首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Studies of RII alpha-deficient B lymphoid cells and stable transfectants expressing the type II alpha regulatory subunit (RII alpha) of cAMP-dependent protein kinase (PKA), which is targeted to the Golgi-centrosomal area, reveal that the presence of a Golgi-associated pool of PKA type II alpha mediates a change in intracellular transport of the plant toxin ricin. The transport of ricin from endosomes to the Golgi apparatus, measured as sulfation of a modified ricin (ricin sulf-1), increased in RII alpha-expressing cells when PKA was activated. However, not only endosome-to-Golgi transport, but also retrograde ricin transport to the endoplasmic reticulum (ER), measured as sulfation and N-glycosylation of another modified ricin (ricin sulf-2), seemed to be increased in cells expressing RII alpha in the presence of a cAMP analog, 8-(4-chlorophenylthio)-cAMP. Thus, PKA type II alpha seems to be involved in both endosome-to-Golgi and Golgi-to-ER transport. Because ricin, after being retrogradely transported to the ER, is translocated to the cytosol, where it inhibits protein synthesis, we also investigated the influence of RII alpha expression on ricin toxicity. In agreement with the other data obtained, 8-(4-chlorophenylthio)-cAMP and RII alpha were found to sensitize cells to ricin, indicating an increased transport of ricin to the cytosol. In conclusion, our results demonstrate that transport of ricin from endosomes to the Golgi apparatus and further to the ER is regulated by PKA type II alpha isozyme.  相似文献   

2.
Plant water loss, regulated by stomata and driven by atmospheric demand, cannot exceed the maximum steady-state supply through roots. Just as an electric circuit breaks when carrying excess current, the soil-plant continuum breaks if forced to transport water beyond its capacity. Exciting new molecular, biophysical and ecological research suggests that roots are the weakest link along this hydraulic flow path. We attempt here to predict rooting depth and water uptake using the hydraulic properties of plants and the soil, and also to suggest how new physiological tools might contribute to larger-scale studies of hydraulic lift, the water balance and biosphere-atmosphere interactions.  相似文献   

3.
Diversity in nucleocytoplasmic transport pathways   总被引:3,自引:0,他引:3  
Significant progress has been made toward our understanding of the basic principle of nucleocytoplasmic transport, and the structure of transport factors, as well as the diversity of nucleocytoplasmic transport pathways. This review outlines the current knowledge of transport, and discusses the problems that remain as to how eukaryotic cells acquire additional levels for the regulation of gene expression from a diversity of nucleocytoplasmic transport pathways.  相似文献   

4.
Coupling between transport processes in intestine   总被引:2,自引:0,他引:2  
  相似文献   

5.
Conclusion Much more work has been done on Pi transport processes, even in the last five years, than we have been able to mention in the space available. We have restricted our discussion to studies on mechanisms of transport or transport regulation, identification of transport proteins and their essential amino acids, and isolation, purification, and reconstitution of Pi transport systems. Many valuable studies on the physiology of Pi transport and its regulation and Pi transport in nonepithelial cells have also been conducted. Transport of Pi into and out of organelles other than the mitochondrion is gaining well-deserved attention, as are transport processes in fungi and plants. It is hoped that in another five years many Pi transport processes will be understood in true molecular terms and that this will increase our knowledge of cellular bioenergetics and metabolism.  相似文献   

6.
《Plant and Soil》2000,220(1-2):107-117
The contribution of influx and efflux of NO3 - on NO3 - net uptake has been studied in excised mycorrhizae of 18–20 week old beech (Fagus sylvatica L.) trees. Net uptake rates of NO3 - followed uniphasic Michaelis-Menten kinetics in the concentration range between 10 μM and 1.0 mM external NO3 -, with an apparent Km of 88±7 μM, and a Vmax of 110±7 nmol g-1 root f.wt. h-1. The relative xylem loading of N, i.e. the portion of NO3 - taken up that was loaded into the xylem vessels as NO3 - plus reduced N, was constant over the concentration range tested (4.6–7.7%). NO3 - influx proceeded linearly with increasing external NO3 - supply. When the assumed regulators of net NO3 - uptake, i.e. NH4 + or L-glutamate, were applied together with NO3 -, net uptake rates of NO3 - decreased. This inhibitory effect was caused by a reduction of NO3 - influx rather than an enhanced efflux. The comparison of the present data with a recent study with non-mycorrhizal beech roots (Kreuzwieser et al., 1997; J. Exp. Bot. 48, 1431–1438) revealed that mycorrhization leads to reduced rates of NO3 - net uptake. This effect is caused by reduced influx plus enhanced efflux of NO3 - as compared with non-mycorrhizal beech roots. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
A relatively simple model of transport processes in stellarators is constructed that is based on neoclassical theory and accounts for anomalous heat losses. The model is used to perform calculations for the L-2M, ATF, CHS, and LHD stellarators over a wide range of plasma densities and absorbed powers. The plasma energy lifetimes calculated for these devices coincide to within factors on the order of unity with those obtained from the ISS95 and LHD empirical scalings.  相似文献   

