共查询到20条相似文献,搜索用时 0 毫秒
1.
The intestinal absorption of the essential trace element iron and its mobilization from storage sites in the body are controlled by systemic signals that reflect tissue iron requirements. Recent advances have indicated that the liver-derived peptide hepcidin plays a central role in this process by repressing iron release from intestinal enterocytes, macrophages and other body cells. When iron requirements are increased, hepcidin levels decline and more iron enters the plasma. It has been proposed that the level of circulating diferric transferrin, which reflects tissue iron levels, acts as a signal to alter hepcidin expression. In the liver, the proteins HFE, transferrin receptor 2 and hemojuvelin may be involved in mediating this signal as disruption of each of these molecules decreases hepcidin expression. Patients carrying mutations in these molecules or in hepcidin itself develop systemic iron loading (or hemochromatosis) due to their inability to down regulate iron absorption. Hepcidin is also responsible for the decreased plasma iron or hypoferremia that accompanies inflammation and various chronic diseases as its expression is stimulated by pro-inflammatory cytokines such as interleukin 6. The mechanisms underlying the regulation of hepcidin expression and how it acts on cells to control iron release are key areas of ongoing research. 相似文献
2.
Ferroxidases are essential for normal iron homeostasis in most organisms. The paralogous vertebrate ferroxidases ceruloplasmin (Cp) and hephaestin (Heph) are considered to have nonidentical functions in iron transport: plasma Cp drives iron transport from tissue stores while intestinal Heph facilitates iron absorption from the intestinal lumen. To clarify the function of Cp, we acutely bled Cp-/- mice to stress iron homeostasis pathways. Red cell hemoglobin recovery was defective in stressed Cp-/- mice, consistent with low iron availability. Contrary to expectations, iron was freely released from spleen and liver stores in Cp-/- mice, but intestinal iron absorption was markedly impaired. Phlebotomy of wild-type mice caused a striking shift of Cp from the duodenal epithelium to the underlying lamina propria, suggesting a critical function of Cp in basolateral iron transport. Regulated relocalization of intestinal Cp may represent a fail-safe mechanism in which Cp shares with Heph responsibility for iron absorption under stress. 相似文献
3.
4.
5.
6.
Sampath Parthasarathy Papasani V. Subbaiah Jagannath Ganguly 《The Biochemical journal》1974,140(3):503-508
1. The mechanism of absorption of phosphatidylcholine was studied in rats by injecting into the intestine phosphatidylcholine specifically labelled either in the fatty acid or in the glycerol moiety or with (32)P, when considerable amounts of 1-acyl-lysophosphatidylcholine were found in the intestinal lumen. 2-([(14)C]Acyl)phosphatidylcholine gave markedly more radioactive unesterified fatty acids in the lumen, compared with the 1-([(14)C]acyl) derivative. Some of the radioactivity from either the fatty acid or the glycerol moiety of the injected phosphatidylcholine appeared in the mucosal triacylglycerols. 2. Injection of (32)P-labelled phosphatidylcholine or (32)P-labelled lysophosphatidylcholine led to the appearance of radioactive glycerylphosphorylcholine, glycerophosphate and P(i) in the mucosa. 3. Rat mucosa was found to contain a highly active glycerylphosphorylcholine diesterase. 4. It was concluded that the dietary phosphatidylcholine is hydrolysed in the intestinal lumen by the pancreatic phospholipase A to 1-acylglycerylphosphorylcholine, which on entering the mucosal cell is partly reacylated to phosphatidylcholine, and the rest is further hydrolysed to glycerylphosphorylcholine, glycerophosphate, glycerol and P(i). The fatty acids and glycerophosphate are then reassembled to give triacylglycerols via the Kennedy (1961) pathway. 相似文献
7.
The mechanism of iron absorption and its regulation. 总被引:8,自引:0,他引:8
8.
9.
An established and validated method using loops of intestine in vivo in rats was used to study the effects of cytoskeletal inhibitors on iron absorption. Radioactive iron instilled into the loop of intestine pretreated with test substance was monitored in the blood and, after death, ferritin loading with radioactive iron was measured on density gradients of mucosal cell homogenates and absorbed iron in the carcass was determined. Colchicine, vincristine and cytochalasin B all caused dose- and time-dependent inhibition of iron absorption, and the effects of cytochalasin B were reversible within 1 h. It is not known which cellular component is the vehicle for the transcellular movement of iron from the intestinal lumen onto plasma transferrin; however, this study showed that the uptake of iron by ferritin in an iron-absorbing loop of intestine paralleled the actual absorption of iron into the carcass. This phenomenon did not occur in non-iron-absorbing intestinal and was inhibited by the action of the cytoskeletal inhibitors in the iron-absorbing region. Previously we had shown that iron uptake into cells and onto cellular transferrin was virtually the same throughout the small intestine, irrespective of the iron-absorbing capacity of the region. The results of this study therefore suggest that iron absorption depends on an intact cytoskeletal system and that ferritin in the iron-absorbing cell is able to load from the pool of iron committed to transcellular movement onto plasma transferrin. 相似文献
10.
Fleming RE Britton RS 《American journal of physiology. Gastrointestinal and liver physiology》2006,290(4):G590-G594
The majority of clinical cases of iron overload is caused by mutations in the HFE gene. However, the role that HFE plays in the physiology of intestinal iron absorption remains enigmatic. Two major models have been proposed: 1) HFE exerts its effects on iron homeostasis indirectly, by modulating the expression of hepcidin; and 2) HFE exerts its effects directly, by changing the iron status (and therefore the iron absorptive activity) of intestinal enterocytes. The first model places the primary role of HFE in the liver (hepatocytes and/or Kupffer cells). The second model places the primary role in the duodenum (crypt cells or villus enterocytes). These models are not mutually exclusive, and it is possible that HFE influences the iron status in each of these cell populations, leading to cell type-specific downstream effects on intestinal iron absorption and body iron distribution. 相似文献
11.
