首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
In Toxoplasma gondii, lactate dehydrogenase is encoded by two independent and developmentally regulated genes LDH1 and LDH2. These genes and their products have been implicated in the control of a metabolic flux during parasite differentiation. To investigate the significance of LDH1 and LDH2 in this process, we generated stable transgenic parasite lines in which the expression of these two expressed isoforms of lactate dehydrogenase was knocked down in a stage-specific manner. These LDH knockdown parasites exhibited variable growth rates in either the tachyzoite or the bradyzoite stage, as compared with the parental parasites. Their differentiation processes were impaired when the parasites were grown under in vitro conditions. In vivo studies in a murine model system revealed that tachyzoites of these parasite lines were unable to form significant numbers of tissue cysts and to establish a chronic infection. Most importantly, all mice that were initially infected with tachyzoites of either of the four LDH knockdown lines survived a subsequent challenge with tachyzoites of the parental parasites (10(4)), a dose that usually causes 100% mortality, suggesting that live vaccination of mice with the LDH knockdown tachyzoites can confer protection against T. gondii. Thus, we conclude that LDH expression is essential for parasite differentiation. The knockdown of LDH1 and LDH2 expression gave rise to virulence-attenuated parasites that were unable to exhibit a significant brain cyst burden in a murine model of chronic infection.  相似文献   

4.
5.
6.
The ability of Toxoplasma gondii to cycle between the tachyzoite and bradyzoite life stages in intermediate hosts is key to parasite survival and the pathogenesis of toxoplasmosis. Studies from a number of laboratories indicate that differentiation in T. gondii is a stress-induced phenomenon. The signalling pathways or molecular mechanisms that control formation of the latent bradyzoite stage are unknown and specific effectors of differentiation have not been identified. We engineered a reporter parasite to facilitate simultaneous comparison of differentiation and replication after various treatments. Chloramphenicol acetyltransferase (CAT), expressed constitutively from the alpha-tubulin promoter (TUB1), was used to quantitate parasite number. beta-galactosidase (beta-GAL), expressed from a bradyzoite specific promoter (BAG1), was used as a measure of bradyzoite gene expression. Sodium nitroprusside, a well-known inducer of bradyzoite differentiation, reduced reporter parasite replication and caused bradyzoite differentiation. Stress-induced differentiation in many other pathogens is regulated by cyclic nucleotide kinases. Specific inhibitors of the cAMP dependent protein kinase and apicomplexan cGMP dependent protein kinase inhibited replication and induced differentiation. The beta-GAL/CAT reporter parasite provides a method to quantify and compare agents that cause differentiation in T. gondii.  相似文献   

7.
8.
9.
Two forms of the protozoan parasite Toxoplasma gondii are associated with intermediate hosts such as humans: rapidly growing tachyzoites are responsible for acute illness, whereas slowly dividing encysted bradyzoites can remain latent within the tissues for the life of the host. In order to identify genetic factors associated with parasite differentiation, we have used a strong bradyzoite-specific promoter (identified by promoter trapping) to drive the expression of T. gondii hypoxanthine-xanthine-guanine phosphoribosyltransferase (HXGPRT) in stable transgenic parasites, providing a stage-specific positive/negative selectable marker. Insertional mutagenesis has been carried out on this parental line, followed by bradyzoite induction in vitro and selection in 6-thioxanthine to identify misregulation mutants. Two different mutants fail to induce the HXGPRT gene efficiently during bradyzoite differentiation. These mutants are also defective in other aspects of differentiation: they replicate well under bradyzoite growth conditions, lysing the host cell monolayer as effectively as tachyzoites. Expression of the major bradyzoite antigen BAG1 is reduced, and staining with Dolichos biflorus lectin shows reduced cyst wall formation. Microarray hybridizations show that these mutants behave more like tachyzoites at a global level, even under bradyzoite differentiation conditions.  相似文献   

10.
11.
12.
Toxoplasma gondii is an obligate intracellular protozoan parasite that causes opportunistic disease, particularly in immunocompromised individuals. Central to its transmission and pathogenesis is the ability of the proliferative stage (tachyzoite) to convert into latent tissue cysts (bradyzoites). Encystment allows Toxoplasma to persist in the host and affords the parasite a unique opportunity to spread to new hosts without proceeding through its sexual stage, which is restricted to felids. Bradyzoite tissue cysts can cause reactivated toxoplasmosis if host immunity becomes impaired. A greater understanding of the molecular mechanisms orchestrating bradyzoite development is needed to better manage the disease. Here, we will review key studies that have contributed to our knowledge about this persistent form of the parasite and how to study it, with a focus on how cellular stress can signal for the reprogramming of gene expression needed during bradyzoite development.  相似文献   

