首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Accumulation of intramuscular long-chain acyl-CoA esters (LCACoA) has previously in animal and human models been suggested to play an important role in lipid induced insulin resistance. The aim of this study was to examine whether myotubes established from type 2 diabetic (T2D) subjects and lean controls express differences in long-chain acyl-CoA esters (LCACoA) precultured under physiological conditions and during chronic exposure to palmitate (PA) and oleic acids (OA) with/without acute insulin stimulation. No significant differences were found between diabetic and control myotubes, neither in the total amount nor among individual LCA-CoA species during basal and acute insulin stimulation. LCA-CoA accumulated during exposure to palmitic acid but not during exposure to oleic acid. During PA and OA exposure, only palmitoyl-CoA, oleoyl-CoA and total LCA-CoA change. PA exposure increased the palmitoyl-CoA, whereas oleoyl-CoA was reduced and vice versa during OA exposure. No differences were found in the LCA-CoA level between T2D and control subjects, neither in the total amount nor in the individual specific LCA-CoA species during fatty acid exposure. Chronic (24 h), high PA, but not OA exposure induced insulin resistance at the level of glycogen synthesis in control subjects. These results indicate that (1) no primary defects are responsible for LCA-CoA accumulation in diabetic subjects; (2) LCA-CoA changes in vivo are partly adaptive to changes in the PA level and possibly other saturated fatty acids; and (3) PA induced insulin resistance may be mediated through an increased level of palmitoyl-CoA.  相似文献   

2.
In the present study, we investigated triacylglycerol (TAG) accumulation, glucose and fatty acid (FA) uptake, and glycogen synthesis (GS) in human myotubes from healthy, lean, and obese subjects with and without type 2 diabetes (T2D), exposed to increasing palmitate (PA) and oleate (OA) concentrations with/without high glucose and/or high insulin concentrations for 4 days. We showed that these myotubes expressed an increased TAG accumulation (P<0.001) without differences between groups. Chronically high insulin, but not high glucose concentrations, increases TAG accumulation by 25% (P<0.001). Inhibition of oxidative phosphorylation by antimycin A and oligomyin was followed by a reduced lipid oxidation (P<0.05) and increased TAG accumulation (P<0.05), but only in the presence of FAs. Both chronic PA and OA exposure reduced the insulin-mediated PA and OA uptake (fold change) (P<0.001), but could not induce insulin resistance at the level of glucose uptake, whereas high insulin concentrations induced insulin resistance (P<0.001). Chronic, high PA, but not OA, induced insulin resistance at the GS level in control subjects (P<0.05). The TAG content correlated negatively with insulin-stimulated FA uptake (P<0.001), but did not correlate with insulin-stimulated glucose uptake for PA or OA (P>0.05). These results indicate that (1) TAG accumulation is not primarily affected in skeletal muscle tissue of obese and T2D; (2) induced inhibition of oxidative phosphorylation is followed by TAG accumulation; (3) increasing FA and insulin availability, and reduced oxidative phosphorylation, and to a lesser extent glucose, are determinants for differences in intramyocellular TAG accumulation; (4) quantitative TAG content may not be the best marker for insulin resistance. Thus, increased TAG content in skeletal muscle of obese and T2D subjects is adaptive.  相似文献   

3.
The purpose of this study was to test the hypothesis that metabolic inflexibility is an intrinsic defect. Glucose and lipid oxidation were studied in human myotubes established from healthy lean and obese subjects and patients with type 2 diabetes (T2D). In lean myotubes, glucose oxidation is raised by increasing glucose concentrations (0-20 mmol/l) and acute insulin stimulation (P < 0.05), whereas it is inhibited by palmitate (PA). PA oxidation is raised by increasing PA concentrations (0-0.6 mmol/l), whereas 1.0 mmol/l PA inhibits its own oxidation (P < 0.05). Furthermore, PA oxidation is increased by acute insulin stimulation (P < 0.05) and inhibited by glucose. Even 0.05 mM PA and 2.5 mM glucose significantly reduce glucose and PA oxidation (P < 0.05), respectively. Glucose and PA oxidation are insulin-sensitive in myotubes established from lean (46% and 17% glucose and PA oxidation, respectively; P < 0.05 vs. basal), obese (31% and 14%; P < 0.05), and T2D (17% and 8%; P < 0.05) subjects. PA supplementation reduces both basal and insulin-stimulated glucose oxidation by 33-44% (P < 0.05), and myotubes are still insulin-sensitive in all three groups (P < 0.05). Therefore, the metabolic inflexibility described in obese and diabetic patients is not an intrinsic defect; rather, it is based on an extramuscular mechanism (i.e., the inability to vary extracellular fatty acid concentrations during insulin stimulation). Thus, skeletal muscles are metabolic-flexible per se.  相似文献   