8.
SIP (sterilization-in-place) of equipment using saturated steam is limited by transport processes that restrict the distribution of sterilizing steam. The following are two crucial operations: the removal of air prior to sterilization, and the removal of condensate during the sterilization. Using simple model systems of pipes and tanks, characteristic operating parameters were examined and steady-state models were analyzed. The results were used to evaluate design aspects of SIP, including heat insulation, spacing of steam traps, sloping of lines, steam velocities and consumption, placement of temperature sensors, and scale factors in piping. A more reliable SIP design is achievable by insulating equipment, spacing steam traps to limit condensate buildup, providing an effective air removal operation, and providing reliable, high-quality steam.  相似文献   

9.
Shiga toxin binds to globotriaosylceramide (Gb3) receptors on the target cell surface. To enter the cytosol, Shiga toxin is dependent on endocytic uptake, retrograde transport to the Golgi apparatus and further to the endoplasmic reticulum before translocation of the enzymatically active moiety to the cytosol. Here, we have investigated the importance of newly synthesized glycosphingolipids for the uptake and intracellular transport of Shiga toxin in HEp-2 cells. Inhibition of glycosphingolipid synthesis by treatment with either PDMP or Fumonisin B1 for 24–48 h strongly reduced the transport of Gb3-bound Shiga toxin from endosomes to the Golgi apparatus. This was associated with a change in localization of sorting nexins 1 and 2, and accompanied by a protection against the toxin. In contrast, there was no effect on transport or toxicity of the plant toxin ricin. High-resolution mass spectrometry revealed a 2-fold reduction in Gb3 at conditions giving a 10-fold inhibition of Shiga toxin transport to the Golgi. Furthermore, mass spectrometry showed that the treatment with PDMP (DL-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol) and Fumonisin B1 among other changes of the lipidome, affected the relative content of the different glycosphingolipid species. The largest depletion was observed for the hexosylceramide species with the N -amidated fatty acid 16:0, whereas hexosylceramide species with 24:1 were less affected. Quantitative lipid profiling with mass spectrometry demonstrated that PDMP did not influence the content of sphingomyelins, phospholipids and plasmalogens. In contrast, Fumonisin B1 affected the amount and composition of sphingomyelin and glycolipids and altered the profiles of phospholipids and plasmalogens.  相似文献   

10.
Integration of the many available sources of cancer gene information—such as large‐scale tumour‐resequencing studies— identifies the ‘usual suspect’ genes, mutated in many tumour types, as well as different sets of mutated genes according to the specific tumour type. Scaling‐up the analysis reveals that this large collection of mutated genes cluster into a smaller number of signalling pathways and processes. From this, we draw a map of the altered processes, and their combinations, in more than 10 tumours types. Literature searches identify pathways and processes that are covered sparsely in the literature, and invite the proposal of new hypotheses to investigate cancer initiation and progression.  相似文献   

11.
We have recently characterized three yeast gene products (Vps35p, Vps29p, and Vps30p) as candidate components of the sorting machinery required for the endosome-to-Golgi retrieval of the vacuolar protein sorting receptor Vps10p (Seaman, M.N.J., E.G. Marcusson, J.-L. Cereghino, and S.D. Emr. 1997. J. Cell Biol. 137:79–92). By genetic and biochemical means we now show that Vps35p and Vps29p interact and form part of a multimeric membrane-associated complex that also contains Vps26p, Vps17p, and Vps5p. This complex, designated here as the retromer complex, assembles from two distinct subcomplexes comprising (a) Vps35p, Vps29p, and Vps26p; and (b) Vps5p and Vps17p. Density gradient fractionation of Golgi/endosomal/vesicular membranes reveals that Vps35p cofractionates with Vps5p/Vps17p in a vesicle-enriched dense membrane fraction. Furthermore, gel filtration analysis indicates that Vps35p and Vps5p are present on a population of vesicles and tubules slightly larger than COPI/coatomer-coated vesicles. We also show by immunogold EM that Vps5p is localized to discrete regions at the rims of the prevacuolar endosome where vesicles appear to be budding. Size fractionation of cytosolic and recombinant Vps5p reveals that Vps5p can self-assemble in vitro, suggesting that Vps5p may provide the mechanical impetus to drive vesicle formation. Based on these findings we propose a model in which Vps35p/Vps29p/Vps26p function to select cargo for retrieval, and Vps5p/Vps17p assemble onto the membrane to promote vesicle formation. Conservation of the yeast retromer complex components in higher eukaryotes suggests an important general role for this complex in endosome-to-Golgi retrieval.  相似文献   