13.
The central nervous system (CNS) of the intermediate host plays a central role in the lifelong persistence of Toxoplasma gondii as well as in the pathogenesis of congenital toxoplasmosis and reactivated infection in immunocompromised patients. In order to analyze the parasite-host interaction within the CNS, the host cell invasion, the intracellular replication, and the stage conversion from tachyzoites to bradyzoites was investigated in mixed cultures of dissociated CNS cells from cortices of Wistar rat embryos. Two days post infection (p.i.) with T. gondii tachyzoites, intracellular parasites were detected within neurons, astrocytes, and microglial cells as assessed by double immunofluorescence and confocal microscopy. Quantitative analyses revealed that approximately 10% of neurons and astrocytes were infected with T. gondii, while 30% of the microglial cells harbored intracellular parasites. However, the replication of T. gondii within microglial cells was considerably diminished, since 93% of the parasitophorous vacuoles (PV) contained only one to two parasites which often appeared degenerated. This toxoplasmacidal activity was not abrogated after treatment with NO synthase inhibitors or neutralization of IFN-gamma production. In contrast, 30% of the PV in neurons and astrocytes harbored clearly proliferating parasites with at least four to eight parasites per vacuole. Four days p.i. with tachyzoites of T. gondii, bradyzoites were detected within neurons, astrocytes, and microglial cells of untreated cell cultures. However, the majority of bradyzoite-containing vacuoles were located in neurons. Spontaneous differentiation to the bradyzoite stage was not inhibited after addition of NO synthase inhibitors or neutralization of IFN-gamma. In conclusion, our results indicate that intracerebral replication of T. gondii as well as spontaneous conversion from the tachyzoite to the bradyzoite stage is sustained predominantly by neurons and astrocytes, whereas microglial cells may effectively inhibit parasitic growth within the CNS.  相似文献   

14.
Toxoplasma gondii modifies its host cell to suppress its ability to become activated in response to IFN-γ and TNF-α and to develop intracellular antimicrobial effectors, including NO. Mechanisms used by T. gondii to modulate activation of its infected host cell likely underlie its ability to hijack monocytes and dendritic cells during infection to disseminate to the brain and CNS where it converts to bradyzoites contained in tissue cysts to establish persistent infection. To identify T. gondii genes important for resistance to the effects of host cell activation, we developed an in vitro murine macrophage infection and activation model to identify parasite insertional mutants that have a fitness defect in infected macrophages following activation but normal invasion and replication in naive macrophages. We identified 14 independent T. gondii insertional mutants out of >8000 screened that share a defect in their ability to survive macrophage activation due to macrophage production of reactive nitrogen intermediates (RNIs). These mutants have been designated counter-immune mutants. We successfully used one of these mutants to identify a T. gondii cytoplasmic and conoid-associated protein important for parasite resistance to macrophage RNIs. Deletion of the entire gene or just the region encoding the protein in wild-type parasites recapitulated the RNI-resistance defect in the counter-immune mutant, confirming the role of the protein in resistance to macrophage RNIs.  相似文献   

15.
Toxoplasmic encephalitis is caused by reactivation of bradyzoites to rapidly dividing tachyzoites of the apicomplexan parasite Toxoplasma gondii in immunocompromised hosts. Diagnosis of this life-threatening disease is problematic, because it is difficult to discriminate between these 2 stages. Toxoplasma PCR assays using gDNA as a template have been unable to discriminate between an increase or decrease in SAG1 and BAG1 expression between the active tachyzoite stage and the latent bradyzoite stage. In the present study, real-time RT-PCR assay was used to detect the expression of bradyzoite (BAG1)- and tachyzoite-specific genes (SAG1) during bradyzoite/tachyzoite stage conversion in mice infected with T. gondii Tehran strain after dexamethasone sodium phosphate (DXM) administration. The conversion reaction was observed in the lungs and brain tissues of experimental mice, indicated by SAG1 expression at day 6 after DXM administration, and continued until day 14. Bradyzoites were also detected in both organs throughout the study; however, it decreased at day 14 significantly. It is suggested that during the reactivation period, bradyzoites not only escape from the cysts and reinvade neighboring cells as tachyzoites, but also converted to new bradyzoites. In summary, the real-time RT-PCR assay provided a reliable, fast, and quantitative way of detecting T. gondii reactivation in an animal model. Thus, this method may be useful for diagnosing stage conversion in clinical specimens of immunocompromised patients (HIV or transplant patients) for early identification of tachyzoite-bradyzoite stage conversion.  相似文献   

