopeptides had to be carried out. The N-glycans were therefore enzymatically removed with simultaneous partial (50%) (18)O-labeling of glycosylated asparagine residues prior to proteolysis. Following nano-liquid chromatography-MALDI-TOF-MS, the originally glycosylated peptides could be revealed and their sequences determined by MS/MS. The site occupancies were subsequently elucidated by precursor ion scanning of the intact glycopeptides using a Q-Trap mass spectrometer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号