首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The craniofacial haft resists forces generated in the face during feeding, but the importance of these forces for the form of the craniofacial haft remains to be determined. In vivo bone strain data were recorded from the medial orbital wall in an owl monkey (Aotus), rhesus macaques (Macaca mulatta), and a galago (Otolemur) during feeding. These data were used to determine whether: the interorbital region can be modeled as a simple beam under bending or shear; the face is twisting on the brain case during unilateral biting or mastication; the interorbital "pillar" is being axially compressed during incisor loading and both axially compressed and laterally bent during mastication; and the interorbital "pillar" transmits axial compressive forces from the toothrow to the braincase. The strain data reveal that the interorbital region cannot be modeled as a anteroposteriorly oriented beam bent superiorly in the sagittal plane during incision or mastication. The strain orientations recorded in the majority of experiments are concordant with those predicted for a short beam under shear, although the anthropoids displayed evidence of multiple loading regimes in the medial orbital wall. Strain orientation data corroborate the hypothesis that the strepsirrhine face is twisted during mastication. The hypothesis that the interorbital region is a member in a rigid frame subjected to axial compression during mastication receives some support. The hypothesis that the interorbital region is a member in a rigid frame subjected to lateral bending during mastication is supported by the epsilon1/absolute value epsilon2 ratio data but not by the strain orientation data. The timing of peak shear strains in the medial orbital wall of anthropoids does not bear a consistent relationship to the timing of peak shear strain in the mandibular corpus, suggesting that bite force is not the only external force influencing the medial orbital wall. Strain orientation data suggest the existence of two distinct loading regimes, possibly associated with masseter or medial pterygoid contraction. Regardless of the loading regime, all taxa showed low strain magnitudes in the medial orbital wall relative to the anterior root of the zygoma and the mandibular corpus. The strain gradients documented here and elsewhere suggest that, in anthropoids at least, local effects of external forces are more important than a single global loading regime. The low strain magnitudes in the medial orbital wall and in other thin bony plates around the orbit suggest that these structures are not optimally designed for resisting feeding forces. It is hypothesized that their function is to provide rigid support and protection for soft-tissue structures such as the nasal epithelium, the brain, meninges, and the eye and its adnexa. In contrast with the face of Otolemur, which appears to be subjected to a single predominant loading regime, anthropoids may experience different loading regimes in different parts of the face. This implies that the anthropoid and strepsirrhine facial skulls might be optimized for different functions.  相似文献   

2.
The morphology and biomechanics of the vertebrate skull reflect the physical properties of diet and behaviors used in food acquisition and processing. We use phyllostomid bats, the most diverse mammalian dietary radiation, to investigate if and how changes in dietary hardness and loading behaviors during feeding shaped the evolution of skull morphology and biomechanics. When selective regimes of food hardness are modeled, we found that species consuming harder foods have evolved skull shapes that allow for more efficient bite force production. These species have shorter skulls and a greater reliance on the temporalis muscle, both of which contribute to a higher mechanical advantage at an intermediate gape angle. The evolution of cranial morphology and biomechanics also appears to be related to loading behaviors. Evolutionary changes in skull shape and the relative role of the temporalis and masseter in generating bite force are correlated with changes in the use of torsional and bending loading behaviors. Functional equivalence appears to have evolved independently among three lineages of species that feed on liquids and are not obviously morphologically similar. These trends in cranial morphology and biomechanics provide insights into behavioral and ecological factors shaping the skull of a trophically diverse clade of mammals.  相似文献   