4.
This study was performed to test whether plasma homocysteine concentrations are related to insulin resistance in healthy premenopausal women. For this purpose, the relationship between insulin resistance (as assessed by HOMA index) and fasting plasma homocysteine level was determined in 83 healthy volunteers. The results indicated that homocysteine concentrations did not vary as a function of HOMA index (r = -0.147). Plasma homocysteine concentrations also did not vary as a function of other parameters of insulin resistance such as HDL-cholesterol and triglycerides, which they correlated inversely with body mass index (BMI). Furthermore, when individuals were classified according to quartiles of insulin resistance (HOMA index), plasma homocysteine concentrations from the lowest to the highest quartiles were not significantly different. On the other hand, the HOMA index correlated significantly with triglyceride concentrations (r = 0.377, p< 0.001), HDL-cholesterol (r = -0.310, p< 0.01) and BMI (r = 0.468, p< 0.001). These results suggest that plasma homocysteine concentrations are not related to insulin resistance and/or metabolic abnormalities associated with it in premenopausal women.  相似文献   

5.
Insulin resistance in polycystic ovary syndrome (PCOS) is due to a postbinding defect in signaling that persists in cultured skin fibroblasts and is associated with constitutive serine phosphorylation of the insulin receptor (IR). Cultured skeletal muscle from obese women with PCOS and age- and body mass index-matched control women (n = 10/group) was studied to determine whether signaling defects observed in this tissue in vivo were intrinsic or acquired. Basal and insulin-stimulated glucose transport and GLUT1 abundance were significantly increased in cultured myotubes from women with PCOS. Neither IR beta-subunit abundance and tyrosine autophosphorylation nor insulin receptor substrate (IRS)-1-associated phosphatidylinositol (PI) 3-kinase activity differed in the two groups. However, IRS-1 protein abundance was significantly increased in PCOS, resulting in significantly decreased PI 3-kinase activity when normalized for IRS-1. Phosphorylation of IRS-1 on Ser312, a key regulatory site, was significantly increased in PCOS, which may have contributed to this signaling defect. Insulin signaling via IRS-2 was also decreased in myotubes from women with PCOS. In summary, decreased insulin-stimulated glucose uptake in PCOS skeletal muscle in vivo is an acquired defect. Nevertheless, there are intrinsic abnormalities in glucose transport and insulin signaling in myotubes from affected women, including increased phosphorylation of IRS-1 Ser312, that may confer increased susceptibility to insulin resistance-inducing factors in the in vivo environment. These abnormalities differ from those reported in other insulin resistant states consistent with the hypothesis that PCOS is a genetically unique disorder conferring an increased risk for type 2 diabetes.  相似文献   

6.
Polycystic ovary syndrome (PCOS) is associated with insulin resistance and increased risk of type 2 diabetes. Skeletal muscle is the major site of insulin mediated glucose disposal and the skeletal muscle tissue is capable to synthesize, convert and degrade androgens. Insulin sensitivity is conserved in cultured myotubes (in vitro) from patients with PCOS, but the effect of testosterone on this insulin sensitivity is unknown. We investigated the effect of 7 days testosterone treatment (100 nmol/l) on glucose transport and gene expression levels of hormone receptors and enzymes involved in the synthesis and conversion of testosterone (HSD17B1, HSD17B2, CYP19A1, SRD5A1-2, AR, ER-α, HSD17B6 and AKR1-3) in myotubes from ten patients with PCOS and ten matched controls.  相似文献   

