首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We report here the generation of an additional collection of Dissociation (Ds) transposon-tagged, sequence-indexed lines of Arabidopsis thaliana. Our RIKEN Ds insertion collection now totals 17,668 lines. Our collection has preferential insertions in chromosomes 1 and 5, because Ds was transposed from start loci on those chromosomes (11,854 and 5,814 lines, respectively). We describe here features of the latter 5,814 lines. The former 11,854 lines have been described previously. We have created a searchable database of the insertion sites and mutated genes (http://rarge.gsc.riken.jp/), and are depositing these lines in the RIKEN BioResource Center (http://www.brc.riken.go.jp/lab/epd/Eng/). Our collection of these mutants will contribute to progress in functional genomics of plants.  相似文献   

3.
More than 10 000 transposon-tagged lines were constructed by using the Activator (Ac)/Dissociation (Ds) system in order to collect insertional mutants as a useful resource for functional genomics of Arabidopsis. The flanking sequences of the Ds element in the 11 800 independent lines were determined by high-throughput analysis using a semi-automated method. The sequence data allowed us to map the unique insertion site on the Arabidopsis genome in each line. The Ds element of 7566 lines is inserted in or close to coding regions, potentially affecting the function of 5031 of 25 000 Arabidopsis genes. Half of the lines have Ds insertions on chromosome 1 (Chr. 1), in which donor lines have a donor site. In the other half, the Ds insertions are distributed throughout the other four chromosomes. The intrachromosomal distribution of Ds insertions varies with the donor lines. We found that there are hot spots for Ds transposition near the ends of every chromosome, and we found some statistical preference for Ds insertion targets at the nucleotide level. On the basis of systematic analysis of the Ds insertion sites in the 11 800 lines, we propose the use of Ds-tagged lines with a single insertion in annotated genes for systematic analysis of phenotypes (phenome analysis) in functional genomics. We have opened a searchable database of the insertion-site sequences and mutated genes (http://rarge.gsc.riken.go.jp/) and are depositing these lines in the RIKEN BioResource Center as available resources (http://www.brc.riken.go.jp/Eng/).  相似文献   

4.
5.
Activator/Dissociation (Ac/Ds) transposon mutagenesis is a widely used tool for gene identification; however, several reports on silencing of the Ac/Ds element in starter lines and in stable transposants question the applicability of such an approach in later generations. We have performed a systematic analysis on various aspects of the silencing phenomenon in rice (Oryza sativa ssp. japonica cv. Nipponbare). High somatic and germinal transposition frequencies observed in earlier generations were maintained as late as T4 and T5 generations; thus the propagation of parental lines did not induce transposon silencing. Moreover, the stably transposed Ds element was active even at the F5 generation, since Ac could remobilize the Ds element as indicated by the footprint analysis of several revertants. Expression of the bar gene was monitored from F3 to F6 generations in >1,000 lines. Strikingly, substantial transgene silencing was not observed in any of the generations tested. We analyzed the timing of transposition during rice development and provide evidence that Ds is transposed late after tiller formation. The possibility, that the independent events could be the result of secondary transposition, was ruled out by analyzing potential footprints by reciprocal PCR. Our study validates the Ac/Ds system as a tool for large-scale mutagenesis in rice, since the Ds elements were active in the starter and insertion lines even in the later generations. We propose that harvesting rice seeds using their panicles is an alternative way to increase the number of independent transposants due to post-tillering transposition.  相似文献   