3.
Anthropoids and tarsiers are the only vertebrates possessing a postorbital septum. This septum, formed by the frontal, alisphenoid, and zygomatic bones, separates the orbital contents from the temporal muscles. Three hypotheses suggest that the postorbital septum evolved to resist stresses acting on the skull during mastication or incision. The facial-torsion hypothesis posits that the septum resists twisting of the face about a rostrocaudal axis during unilateral mastication; the transverse-bending hypothesis argues that the septum resists caudally directed forces acting at the lateral orbital margin during mastication or incision; and the tension hypothesis suggests that the septum resists ventrally directed components of masseter muscle force during mastication and incision. This study evaluates these hypotheses using in vitro and in vivo bone strain data recorded from the circumorbital region of owl monkeys. Incisor loading of an owl monkey skull in vitro bends the face upward in the sagittal plane, compressing the interorbital region rostrocaudally and “buckling” the lateral orbital walls. Unilateral loading of the toothrow in vitro also bends the face in the sagittal plane, compressing the interorbital region rostrocaudally and buckling the working side lateral orbital wall. When the lateral orbital wall is partially cut, so as to reduce the width of its attachment to the braincase, the following changes in circumorbital bone strain patterns occur. During loading of the incisors, lower bone strain magnitudes are recorded in the interorbital region and lateral orbital walls. In contrast, during unilateral loading of the P3, higher bone strain magnitudes are observed in the interorbital region, and generally lower bone strain magnitudes are observed in the lateral orbital walls. During unilateral loading of the M2, higher bone strain magnitudes are observed in both the interorbital region and in the lateral orbital wall ipsilateral to the loaded molar. Comparisons of the in vitro results with data gathered in vivo suggest that, during incision and unilateral mastication, the face is subjected to upward bending in the sagittal plane resulting in rostrocaudal compression of the interorbital region. Modeling the lateral orbital walls as curved plates suggests that during mastication the working side wall is buckled due to the dorsally directed component of the maxillary force which causes upward bending of the face in the sagittal plane. The balancing side lateral orbital wall may also be buckled due to upward bending of the face in the sagittal plane as well as being twisted by the caudoventrally directed components of the superficial masseter muscle force. The in vivo data do not exclude the possibility that the postorbital septum functions to improve the structural integrity of the postorbital bar during mastication. However, there is no reason to believe that a more robust postorbital bar could not also perform this function. Hypotheses stating that the postorbital septum originally evolved to reinforce the skull against routine masticatory loads must explain why, rather than evolving a postorbital septum, the stem anthropoids did not simply enlarge their postorbital bars. © 1996 Wiley-Liss, Inc.  相似文献   

4.
Large variations in axial ulnar load strain calibration results suggest that animal-specific calibrations may be necessary. However, the optimal set of geometric measures for performing an animal-specific calibration are not known, potentially as a result of confounding effects associated with experimentally introduced variation. The purpose of this study was to characterize the inherent variability of ulnar geometric measures known to influence periosteal midshaft strain during axial ulnar exogenous loading, and to further quantify the relationship between the variance of those geometric measures and periosteal strain during axial loading. Thirty-nine right mouse forelimbs were scanned with microCT. Seven geometric measures that influence periosteal strain resulting from a combined axial and bending loading were computed and used to estimate animal-specific strains on the periosteal midshaft. Animal specific strains were estimated using a theoretical model based on the generalized flexure formula. The predicted mean and standard deviation of the simulated midshaft strain gauge measurement resulting from the inter-animal geometric differences was −985±148 με/N. The complete beam bending term associated with bending about the Imin axis accounted for 89% of the variance and reduced the residual RMSE to 50.4 με. Eccentricity associated with the axial loading contributed a substantial portion of variation to the computed strain suggesting that calibration procedures to account for animal differences should incorporate that variable. The method developed in this study provides a relatively simple procedure for computing animal-specific strains using microCT scan data, without the need of a load/strain calibration study or computationally intensive finite element models.  相似文献   

5.
The ability of bone to adapt to its mechanical environment is well recognized, although the specific mechanical parameters initiating or maintaining the adaptive responses have yet to be identified. Recently introduced mathematical models offer the potential to aid in the identification of such parameters, although these models have not been well validated experimentally or clinically. We formulated a complementary experimental/analytic approach, using an animal model with a well-controlled mechanical environment combined with finite element modeling (FEM). We selected the functionally isolated turkey ulna, since the loading could be completely characterized and the periosteal adaptive responses subsequently monitored and quantified after four and eight weeks of loading. Known loads input into a three-dimensional, linearly elastic FEM of the ulna then permitted full-field mechanical characterization of the ulna. The FEM was validated against a normal strain-gaged turkey ulna, loaded in vivo in an identical fashion to the experimental ulnae. Twenty-four candidate mechanical parameters were then compared to the quantified adaptive responses, using statistical techniques. The data supported strain energy density, longitudinal shear stress, and tensile principal stress/strain as the mechanical parameters most likely related to the initiation of the remodeling response. Model predictions can now suggest new experiments, against which the predictions can be supported or falsified.  相似文献   