16.
17.
An important event in the pathogenesis of toxoplasmosis is the interconversion between the bradyzoite and the tachyzoite stage of Toxoplasma gondii within the intermediate host. The factors that influence either cyst formation (bradyzoites) or reactivation (tachyzoites) are unknown. Uwe Gross, Wolfgang Bohne, Martine Soête and Jean Fran?ois Dubremetz here describe current knowledge about the mechanisms that might lead to the induction of stage differentiation of this protozoan parasite.  相似文献   

18.
Two separate carbamoyl phosphate synthetase activities are required for the de novo synthesis of pyrimidines and arginine in most eukaryotes. Toxoplasma gondii is novel in possessing a single carbamoyl phosphate synthetase II gene that corresponds to a glutamine-dependent form required for pyrimidine biosynthesis. We therefore examined arginine acquisition in T. gondii to determine whether the single carbamoyl phosphate synthetase II activity could provide both pyrimidine and arginine biosynthesis. We found that arginine deprivation efficiently blocks the replication of intracellular T. gondii, yet has little effect on long-term parasite viability. Addition of citrulline, but not ornithine, rescues the growth defect observed in the absence of exogenous arginine. This rescue with citrulline is ablated when parasites are cultured in a human citrullinemia fibroblast cell line that is deficient in argininosuccinate synthetase activity. These results reveal the absence of genes and activities of the arginine biosynthetic pathway and demonstrate that T. gondii is an arginine auxotroph. Arginine starvation was also found to efficiently trigger differentiation of replicative tachyzoites into bradyzoites contained within stable cyst-like structures. These same parasites expressing bradyzoite antigens can be efficiently switched back to rapidly proliferating tachyzoites several weeks after arginine starvation. We hypothesise that the absence of gene activities that are essential for the biosynthesis of arginine from carbamoyl phosphate confers a selective advantage by increasing bradyzoite switching during the host response to T. gondii infection. These findings are consistent with a model of host-parasite evolution that allowed host control of bradyzoite induction by trading off virulence for increased transmission.  相似文献   

19.
Identification of differentially expressed proteins during Neospora caninum tachyzoite–bradyzoite conversion processes may lead to a better knowledge of the pathogenic mechanisms developed by this important parasite of cattle. In the present work, a differential expression proteomic study of tachyzoite and bradyzoite stages was accomplished for the first time by applying DIGE technology coupled with MS analysis. Up to 72 differentially expressed spots were visualized (1.5‐fold in relative abundance, p<0.05, t‐test). A total of 53 spots were more abundant in bradyzoites and 19 spots in tachyzoites. MS analysis identified 26 proteins; 20 of them overexpressed in the bradyzoite stage and 6 in the tachyzoite stage. Among the novel proteins, enolase and glyceraldehyde‐3‐phosphate dehydrogenase (involved in glycolysis), HSP70 and HSP90 (related to stress response) as well as the dense granule protein GRA9, which showed higher abundance in the bradyzoite stage, might be highlighted. On the other hand, isocitrate dehydrogenase 2, involved in the Krebs cycle, was found to be more abundant in tachyzoites extract. Biological functions from most novel proteins were correlated with previously reported processes during the differentiation process in Toxoplasma gondii. Thus, DIGE technology arises as a suitable tool to study mechanisms involved in the N. caninum tachyzoite to bradyzoite conversion.  相似文献   

20.
Endocytosis mechanisms are poorly known in apicomplexan parasites. Here, we show that extracellular tachyzoites of Toxoplasma gondii bind and internalize heparin-like sulfated glycans in a specific, saturable manner. Discrete binding of the glycan occurs at the anterior third of the tachyzoite, where it is rapidly concentrated inside single tubulo vesicular compartments that become multiple with time. The compound is held for several hours intracellularly with no apparent exocytosis or acidification. Incubation in the continuous presence of fluorescein isothiocyanate-conjugated heparin enhances the binding and internalization of this ligand by live tachyzoites. Two tachyzoite surface polypeptides exhibit strong binding and specificity for heparin, making them candidate receptors. Uptake of fluid-phase endocytic tracers occurs via nonspecific pinocytosis in the same region of the parasite cell, but with much lower efficiency. These observations show that extracellular tachyzoites can acquire molecules through both receptor-specific and fluid-phase endocytic mechanisms. Understanding the physiological relevance of these processes for the extracellular and intracellular stages of T. gondii may bring about direct targeting of the parasite by drug delivery into the tachyzoites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号