7.
In order to better understand the impact of reduced mitochondrial function for the development of insulin resistance and cellular metabolism, human myotubes were established from lean, obese, and T2D subjects and exposed to mitochondrial inhibitors, either affecting the electron transport chain (Antimycin A), the ATP synthase (oligomycin) or respiratory uncoupling (2,4-dinitrophenol). Direct inhibition of the electron transport chain or the ATP synthase was followed by increased glucose uptake and lactate production, reduced glycogen synthesis, reduced lipid and glucose oxidation and unchanged lipid uptake. The metabolic phenotype during respiratory uncoupling resembled the above picture, except for an increase in glucose and palmitate oxidation. Antimycin A and oligomycin treatment induced insulin resistance at the level of glucose and palmitate uptake in all three study groups while, at the level of glycogen synthesis, insulin resistance was only seen in lean myotubes. Primary insulin resistance in diabetic myotubes was significantly worsened at the level of glucose and lipid uptake. The present study is the first convincing data linking functional mitochondrial impairment per se and insulin resistance. Taken together functional mitochondrial impairment could be part of the pathophysiology of insulin resistance in vivo.  相似文献   

8.
Leptin resistance associated with hyperleptinemia in high-fat-diet-induced obese rats and aged obese rats is well established, but it is not clear whether hyperphagia-induced obese rats also develop leptin resistance. We investigated whether Otsuka Long-Evans Tokushima Fatty (OLETF) rats, which are a strain of hyperphagia-induced obese rats, develop leptin resistance and whether caloric restriction reversed this leptin resistance-induced leptin receptor (ObRb) deficit. Twenty male OLETF rats, 20 male Long-Evans Tokushima Otsuka (LETO) rats, and 10 male Sprague Dawley (SD) rats were used. All rats were initially studied at 10 weeks of age and were freely fed with standard rat chow and water until they were 38 weeks of age. Daily food intake, body weight, and plasma leptin levels of OLETF rats were remarkably increased compared to LETO or SD rats from 10 to 38 weeks of age. When they were 38 weeks of age, all OLETF rats were randomly divided into two groups. One group was freely fed with standard rat chow (FD, or free diet group), and the other group (RD, or restricted diet group) was fed with only 70% of the amount consumed by the FD group. The LETO and SD rats were dismissed from further study. After 4 weeks of caloric restriction, the average body weight (636 ± 33 g vs. 752 ± 24 g, < 0.05) and abdominal adipose tissue weight (10.6 ± 3.2 g vs. 15.8 ± 1.5 g, < 0.05) of the RD group were decreased compared with those of the FD group. Plasma leptin levels of the RD group were significantly decreased compared with those of the FD group (3.47 ± 1.40 ng/mL vs. 11.55 ± 1.16 ng/mL, < 0.05). The mRNA expression of ObRb and leptin-related suppressor of cytokine signaling 3 (SOCS3) in the hypothalamus, liver, and skeletal muscles of the RD group were significantly decreased compared with those of the FD group. Caloric restriction did not improve leptin receptor (ObRb) deficit or the downstream signaling of leptin in the liver, skeletal muscles, and hypothalamus. Thus, we demonstrated that OLETF rats, which are a strain of hyperphagia-induced obese rats, did not develop central or peripheral leptin resistance. We suggest that hyperleptinemia in OLETF rats is a compensatory mechanism to overcome obesity induced by hyperphagia.  相似文献   

9.
10.
BACKGROUND/AIMS: Turner's syndrome (TS) is associated with increased insulin resistance and adiposity, which might be associated with type 2 diabetes in later life. We aimed to determine whether the defect in insulin sensitivity is a primary intrinsic defect in TS or dependent on variation in body composition. METHODS: Sixteen women with TS not on growth hormone replacement but receiving oestrogen replacement therapy [age (mean +/- SD): 30.2 +/- 8.5 years; height-corrected fat-free mass: 26.1 +/- 3.1 kg/height] and a control group of 16 normal healthy women (age: 30.1 +/- 8.2 years; height-corrected fat-free mass: 25.9 +/- 2.4 kg/height) were studied. Fasting blood samples were obtained for measurement of glucose, insulin, IGF-I, IGFBP-1, IGFBP-3 and lipid levels. The hyperinsulinaemic euglycaemic clamp was performed to assess peripheral insulin sensitivity (M value), and the Homeostasis Model Assessment (HOMA-S) was used to estimate fasting insulin sensitivity. Body composition was assessed using a dual-energy X-ray absorptiometry scan. RESULTS: Fasting insulin sensitivity (HOMA-S 103.2 +/- 78.6 vs. 193.9 +/- 93.5, p = 0.006) was lower in TS subjects compared to controls as was whole-body insulin sensitivity (M value 2.9 +/- 1.9 vs. 5.5 +/- 2.6 mg/kg/min, p = 0.003). In a multiple regression analysis the Turner karyotype was significantly related to insulin sensitivity (p = 0.008) independent of any differences in fat-free mass and percent whole-body fat mass. CONCLUSION: The increased insulin resistance in women with TS is independent of measures of body composition and may represent an intrinsic defect related to their chromosomal abnormality.  相似文献   