6.
Bright JA 《PloS one》2012,7(2):e31769
Craniofacial sutures are a ubiquitous feature of the vertebrate skull. Previous experimental work has shown that bone strain magnitudes and orientations often vary when moving from one bone to another, across a craniofacial suture. This has led to the hypothesis that craniofacial sutures act to modify the strain environment of the skull, possibly as a mode of dissipating high stresses generated during feeding or impact. This study tests the hypothesis that the introduction of craniofacial sutures into finite element (FE) models of a modern domestic pig skull would improve model accuracy compared to a model without sutures. This allowed the mechanical effects of sutures to be assessed in isolation from other confounding variables. These models were also validated against strain gauge data collected from the same specimen ex vivo. The experimental strain data showed notable strain differences between adjacent bones, but this effect was generally not observed in either model. It was found that the inclusion of sutures in finite element models affected strain magnitudes, ratios, orientations and contour patterns, yet contrary to expectations, this did not improve the fit of the model to the experimental data, but resulted in a model that was less accurate. It is demonstrated that the presence or absence of sutures alone is not responsible for the inaccuracies in model strain, and is suggested that variations in local bone material properties, which were not accounted for by the FE models, could instead be responsible for the pattern of results.  相似文献   

7.
How animals cope with increases in body size is a key issue in biology. Here, we consider scaling of xenarthrans, particularly how femoral form and function varies to accommodate the size range between the 3 kg armadillo and its giant relative the 300 kg glyptodont. It has already been noted that femoral morphology differs between these animals and suggested that this reflects a novel adaptation to size increase in glyptodont. We test this idea by applying a finite element analysis of coronal plane forces to femoral models of these animals, simulating the stance phase in the hind limb; where the femur is subject to bending owing to longitudinal compressive as well as abduction loads on the greater trochanter. We use these models to examine the hypothesis that muscles attaching on the third trochanter (T3) can reduce this bending in the loaded femur and that the T3 forces are more effective at reducing bending in glyptodont where the T3 is situated at the level of the knee. The analysis uses traditional finite element methods to produce strain maps and examine strains at 200 points on the femur. The coordinates of these points before and after loading are also used to carry out geometric morphometric (GM) analyses of the gross deformation of the model in different loading scenarios. The results show that longitudinal compressive and abductor muscle loading increases bending in the coronal plane, and that loads applied to the T3 reduce that bending. In the glyptodont model, the T3 loads are more effective and can more readily compensate for the bending owing to longitudinal and abductor loads. This study also demonstrates the usefulness of GM methods in interpreting the results of finite element analyses.  相似文献   

8.
Biomechanics of phalangeal curvature   总被引:1,自引:0,他引:1  
Phalangeal curvature has been widely cited in primate functional morphology and is one of the key traits in the ongoing debate about whether the locomotion of early hominins included a significant degree of arboreality. This study examines the biomechanics of phalangeal curvature using data on hand posture, muscle recruitment, and anatomical moment arms to develop a finite element (FE) model of a siamang manual proximal phalanx during suspensory grasping. Strain patterns from experiments on intact cadaver forelimbs validated the model. The strain distribution in the curved siamang phalanx FE model was compared to that in a mathematically straight rendition in order to test the hypotheses that curvature: 1) reduces strain and 2) results in lower bending strains but relatively higher compression. In the suspensory posture, joint reaction forces load the articular ends of the phalanx in compression and dorsally, while muscle forces acting through the flexor sheath pull the mid-shaft palmarly. These forces compress the phalanx dorsally and tense it palmarly, effectively bending it 'open.' Strains in the curved model were roughly half that of the straight model despite equivalent lengths, areas, mechanical properties, and loading conditions in the two models. The curved model also experienced a higher ratio of compressive to tensile strains. Curvature reduces strains during grasping hand postures because the curved bone is more closely aligned with the joint reaction forces. Therefore, phalangeal curvature reduces the strains associated with arboreal, and especially suspensory, activity involving flexed digits. These results offer a biomechanical explanation for the observed association between phalangeal curvature and arboreality.  相似文献   