12.
Efficiency of electron transport along the linear chain of molecules was investigated from a dynamic viewpoint. It was proposed that two kinds of efficiency are important for electron transport; one is energy efficiency, the other quantum efficiency. In this paper, these two efficiencies are defined for a linear chain system and the correlation between these quantities and the arrangement of various electron transfers is investigated. The optimization of energy and quantum efficiency is found to set different conditions on the arrangement of the rate constants of electron transfer, and there is strong correlation between neighboring electron transfers. In order to maximize both efficiencies, the rate constants of forward and backward transfers of electrons should be bounded by one another in a limited range. In particular, when there are some bypass reactions on the linear chain, as is the case for photosynthesis and respiration, the rate of the backward transfer should be the same order of magnitude as that of the next forward transfer. The present results are applied to some biological processes. In the early stage of photosynthetic electron transfer it seems that quantum efficiency is more important than energy efficiency. The quantum efficiency is close to unity, whereas a considerable part of the free energy is wasted as heat during the primary electron transfers. On the other hand, in the slower electron transfer processes in photosynthesis and respiration, which take place mostly near equilibrium, the energy efficiency seems to be more important than the quantum efficiency. The relation of these properties to biological function is discussed.  相似文献   

13.
Tracing pathways of transport protein evolution   总被引:1,自引:0,他引:1  
We have conducted bioinformatic analyses of integral membrane transport proteins belonging to dozens of families. These families rarely include proteins that function in a capacity other than transport. Many transporters have arisen by intragenic duplication, triplication and quadruplication events, in which the numbers of transmembrane alpha-helical hydrophobic segments (TMSs) have increased. The elements multiplied may encode two, three, four, five, six, 10 or 12 TMSs and gave rise to proteins with four, six, seven, eight, nine, 10, 12, 20, 24 and 30 TMSs. Gene fusion, splicing, deletion and insertion events have also contributed to protein topological diversity. Amino acid substitutions have allowed membrane-embedded domains to become hydrophilic domains and vice versa. Some evidence suggests that amino acid substitutions occurring over evolutionary time may in some cases have drastically altered protein topology. The results summarized in this microreview establish the independent origins of many transporter families and allow postulation of the specific pathways taken for their appearance.  相似文献   

14.
The control of calcium concentration in the cytoplasm of most cells involves both the influx and efflux of Ca++ from extracellular fluid and the release and uptake of Ca++ from two separate, but interacting intracellular membrane-bound Ca++ stores: (1) the ryanodine receptor-activated calcium store (RyR) and (2) the inositol-trisphosphate (IP3) receptor calcium store (Golovina and Blaustein, 1997, Spatially and functionally distinct Ca2+ stores in sarcoplasmic and endoplasmic reticulum. Science 275, 1643–1648). A more complete understanding of calcium pathways may lead to the development of new strategies to reduce the pathophysiology induced by severe hyperthermia, exercise, hypoxia, and other stresses. This review discusses the fundamental mechanisms involved in the control of Cai, the main regulator of biochemical processes, and ultimately, of physiological responses to moderate and severe physical exercise and stress.  相似文献   

15.
Lithium transport pathways in human red blood cells   总被引:6,自引:3,他引:6       下载免费PDF全文
In human red cells, Li is extruded against its own concentration gradient if the external medium contains Na as a dominant cation. This uphill net Li extrusion occurs in the presence of external Na but not K, Rb, Cs, choline, Mg, or Ca, is ouabain-insensitive, inhibited by phloretin, and does not require the presence of cellular ATP. Li influx into human red cells has a ouabain-sensitive and a ouabain-insensitive but phloretin-sensitive component. Ouabain-sensitive Li influx is competitively inhibited by external K and Na and probably involves the site on which the Na-K pump normally transports K into red cells. Ouabain does not inhibit Li efflux from red cells containing Li concentrations below 10 mM in the presence of high internal Na or K, whereas a ouabain-sensitive Li efflux can be measured in cells loaded to contain 140 mM Li in the presence of little or no internal Na or K. Ouabain-insensitive Li efflux is stimulated by external Na and not by K, Rb, Cs, choline, Mg, or Ca ions. Na-dependent Li efflux does not require the presence of cellular ATP and is inhibited by phloretin, furosemide, quinine, and quinidine. Experiments carried out in cells loaded in the presence of nystatin to contain either only K or only Na show that the ouabain-insensitive, phloretin-inhibited Li movements into or out of human red cells are stimulated by Na on the trans side and inhibited by Na on the cis side of the red cell membrane. The characteristics of the Na-dependent unidirectional Li fluxes and uphill Li extrusion are similar, suggesting that they are mediated by the same Na-Li countertransport system.  相似文献   