Effect of orally-administered epidermal growth factor on intestinal iron absorption and mucosal permeability 总被引:1,自引:0,他引:1
A progressive increase in intestinal 59Fe3+ absorption was observed on oral feeding of mice with physiological doses of EGF/UGO. Maximal changes were apparent after 3d and appeared to be dose-dependent. In addition to a small increase in intestinal cell proliferation, as reflected by increased ornithine decarboxylase activity, EGF/UGO-feeding increased mucosal permeability (evaluated with [51Cr]-EDTA): the latter could account for the increase in iron absorption. Sialoadenectomy, to remove the major source of endogenous EGF/UGO, had no appreciable effect on the intestinal absorption of iron. 相似文献
12.
With a view to identifying ligands that could be used as promoters of iron absorption, the affinity of a number of iron chelating agents and the efficiency with which they can donate iron to the brush border receptors has been studied. A number of organic and inorganic compounds were found to chelate iron and keep it soluble at pH 7.5 of the intestinal lumen. This ligand-bound iron was taken up by the intestinal brush border receptors with varying degree of efficiency; ascorbic acid being the most effective and EDTA and citrate the least effective in donating the chelated iron to the receptors. Several polyphosphate compounds, used as food additives, chelated iron and kept it in solution but showed moderate potency for donating iron to the receptors. 相似文献
13.
Laftah AH Sharma N Brookes MJ McKie AT Simpson RJ Iqbal TH Tselepis C 《The Biochemical journal》2006,397(1):61-67
Cytokines are implicated in the anaemia of chronic disease by reducing erythropoiesis and increasing iron sequestration in the reticuloendotheial system. However, the effect of cytokines, in particular TNFalpha (tumour necrosis factor alpha), on small bowel iron uptake and iron-transporter expression remains unclear. In the present study, we subjected CD1 male mice to intraperitoneal injection with TNFalpha (10 ng/mouse) and then examined the expression and localization of DMT1 (divalent metal transporter 1), IREG1 (iron-regulated protein 1) and ferritin in duodenum. Liver and spleen samples were used to determine hepcidin mRNA expression. Changes in serum iron and iron loading of duodenum, spleen and liver were also determined. We found a significant (P<0.05) fall in serum iron 3 h post-TNFalpha exposure. This was coincident with increased iron deposition in the spleen. After 24 h of exposure, there was a significant decrease in duodenal iron transfer (P<0.05) coincident with increased enterocyte ferritin expression (P<0.05) and re-localization of IREG1 from the basolateral enterocyte membrane. Hepatic hepcidin mRNA levels remained unchanged, whereas splenic hepcidin mRNA expression was reduced at 24 h. In conclusion, we provide evidence that TNFalpha may contribute to anaemia of chronic disease by iron sequestration in the spleen and by reduced duodenal iron transfer, which seems to be due to increased enterocyte iron binding by ferritin and a loss of IREG1 function. These observations were independent of hepcidin mRNA levels. 相似文献
14.
Nathan Kaufman John C. Wyllie Marianna Newkirk 《Biochimica et Biophysica Acta (BBA)/General Subjects》1977,497(3):719-727
Acrylamide gel electrophoresis of microsomal protein obtained from rat small intestinal mucosal cells, after an injection of [3H]leucine, demonstrated increased quantities of two soluble iron-binding proteins during iron absorption, one with a high molecular weight (about 400 000) and the other of intermediate molecular weight (80 000). Both proteins were present in a ribosomal-enriched sub-fraction obtained during purification of the microsomal membrame but were not identified among the purified membrane proteins. 相似文献
15.
16.
Fuqua BK Vulpe CD Anderson GJ 《Journal of trace elements in medicine and biology》2012,26(2-3):115-119
Intestinal iron absorption is a critical process for maintaining body iron levels within the optimal physiological range. Iron in the diet is found in a wide variety of forms, but the absorption of non-heme iron is best understood. Most of this iron is moved across the enterocyte brush border membrane by the iron transporter divalent metal-ion transporter 1, a process enhanced by the prior reduction of the iron by duodenal cytochrome B and possibly other reductases. Enterocyte iron is exported to the blood via ferroportin 1 on the basolateral membrane. This transporter acts in partnership with the ferroxidase hephaestin that oxidizes exported ferrous iron to facilitate its binding to plasma transferrin. Iron absorption is controlled by a complex network of systemic and local influences. The liver-derived peptide hepcidin binds to ferroportin, leading to its internalization and a reduction in absorption. Hepcidin expression in turn responds to body iron demands and the BMP-SMAD signaling pathway plays a key role in this process. The levels of iron and oxygen in the enterocyte also exert important influences on iron absorption. Disturbances in the regulation of iron absorption are responsible for both iron loading and iron deficiency disorders in humans. 相似文献
17.
18.
Regulation of iron absorption 总被引:1,自引:0,他引:1
D Van Campen 《Federation proceedings》1974,33(1):100-105
19.
20.
铁是水稻生长的必需元素之一,然而由于种种原因使铁处于难吸收状态造成缺铁环境,这极大影响水稻正常发育和产量.水稻可利用根部合成并分泌麦根酸而将Fe3 蟹合实现吸收(策略II),也可直接吸收Fe2 (策略I),这两种策略可协同作用使水稻在缺铁环境下获得尽可能多的铁,以满足生长和发育需要.在实际生产中,可通过转基因而增加麦根酸合成或Fe2 的吸收来达到增加水稻铁吸收的目的,从而增加水稻产量和改善水稻品质. 相似文献