9.
Recent developments in simulating musculoskeletal functioning in the craniofacial complex using multibody dynamic analysis and finite elements analysis enable comprehensive virtual investigations into musculoskeletal form and function. Because the growth of the craniofacial skeleton is strongly influenced by mechanical functioning, these methods have potential in investigating the normal and abnormal development of the skull: loading history during development can be predicted and bony adaptations to these loads simulated. Thus these methods can be used to predict the impact of altered loading or modifications of skull form early in ontogeny on the subsequent development of structures. Combining functional models with geometric morphometric methods (GMM), which are principally concerned with the study of variations of form, offers the opportunity to examine variations in form during development and the covariations between form and factors such as functional performance. Such a combination of functional models and GMM can potentially be applied in many useful ways, for example: to build and modify functional models, to assess the outcomes of remodelling studies by comparing the results with morphological changes during ontogeny, and to compare the outcomes of finite element analyses within a multivariate framework. Studies using these tools can not only investigate the development of the skull but also the mechanical processes and thus to some degree, behaviours underlying the development of variation among extant and fossil skeletal elements. By bringing together these tools from quite different comparative traditions, a novel and potentially powerful framework for simulation and statistical biomechanical analyses of form and function emerges. This paper reviews these recent developments in the context of the evolutionary and functional influences on skull development.  相似文献   

10.
Single-molecule tweezers measurements of double-stranded nucleic acids (dsDNA and dsRNA) provide unprecedented opportunities to dissect how these fundamental molecules respond to forces and torques analogous to those applied by topoisomerases, viral capsids, and other biological partners. However, tweezers data are still most commonly interpreted post facto in the framework of simple analytical models. Testing falsifiable predictions of state-of-the-art nucleic acid models would be more illuminating but has not been performed. Here we describe a blind challenge in which numerical predictions of nucleic acid mechanical properties were compared to experimental data obtained recently for dsRNA under applied force and torque. The predictions were enabled by the HelixMC package, first presented in this paper. HelixMC advances crystallography-derived base-pair level models (BPLMs) to simulate kilobase-length dsDNAs and dsRNAs under external forces and torques, including their global linking numbers. These calculations recovered the experimental bending persistence length of dsRNA within the error of the simulations and accurately predicted that dsRNA''s “spring-like” conformation would give a two-fold decrease of stretch modulus relative to dsDNA. Further blind predictions of helix torsional properties, however, exposed inaccuracies in current BPLM theory, including three-fold discrepancies in torsional persistence length at the high force limit and the incorrect sign of dsRNA link-extension (twist-stretch) coupling. Beyond these experiments, HelixMC predicted that ‘nucleosome-excluding’ poly(A)/poly(T) is at least two-fold stiffer than random-sequence dsDNA in bending, stretching, and torsional behaviors; Z-DNA to be at least three-fold stiffer than random-sequence dsDNA, with a near-zero link-extension coupling; and non-negligible effects from base pair step correlations. We propose that experimentally testing these predictions should be powerful next steps for understanding the flexibility of dsDNA and dsRNA in sequence contexts and under mechanical stresses relevant to their biology.  相似文献   

11.
The determination of biomechanical force systems of implanted femurs to obtain adequate strain measurements has been neglected in many published studies. Due to geometric alterations induced by surgery and those inherent to the design of the prosthesis, the loading system changes because the lever arms are modified. This paper discusses the determination of adequate loading of the implanted femur based on the intact femur-loading configuration. Four reconstructions with Lubinus SPII, Charnley Roundback, Muller Straight and Stanmore prostheses were used in the study. Pseudophysiologic and nonphysiologic implanted system forces were generated and assessed with finite element analysis. Using an equilibrium system of forces composed by the Fx (medially direction) component of the hip contact force and the bending moments Mx (median plane) and My (coronal plane) allowed adequate, pseudo-physiological loading of the implanted femur. We suggest that at least the bending moment at the coronal plane must be restored in the implanted femur-loading configuration.  相似文献   