6.
Insertional mutagenesis is a powerful tool for generating knockout mutations that facilitate associating biological functions with as yet uncharacterized open reading frames (ORFs) identified by genomic sequencing or represented in EST databases. We have generated a collection of Dissociation (Ds) transposon lines with insertions on all 5 Arabidopsis chromosomes. Here we report the insertion sites in 260 independent single-transposon lines, derived from four different Ds donor sites. We amplified and determined the genomic sequence flanking each transposon, then mapped its insertion site by identity of the flanking sequences to the corresponding sequence in the Arabidopsis genome database. This constitutes the largest collection of sequence-mapped Ds insertion sites unbiased by selection against the donor site. Insertion site clusters have been identified around three of the four donor sites on chromosomes 1 and 5, as well as near the nucleolus organizers on chromosomes 2 and 4. The distribution of insertions between ORFs and intergenic sequences is roughly proportional to the ratio of genic to intergenic sequence. Within ORFs, insertions cluster near the translational start codon, although we have not detected insertion site selectivity at the nucleotide sequence level. A searchable database of insertion site sequences for the 260 transposon insertion sites is available at http://sgio2.biotec.psu.edu/sr. This and other collections of Arabidopsis lines with sequence-identified transposon insertion sites are a valuable genetic resource for functional genomics studies because the transposon location is precisely known, the transposon can be remobilized to generate revertants, and the Ds insertion can be used to initiate further local mutagenesis.  相似文献   

7.
We transposed Dissociation (Ds) elements from three start loci on chromosome 5 in Arabidopsis (Nossen ecotype) by using a local transposition system. We determined partial genomic sequences flanking the Ds elements and mapped the elements' insertion sites in 1,173 transposed lines by comparison with the published genomic sequence. Most of the lines contained a single copy of the Ds element. One-half of the lines contained Ds on chromosome 5; in particular, insertion "hot spots" near the three start loci were clearly observed. In the other lines, the Ds elements were transposed across chromosomes. We found other insertion hot spots at the tops of chromosomes 2 and 4, near nucleolus organizer regions 2 and 4, respectively. Another characteristic feature was that the Ds elements tended to transpose near the chromosome ends and rarely transposed near centromeres. The distribution patterns differed among the three start loci, even though they possessed the same Ds construct. More than one-half of the Ds elements were inserted irregularly into the genome; that is, they did not retain the perfect inverted repeat sequence of Ds nor leave perfect target site duplications. This precise analysis of distribution patterns will contribute to a comprehensive understanding of the transposing mechanism. From these Ds insertion sites, we have constructed a database for screening gene-knockout mutants in silico. In 583 of the 1,173 lines, the Ds elements were inserted into protein-coding genes, which suggests that these lines are gene-knockout mutants. The database and individual lines will be available freely for academic use from the RIKEN Bio-Resource Center (http://www.brc.riken.go.jp/Eng/index.html).  相似文献   

8.
There are two groups of MADS intervening keratin-like and C-terminal (MIKC)-type MADS box genes, MIKCC type and MIKC* type. In seed plants, the MIKCC type shows considerable diversity, but the MIKC* type has only two subgroups, P- and S-clade, which show conserved expression in the gametophyte. To examine the functional conservation of MIKC*-type genes, we characterized all three rice (Oryza sativa) MIKC*-type genes. All three genes are specifically expressed late in pollen development. The single knockdown or knockout lines, respectively, of the S-clade MADS62 and MADS63 did not show a mutant phenotype, but lines in which both S-clade genes were affected showed severe defects in pollen maturation and germination, as did knockdown lines of MADS68, the only P-clade gene in rice. The rice MIKC*-type proteins form strong heterodimeric complexes solely with partners from the other subclade; these complexes specifically bind to N10-type C-A-rich-G-boxes in vitro and regulate downstream gene expression by binding to N10-type promoter motifs. The rice MIKC* genes have a much lower degree of functional redundancy than the Arabidopsis thaliana MIKC* genes. Nevertheless, our data indicate that the function of heterodimeric MIKC*-type protein complexes in pollen development has been conserved since the divergence of monocots and eudicots, roughly 150 million years ago.  相似文献   