11.

Introduction

Lipopolysaccharide-binding protein (LBP) is closely associated with many metabolic disorders. However, no study has been done to explore the relationship between LBP and polycystic ovary syndrome (PCOS). The objective of this study was to investigate whether the serum LBP level is elevated and associated with insulin resistance (IR) in PCOS.

Participants and Design

In this cross-sectional study, 117 PCOS patients and 121 age-matched controls were recruited. Hyperinsulinemic-euglycemic clamp was performed with an expression of M value for insulin sensitivity. Fasting serum samples were collected to detect LBP, lipids, insulin, sex hormones and high sensitive C reactive protein (hs-CRP). Pearson’s correlation and multiple linear regression was used to analyze the associations between M value and LBP level.

Settings

The study was performed in a clinical research center.

Results

Compared with controls, PCOS subjects had a significantly higher LBP concentration (33.03±14.59 vs. 24.35±10.31 μg/ml, p<0.001), and lower M value (8.21±3.06 vs. 12.31±1.72 mg/min/kg, p<0.001). Both in lean and overweight/obese individuals, serum LBP level was higher in PCOS subjects than that in controls. M value was negatively correlated with body mass index (BMI), fasting serum insulin, triglycerides, low-density lipoprotein cholesterol (LDL-c), free testosterone, high sensitive C reactive protein (hs-CRP) and LBP, whereas positively correlated with high-density lipoprotein cholesterol (HDL-c) and sex hormone binding globulin (SHBG). Serum LBP level was associated with M value after adjusting for BMI, fasting serum insulin, SHBG, as well as hs-CRP.

Conclusion

Serum LBP level significantly is elevated in PCOS, and is independently associated with IR in PCOS.  相似文献   

12.
To date, it is unknown whether reduced lipid oxidation of skeletal muscle of obese and obese type 2 diabetic (T2D) subjects partly is based on reduced oxidation of endogenous lipids. Palmitate (PA) accumulation, total oxidation and lipolysis were not different between myotubes established from lean, obese and T2D subjects, chronic exposed for PA. Complete oxidation from endogenous PA was reduced in diabetic and obese compared to lean myotubes while exogenous PA oxidation was reduced in diabetic compared to lean myotubes. The complete/incomplete ratio was significantly reduced in diabetic myotubes both for endogenous and exogenous lipids. Thus myotubes established from obese and obese T2D subjects express a reduced complete oxidation of endogenous lipids. Two cardinal principles govern the reduced lipid oxidation in obese and diabetic myotubes; firstly, an impaired coupling between endogenous lipid and mitochondria in obese and obese diabetic myotubes and secondly, a mismatch between β-oxidation and citric acid cycle in obese diabetic myotubes.  相似文献   

13.
Dokras A 《Steroids》2012,77(4):338-341
Women with polycystic ovary syndrome have gynecologic, reproductive and metabolic co-morbidities that span their entire lifespan. More recently a higher risk of mood and anxiety disorders has been reported in women with PCOS. Women with PCOS have higher depression scores and a higher risk of depression independent of BMI. Although clinical features of hyperandrogenism affect health related quality of life, the association between hirsutism, acne, body image and depression is currently unclear. Similarly there is limited data on the association between variables such as biochemical hyperandrogenism or infertility and depression. Women with PCOS are also at risk for symptoms of generalized anxiety disorder. There is insufficient data examining the risk of other anxiety disorders such as social phobia, obsessive compulsive disorders and panic disorder. In a number of patients some of these disorders coexist increasing the health burden. These data underscore the need to screen all women with PCOS for mood and anxiety disorders and adequately treat women who are diagnosed with these conditions.  相似文献   