12.
The primary objective of this study was to generate a finite element model of the human lumbar spine (L1-L5), verify mesh convergence for each tissue constituent and perform an extensive validation using both kinematic/kinetic and stress/strain data. Mesh refinement was accomplished via convergence of strain energy density (SED) predictions for each spinal tissue. The converged model was validated based on range of motion, intradiscal pressure, facet force transmission, anterolateral cortical bone strain and anterior longitudinal ligament deformation predictions. Changes in mesh resolution had the biggest impact on SED predictions under axial rotation loading. Nonlinearity of the moment-rotation curves was accurately simulated and the model predictions on the aforementioned parameters were in good agreement with experimental data. The validated and converged model will be utilised to study the effects of degeneration on the lumbar spine biomechanics, as well as to investigate the mechanical underpinning of the contemporary treatment strategies.  相似文献   

13.
The primary objective of this study was to generate a finite element model of the human lumbar spine (L1–L5), verify mesh convergence for each tissue constituent and perform an extensive validation using both kinematic/kinetic and stress/strain data. Mesh refinement was accomplished via convergence of strain energy density (SED) predictions for each spinal tissue. The converged model was validated based on range of motion, intradiscal pressure, facet force transmission, anterolateral cortical bone strain and anterior longitudinal ligament deformation predictions. Changes in mesh resolution had the biggest impact on SED predictions under axial rotation loading. Nonlinearity of the moment-rotation curves was accurately simulated and the model predictions on the aforementioned parameters were in good agreement with experimental data. The validated and converged model will be utilised to study the effects of degeneration on the lumbar spine biomechanics, as well as to investigate the mechanical underpinning of the contemporary treatment strategies.  相似文献   

14.
A better understanding of the three-dimensional mechanics of the pelvis, at the patient-specific level, may lead to improved treatment modalities. Although finite element (FE) models of the pelvis have been developed, validation by direct comparison with subject-specific strains has not been performed, and previous models used simplifying assumptions regarding geometry and material properties. The objectives of this study were to develop and validate a realistic FE model of the pelvis using subject-specific estimates of bone geometry, location-dependent cortical thickness and trabecular bone elastic modulus, and to assess the sensitivity of FE strain predictions to assumptions regarding cortical bone thickness as well as bone and cartilage material properties. A FE model of a cadaveric pelvis was created using subject-specific computed tomography image data. Acetabular loading was applied to the same pelvis using a prosthetic femoral stem in a fashion that could be easily duplicated in the computational model. Cortical bone strains were monitored with rosette strain gauges in ten locations on the left hemipelvis. FE strain predictions were compared directly with experimental results for validation. Overall, baseline FE predictions were strongly correlated with experimental results (r2=0.824), with a best-fit line that was not statistically different than the line y=x (experimental strains = FE predicted strains). Changes to cortical bone thickness and elastic modulus had the largest effect on cortical bone strains. The FE model was less sensitive to changes in all other parameters. The methods developed and validated in this study will be useful for creating and analyzing patient-specific FE models to better understand the biomechanics of the pelvis.  相似文献   

15.
Mathematical models of small animals that predict in vivo forces acting on the lower extremities are critical for studies of musculoskeletal biomechanics and diseases. Rabbits are advantageous in this regard because they remodel their cortical bone similar to humans. Here, we enhance a recent mathematical model of the rabbit knee joint to include the loading behavior of individual muscles, ligaments, and joint contact at the knee and ankle during the stance phase of hopping. Geometric data from the hindlimbs of three adult New Zealand white rabbits, combined with previously reported intersegmental forces and moments, were used as inputs to the model. Muscle, ligament, and joint contact forces were computed using optimization techniques assuming that muscle endurance is maximized and ligament strain energy resists tibial shear force along an inclined plateau. Peak forces developed by the quadriceps and gastrocnemius muscle groups and by compressive knee contact were within the range of theoretical and in vivo predictions. Although a minimal force was carried by the anterior cruciate and medial collateral ligaments, force patterns in the posterior cruciate ligament were consistent with in vivo tibial displacement patterns during hopping in rabbits. Overall, our predictions compare favorably with theoretical estimates and in vivo measurements in rabbits, and enhance previous models by providing individual muscle, ligament, and joint contact information to predict in vivo forces acting on the lower extremities in rabbits.  相似文献   