9.
Miclaus M  Wu Y  Xu JH  Dooner HK  Messing J 《Genetics》2011,189(4):1271-1280
Maize (Zea mays) has a large class of seed mutants with opaque or nonvitreous endosperms that could improve the nutritional quality of our food supply. The phenotype of some of them appears to be linked to the improper formation of protein bodies (PBs) where zein storage proteins are deposited. Although a number of genes affecting endosperm vitreousness have been isolated, it has been difficult to clone opaque7 (o7), mainly because of its low penetrance in many genetic backgrounds. The o7-reference (o7-ref) mutant arose spontaneously in a W22 inbred, but is poorly expressed in other lines. We report here the isolation of o7 with a combination of map-based cloning and transposon tagging. We first identified an o7 candidate gene by map-based cloning. The putative o7-ref allele has a 12-bp in-frame deletion of codons 350-353 in a 528-codon-long acyl-CoA synthetase-like gene (ACS). We then confirmed this candidate gene by generating another mutant allele from a transposon-tagging experiment using the Activator/Dissociation (Ac/Ds) system in a W22 background. The second allele, isolated from ~1 million gametes, presented a 2-kb Ds insertion that resembles the single Ds component of double-Ds, McClintock's original Dissociation element, at codon 496 of the ACS gene. PBs exhibited striking membrane invaginations in the o7-ref allele and a severe number reduction in the Ds-insertion mutant, respectively. We propose a model in which the ACS enzyme plays a key role in membrane biogenesis, by taking part in protein acylation, and that altered PBs render the seed nonvitreous.  相似文献   

10.
11.
We describe new tools for functional analysis of the tomato genome based on insertional mutagenesis with the maize Ac/Ds transposable elements in the background of the miniature cultivar Micro-Tom. 2932 F3 families, in which Ds elements transposed and were stabilized, were screened for phenotypic mutations. Out of 10 families that had a clear mutant phenotype, only one mutant was Ds-tagged. In addition, we developed promoter trapping using the firefly luciferase reporter gene and enhancer trapping, using beta-glucuronidase (GUS). We show that luciferase can be used as a non-invasive reporter to identify, isolate and regenerate somatic sectors, to study the time course of mutant expression, and to identify inducible genes. Out of 108 families screened for luciferase activity 55% showed expression in the flower, 11% in the fruit and 4% in seedlings, suggesting a high rate of Ds insertion into genes. Preferential insertion into genes was supported by the analysis of Ds flanking sequences: 28 out of 50 sequenced Ds insertion sites were similar to known genes or to ESTs. In summary, the 2932 lines described here contain 2-3 Ds inserts per line, representing a collection of approximately 7500 Ds insertions. This collection has potential for use in high-throughput functional analysis of genes and promoter isolation in tomato.  相似文献   

12.
The availability of diversified germplasm resources is the most important for developing improved rice varieties with higher seed yield or tolerance to various biotic or abiotic stresses. Here we report an efficient tool to create increased variations in rice by maize Ac/Ds transposon (a gene trap system) insertion mutagenesis. We have generated around 20,000 Ds insertion rice lines of which majority are homozygous for Ds element. We subjected these lines to phenotypic and abiotic stress screens and evaluated these lines with respect to their seed yields and other agronomic traits as well as their tolerance to drought, salinity and cold. Based on this evaluation, we observed that random Ds insertions into rice genome have led to diverse variations including a range of morphological and conditional phenotypes. Such differences in phenotype among these lines were accompanied by differential gene expression revealed by GUS histochemical staining of gene trapped lines. Among the various phenotypes identified, some Ds lines showed significantly higher grain yield compared to wild-type plants under normal growth conditions indicating that rice could be improved in grain yield by disrupting certain endogenous genes. In addition, several 1,000s of Ds lines were subjected to abiotic stresses to identify conditional mutants. Subsequent to these screens, over 800 lines responsive to drought, salinity or cold stress were obtained, suggesting that rice has the genetic potential to survive under abiotic stresses when appropriate endogenous genes were suppressed. The mutant lines that have higher seed yielding potential or display higher tolerance to abiotic stresses may be used for rice breeding by conventional backcrossing combining with molecular marker-assisted selection. In addition, by exploiting the behavior of Ds to leave footprints upon remobilization, we have shown an alternative strategy to develop new rice varieties without foreign DNA sequences in their genome. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
The cold tolerance of rice at the booting stage is a main factor determining sustainability and regional adaptability. However, relatively few cold tolerance genes have been identified that can be effectively used in breeding programmes. Here, we show that a point mutation in the low-temperature tolerance 1 (LTT1) gene improves cold tolerance by maintaining tapetum degradation and pollen development, by activation of systems that metabolize reactive oxygen species (ROS). Cold-induced ROS accumulation is therefore prevented in the anthers of the ltt1 mutants allowing correct development. In contrast, exposure to cold stress dramatically increases ROS accumulation in the wild type anthers, together with the expression of genes encoding proteins associated with programmed cell death and with the accelerated degradation of the tapetum that ultimately leads to pollen abortion. These results demonstrate that appropriate ROS management is critical for the cold tolerance of rice at the booting stage. Hence, the ltt1 mutation can significantly improve the seed setting ability of cold-sensitive rice varieties under low-temperature stress conditions, with little yield penalty under optimal temperature conditions. This study highlights the importance of a valuable genetic resource that may be applied in rice breeding programmes to enhance cold tolerance.  相似文献   