16.
17.
Partitioning of nutrient transport processes in roots   总被引:6,自引:2,他引:4  
  相似文献   

18.
Parasite infection of the gastrointestinal tract with helminths or protozoa induces detrimental effects on host tissues and host physiology, which have been extensively studied and reviewed. However, parasitism of the digestive system is also associated with adaptive, compensatory phenomena based on changes in host physiology or structures and which tend to counterbalance the negative consequences. The objective of this review is to describe these adaptive processes and their possible underlying mechanisms. Different processes which tend to attenuate the effect of either the loss of appetite, the intestinal malabsorption or the increased tissue losses have been assessed. These processes have been reported both for helminth and protozoan infections, where they present similar characteristics. The mechanisms involved in the adaptation to parasitism remain largely unidentified. The role of feedback mechanisms based on host regulation, possibly through gastrointestinal hormones, has been raised. On the other hand, some data support the proposal that parasites themselves may initiate some of the adaptive processes and consequently favour their own survival. These adaptive phenomena appear to be an essential component in the dynamic balance between host and parasites. Also, parasite infections represent unique models to study the adaptation of the gastrointestinal tract to aggressors.  相似文献   

19.
Microalgae are photosynthetic organisms which cover an extraordinary phylogenic diversity and have colonized extremely diverse habitats. Adaptation to contrasted environments in terms of light and nutrient’s availabilities has been possible through a high flexibility of the photosynthetic machinery. Indeed, optimal functioning of photosynthesis in changing environments requires a fine tuning between the conversion of light energy by photosystems and its use by metabolic reaction, a particularly important parameter being the balance between phosphorylating (ATP) and reducing (NADPH) power supplies. In addition to the main route of electrons operating during oxygenic photosynthesis, called linear electron flow or Z scheme, auxiliary routes of electron transfer in interaction with the main pathway have been described. These reactions which include non-photochemical reduction of intersystem electron carriers, cyclic electron flow around PSI, oxidation by molecular O2 of the PQ pool or of the PSI electron acceptors, participate in the flexibility of photosynthesis by avoiding over-reduction of electron carriers and modulating the NADPH/ATP ratio depending on the metabolic demand. Forward or reverse genetic approaches performed in model organisms such as Arabidopsis thaliana for higher plants, Chlamydomonas reinhardtii for green algae and Synechocystis for cyanobacteria allowed identifying molecular components involved in these auxiliary electron transport pathways, including Ndh-1, Ndh-2, PGR5, PGRL1, PTOX and flavodiiron proteins. In this article, we discuss the diversity of auxiliary routes of electron transport in microalgae, with particular focus in the presence of these components in the microalgal genomes recently sequenced. We discuss how these auxiliary mechanisms of electron transport may have contributed to the adaptation of microalgal photosynthesis to diverse and changing environments.  相似文献   

20.
Mutations in the HNF1A gene cause maturity-onset diabetes of the young type 3, one of the most common genetic causes of non-insulin-dependent (type 2) diabetes mellitus. Although the whole-body Hnf1a-null mouse recapitulates the low insulin levels and high blood glucose observed in human maturity-onset diabetes of the young type 3 patients, these mice also suffer from Laron dwarfism and aminoaciduria, suggesting a role for hepatocyte nuclear factor 1α (Hnf1α) in pathophysiologies distinct from non-insulin-dependent (type 2) diabetes mellitus. In an effort to identify pathways associated with inactivation of Hnf1α, an ultraperformance liquid chromatography coupled to mass spectrometry-based metabolomics study was conducted on urine samples from wild-type and Hnf1a-null mice. An increase in phenylalanine metabolites is in agreement with the known regulation of the phenylalanine hydroxylase gene by Hnf1α. This metabolomic approach also identified urinary biomarkers for three tissue-specific dysfunctions previously unassociated with Hnf1α function. 1) Elevated indolelactate coupled to decreased xanthurenic acid also indicated defects in the indole and kynurenine pathways of tryptophan metabolism, respectively. 2) An increase in the neutral amino acid proline in the urine of Hnf1a-null mice correlated with loss of renal apical membrane transporters of the Slc6a family. 3) Further investigation into the mechanism of aldosterone increase revealed an overactive adrenal gland in Hnf1a-null mice possibly due to inhibition of negative feedback regulation. Although the phenotype of the Hnf1a-null mouse is complex, metabolomics has opened the door to investigation of several physiological systems in which Hnf1α may be a critical regulatory component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号