14.
We evaluated whether insulin resistance in obese people is associated with decreased plasma palmitoleate availability. Palmitoleate content (percentage and absolute concentrations) in FFA and VLDL was measured in obese subjects who were either insulin resistant (IR) or insulin sensitive (IS), based on assessment of multiorgan (skeletal muscle, liver, and adipose tissue) insulin sensitivity by using the hyperinsulinemic-euglycemic clamp procedure in conjunction with infusion of stable isotopically labeled tracers. Plasma palmitoleate concentration and the relative contribution of palmitoleate to total plasma FFA concentration in the IS group (0.018 ± 0.002 mmol/l and 4.4% ± 0.2%, respectively) were not significantly different than values in the IR group (0.023 ± 0.003 mmol/l and 4.4% ± 0.4%, respectively). Plasma VLDL-triglyceride palmitoleate concentration and the proportion of VLDL fatty acids as palmitoleate in the IS group (0.09 ± 0.02 mmol/l and 5.7 ± 0.3%, respectively) were also not significantly different than those in the IR group (0.16 ± 0.04 mmol/l and 5.0% ± 0.4%, respectively). These data demonstrate that decreased palmitoleate in plasma and in VLDL is not associated with insulin resistance in skeletal muscle, liver, or adipose tissue in obese people.  相似文献   

15.
Several protective cellular mechanisms protect against the accumulation of reactive oxygen species (ROS) and the concomitant oxidative stress. Therefore, any reduction in glucose or fatty acid flux into cells leading to a decrease in the production of reducing equivalents would also lead to a decreased ROS production and protect cells against oxidative stress. In the presence of insulin, FOXO proteins are localized from the nucleus to the cytoplasm and degraded. An increase in cellular glucose uptake will lead to increased production of ROS. This in turn activates the stress-responsive Jun-N-terminal kinase (JNK), which promotes nuclear translocation of FOXO proteins, upregulating some important target genes including stress resistance. Consequently, insulin resistance should result in decreased cellular ROS production. For this reason, insulin resistance could be a physiological mechanism activated at the cellular level in response to conditions stimulating ROS production and leading to the prevention of oxidative stress, and extension of life. Concerning the whole organism, however, IR is a maladaptive process in the long term causing a diabetic state.  相似文献   

16.
Glucocorticoids hypersensitivity may be involved in the development of abdominal obesity and insulin resistance. Eight normal weight and eight obese women received on two occasions a 3-h intravenous infusion of saline or hydrocortisone (HC) (1.5 microg x kg(-1) x min(-1)). Plasma cortisol, insulin, and glucose levels were measured every 30 min from time(-30) (min) (time(-30)) to time(240). Free fatty acids, adiponectin, and plasminogen activator inhibitor-1 (PAI-1) levels were measured at time(-30), time(180), and time(240). At time(240), subjects underwent an insulin tolerance test to obtain an index of insulin sensitivity (K(ITT)). Mean(30-240) cortisol level was similar in control and obese women after saline (74 +/- 16 vs. 75 +/- 20 microg/l) and HC (235 +/- 17 vs. 245 +/- 47 microg/l). The effect of HC on mean(180-240) insulin, mean(180-240) insulin resistance obtained by homeostasis model assessment (HOMA-IR), and K(ITT) was significant in obese (11.4 +/- 2.0 vs. 8.2 +/- 1.3 mU/l, P < 0.05; 2.37 +/- 0.5 vs. 1.64 +/- 0.3, P < 0.05; 2.81 +/- 0.9 vs. 3.32 +/- 1.02%/min, P < 0.05) but not in control women (3.9 +/- 0.6 vs. 2.8 +/- 0.5 mU/l; 0.78 +/- 0.1 vs. 0.49 +/- 0.1; 4.36 +/- 1.1 vs. 4.37 +/- 1.2%/min). In the whole population, the quantity of visceral fat, estimated by computerized tomography scan, was correlated with the increment of plasma insulin and HOMA-IR during HC infusion [Delta mean(30-240) insulin (r = 0.61, P < 0.05), Delta mean(30-240) HOMA-IR (r = 0.66, P < 0.01)]. The increase of PAI-1 between time(180) and time(240) after HC was higher in obese women (+25%) than in controls (+12%) (P < 0.05), whereas no differential effect between groups was observed for free fatty acids or adiponectin. A moderate hypercortisolism, equivalent to that induced by a mild stress, has more pronounced consequences on insulin sensitivity in abdominally obese women than in controls. These deleterious effects are correlated with the amount of visceral fat.  相似文献   