14.
水稻Ds插入纯合体的筛选和鉴定   总被引:10,自引:0,他引:10  
采用Basta抗性鉴定、潮霉素抗性鉴定和PCR检测相结合的方法筛选和鉴定了水稻Ds插入纯合体。在T1代236个转化株系中,有16个株系的全部植株表现出对Basta的敏感,其余220个株系的植株表现出对Basta的抗性。经过3代的纯合筛选,共鉴定出Ds插入纯合体203个.这些Ds插入纯合体可用于构建Ac/Ds系统和对Ds插入突变体进行筛选和鉴定,为水稻功能基因组学研究提供了材料。  相似文献   

15.
The unstable mutation Adh1-Fm335 contains a Dissociation (Ds1) transposable element at position +53 in the untranslated leader of the maize Alcohol dehydrogenase-1 (Adh1) gene. Excision of Ds1 is known to generate new alleles with small additions and rearrangements of Adh1 DNA. We characterized 16 revertant alleles with respect to ADH1 activity levels in scutellum (nutritive tissue of the seed), anaerobic root, and pollen. Whereas gene expression was not different from the wild type in the sporophytic tissues of the scutellum and anaerobic root, there were strong allelic differences in pollen. One allele underexpressed pollen ADH1 at 48% of the wild-type level, and another overexpressed pollen ADH1 at 163% of the wild-type level. Quantitative RNase protection assays demonstrated that the mutant phenotypes reflected changes in the levels of steady state mRNA in pollen. These data provide a definitive demonstration of an overexpression mutant in plants and further show that marked increases in mRNA levels can follow minor alterations in central untranslated leader sequences. The nucleotide sequence of 12 new revertant alleles and the molecular mechanisms responsible for pollen-specific gene expression are discussed.  相似文献   

16.
17.
18.
类伸展蛋白(Leucine-Rich Repeats Extensins,LRX)是一类细胞壁嵌合蛋白,其N端包含一个LRR(leucine-rich repeats)结构域,C端含Extensins结构域.研究表明,LRX基因家族在拟南芥(Arabidopsis thaliana)花粉萌发和花粉管生长过程中具有重要作...  相似文献   

19.
To identify genes with essential roles in male gametophytic development, including postpollination (progamic) events, we have undertaken a genetic screen based on segregation ratio distortion of a transposon-borne kanamycin-resistance marker. In a population of 3359 Arabidopsis Ds transposon insertion lines, we identified 20 mutants with stably reduced segregation ratios arising from reduced gametophytic transmission. All 20 mutants showed strict cosegregation of Ds and the reduced gametophytic transmission phenotype. Among these, 10 mutants affected both male and female transmission and 10 mutants showed male-specific transmission defects. Four male and female (ungud) mutants and 1 male-specific mutant showed cellular defects in microspores and/or in developing pollen. The 6 remaining ungud mutants and 9 male-specific (seth) mutants affected pollen functions during progamic development. In vitro and in vivo analyses are reported for 5 seth mutants. seth6 completely blocked pollen germination, while seth7 strongly reduced pollen germination efficiency and tube growth. In contrast, seth8, seth9, or seth10 pollen showed reduced competitive ability that was linked to slower rates of pollen tube growth. Gene sequences disrupted in seth insertions suggest essential functions for putative SETH proteins in diverse processes including protein anchoring, cell wall biosynthesis, signaling, and metabolism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号