16.
This study considers modelling the brain due to rotation of the skull where, at lower frequencies, the shear property of the material is important. Investigations reported here cover the effect of elastic and viscoelastic (lossy) cerebral material, the effect of the Falx protruding into the brain, the gap around the Falx and the brain filled with non viscous fluid in addition to different models of the Falx with bending or membrane stiffness. Analytical benchmark formulations are also described for the simple 2D plane strain in a cylinder produced by a half-sine rotation on the outer periphery which allows numerical (Finite Element) models to be validated. The results show the importance of the material properties, duration of loading and amplitude of loading as well as the influence of the partition. The results are shown for predicted maximum Principal strains in the models, as this may well be indicative of whether damage of the brain tissue occurs.  相似文献   

17.
Lizard skulls vary greatly in their detailed morphology. Theoretical models and practical studies have posited a definite relationship between skull morphology and bite performance, but this can be difficult to demonstrate in vivo. Computer modelling provides an alternative approach, as long as hard and soft tissue components can be integrated and the model can be validated. An anatomically accurate three-dimensional computer model of an Uromastyx hardwickii skull was developed for rigid-body dynamic analysis. The Uromastyx jaw was first opened under motion control, and then muscle forces were applied to produce biting simulations where bite forces and joint forces were calculated. Bite forces comparable to those reported in the literature were predicted, and detailed muscular force information was produced along with additional information on the stabilizing role of temporal ligaments in late jaw closing.  相似文献   

18.
A three-dimensional finite element model of the human head is presented. The model has been validated against two sets of experimental results. To assess injury likelihood of the head subjected to impact loading, the structural intensity (SI) methodology is introduced in accordance with the prevailing practice in experimental biomechanics. SI is a vector quantity indicating the direction and magnitude of power flow inside a dynamically loaded structure. In this paper, the SI field inside the head model is computed for three cases, namely frontal, rear and side impacts. The results for the three cases have revealed that there exist power flow paths. The skull is, in general, a good energy flow channel. The study has also revealed the high possibility of spinal cord injury due to wave motion inside the head.  相似文献   

19.
Mechanistic interpretations of bone cross-sectional shapes are based on the paradigm of shape optimization such that bone offers maximum mechanical resistance with a minimum of material. Recent in vivo strain studies (Demes et al., Am J Phys Anthropol 106 (1998) 87-100, Am J Phys Anthropol 116 (2001) 257-265; Lieberman et al., Am J Phys Anthropol 123 (2004) 156-171) have questioned these interpretations by demonstrating that long bones diaphyses are not necessarily bent in planes in which they offer maximum resistance to bending. Potential limitations of these in vivo studies have been pointed out by Ruff et al. (Am J Phys Anthropol 129 (2006) 484-498). It is demonstrated here that two loading scenarios, asymmetric bending and buckling, would indeed not lead to correct predictions of loads from strain. It is also shown that buckling is of limited relevance for many primate long bones. This challenges a widely held view that circular bone cross sections make loading directions unpredictable for bones which is based on a buckling load model. Asymmetric bending is a potentially confounding factor for bones with directional differences in principal area moments (I(max) > I(min)). Mathematical corrections are available and should be applied to determine the bending axis in such cases. It is concluded that loads can be reliably extrapolated from strains. More strain studies are needed to improve our understanding of the relationships between activities, bone loading regimes associated with them, and the cross-sectional geometry of bones.  相似文献   

20.
山顶洞101号头骨化石是东亚地区保存最为完整的化石之一,是探讨东亚地区现代人起源的重要研究材料。本文依据数据集中现生人的面部软组织平均分布,提出了计算机三维颅面复原方法,实现了101号头骨生前面貌的预测复原。主要包括三个步骤:首先使用CT完成了101号男性头骨和下颌骨仿制模型的三维重建。然后,利用计算机技术将现生人的面部软组织分布作为101号头骨的面部软组织分布,实现了颅面虚拟复原,并采用手工绘画技巧再现了复原面貌的形态特征。最后,提出了一种基于面部软组织分布和面貌统计形状模型的形态分析方法,实现了颅面复原结果的评估。山顶洞101号头骨的复原面貌具有头部较长、额头前倾、眉弓粗壮等特征,与101号头骨的几何形态基本一致。该技术再现了更新世晚期人类的脑颅及面部的形态特征,为古人类颅面复原的研究提供了技术支持和参考资料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号