17.
Insulin resistance is commonly observed in patients prior to the development of type 2 diabetes and may predict the onset of the disease. We tested the hypothesis that impairment in insulin stimulated glucose-disposal in insulin resistant patients would be reflected in the gene expression profile of skeletal muscle. We performed gene expression profiling on skeletal muscle of insulin resistant and insulin sensitive subjects using microarrays. Microarray analysis of 19,000 genes in skeletal muscle did not display a significant difference between insulin resistant and insulin sensitive muscle. This was confirmed with real-time PCR. Our results suggest that insulin resistance is not reflected by changes in the gene expression profile in skeletal muscle.  相似文献   

18.
19.
《Free radical research》2013,47(12):1187-1194
Abstract

Background: Modifications of oxidative stress are reported in hepatitis C. The relationship between insulin resistance (IR), steatosis and oxidative stress is not established. Materials and methods: One hundred and eighty-seven HCV-RNA patients were assessed by determination of biochemical, metabolic and viral features, HOMA-IR and morphological alterations. In the 52-non-3 genotypes sub-group and 35 healthy individuals, thiobarbituric acid (TBARS), total glutathione (total-GSH), vitamins C and E, lycopene, β-carotene, glutathione peroxidase (GPx), catalase and superoxide dismutase were determined. Results: In non-3 genotype patients, steatosis was associated with higher values of BMI, HOMA-IR and triglycerides. In the 52-HCV sub-group, values of TBARS, GPx and total-GSH differ from the control group. Despite these, differences could not be observed according to the presence of steatosis, patients with IR presented significant differences regarding total-GSH (p=0.019), β-carotene (p=0.006), lycopene (p=0.005) and GPx (p=0.009). Conclusion: In non-3 genotype HCV carries, IR, and not steatosis, is associated with modifications in serum levels of oxidative stress.  相似文献   

20.
Fatty acid-induced apoptosis occurs in pancreatic beta-cells and contributes to the metabolic syndrome. Skeletal muscle insulin resistance is mediated by fatty acid oversupply, which also contributes to the metabolic syndrome. Therefore, we examined whether fatty acids induce apoptosis in skeletal muscle myotubes, the proapoptotic signaling involved, and the effects on insulin sensitivity. Exposure of L6 myotubes to palmitate induced apoptosis, as demonstrated by increased caspase-3 activation, phosphatidylserine exposure on the plasma membrane, and terminal deoxynucleotide transferase dUTP nick end labeling and DNA laddering, both markers of DNA fragmentation. Ceramide content was concomitantly increased, indicating a potential role for ceramides in palmitate-induced apoptosis. Supporting this notion, reducing stearoyl-CoA desaturase-1 (SCD-1) protein content with short interfering RNA resulted in ceramide accumulation and was associated with increased apoptosis in the absence of palmitate. Furthermore, the membrane-permeable C(2)-ceramide enhanced apoptosis in myotubes, whereas the ceramide synthase inhibitor, fumonisin B(1), abrogated the proapoptotic effects of palmitate. Insulin-stimulated glucose uptake was inhibited by palmitate treatment, whereas the addition of effector caspase inhibitors [Ac-DEVD-aldehyde (DEVD-CHO), Z-DQMD-FMK] independently restored >80% of the insulin-stimulated glucose uptake. These effects were observed independently from changes in the protein content of insulin signaling proteins, suggesting that proteosomal degradation is not involved in this process. We conclude that lipoapoptosis occurs in skeletal muscle myotubes, at least partially via de novo ceramide accumulation, and that inhibiting downstream apoptotic signaling improves glucose uptake in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号