首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Motor neuron loss is characteristic of cervical spinal cord injury (SCI) and contributes to functional deficit.

Methodology/Principal Findings

In order to investigate the amenability of the injured adult spinal cord to motor neuron differentiation, we transplanted spinal cord injured animals with a high purity population of human motor neuron progenitors (hMNP) derived from human embryonic stem cells (hESCs). In vitro, hMNPs displayed characteristic motor neuron-specific markers, a typical electrophysiological profile, functionally innervated human or rodent muscle, and secreted physiologically active growth factors that caused neurite branching and neuronal survival. hMNP transplantation into cervical SCI sites in adult rats resulted in suppression of intracellular signaling pathways associated with SCI pathogenesis, which correlated with greater endogenous neuronal survival and neurite branching. These neurotrophic effects were accompanied by significantly enhanced performance on all parameters of the balance beam task, as compared to controls. Interestingly, hMNP transplantation resulted in survival, differentiation, and site-specific integration of hMNPs distal to the SCI site within ventral horns, but hMNPs near the SCI site reverted to a neuronal progenitor state, suggesting an environmental deficiency for neuronal maturation associated with SCI.

Conclusions/Significance

These findings underscore the barriers imposed on neuronal differentiation of transplanted cells by the gliogenic nature of the injured spinal cord, and the physiological relevance of transplant-derived neurotrophic support to functional recovery.  相似文献   

2.
C Li  X Zhang  R Cao  B Yu  H Liang  M Zhou  D Li  Y Wang  E Liu 《PloS one》2012,7(8):e42813

Objective

We aimed to investigate whether an innovative growth factor-laden scaffold composed of acellular sciatic nerve (ASN) and brain-derived neurotrophic factor (BDNF) could promote axonal regeneration and functional recovery after spinal cord injury (SCI).

Methods

Following complete transection at the thoracic level (T9), we immediately transplanted the grafts between the stumps of the severed spinal cords. We evaluated the functional recovery of the hindlimbs of the operated rats using the BBB locomotor rating scale system every week. Eight weeks after surgery, axonal regeneration was examined using the fluorogold (FG) retrograde tracing method. Electrophysiological analysis was carried out to evaluate the improvement in the neuronal circuits. Immunohistochemistry was employed to identify local injuries and recovery.

Results

The results of the Basso-Beattie-Bresnahan (BBB) scale indicated that there was no significant difference between the individual groups. The FG retrograde tracing and electrophysiological analyses indicated that the transplantation of ASN-BDNF provided a permissive environment to support neuron regeneration.

Conclusion

The ASN-BDNF transplantation provided a promising therapeutic approach to promote axonal regeneration and recovery after SCI, and can be used as part of a combinatory treatment strategy for SCI management.  相似文献   

3.

Background

Spinal cord injury (SCI) deteriorates various physical functions, in particular, bladder problems occur as a result of damage to the spinal cord. Stem cell therapy for SCI has been focused as the new strategy to treat the injuries and to restore the lost functions. The oral mucosa cells are considered as the stem cells-like progenitor cells. In the present study, we investigated the effects of oral mucosa stem cells on the SCI-induced neurogenic bladder in relation with apoptotic neuronal cell death and cell proliferation.

Results

The contraction pressure and the contraction time in the urinary bladder were increased after induction of SCI, in contrast, transplantation of the oral mucosa stem cells decreased the contraction pressure and the contraction time in the SCI-induced rats. Induction of SCI initiated apoptosis in the spinal cord tissues, whereas treatment with the oral mucosa stem cells suppressed the SCI-induced apoptosis. Disrupted spinal cord by SCI was improved by transplantation of the oral mucosa stem cells, and new tissues were increased around the damaged tissues. In addition, transplantation of the oral mucosa stem cells suppressed SCI-induced neuronal activation in the voiding centers.

Conclusions

Transplantation of oral mucosa stem cells ameliorates the SCI-induced neurogenic bladder symptoms by inhibiting apoptosis and by enhancing cell proliferation. As the results, SCI-induced neuronal activation in the neuronal voiding centers was suppressed, showing the normalization of voiding function.  相似文献   

4.

Background

Granulocyte colony-stimulating factor (G-CSF) is a protein that stimulates differentiation, proliferation, and survival of cells in the granulocytic lineage. Recently, a neuroprotective effect of G-CSF was reported in a model of cerebral infarction and we previously reported the same effect in studies of murine spinal cord injury (SCI). The aim of the present study was to elucidate the potential therapeutic effect of G-CSF for SCI in rats.

Methods

Adult female Sprague-Dawley rats were used in the present study. Contusive SCI was introduced using the Infinite Horizon Impactor (magnitude: 200 kilodyne). Recombinant human G-CSF (15.0 µg/kg) was administered by tail vein injection at 1 h after surgery and daily the next four days. The vehicle control rats received equal volumes of normal saline at the same time points.

Results

Using a contusive SCI model to examine the neuroprotective potential of G-CSF, we found that G-CSF suppressed the expression of pro-inflammatory cytokine (IL-1 beta and TNF- alpha) in mRNA and protein levels. Histological assessment with luxol fast blue staining revealed that the area of white matter spared in the injured spinal cord was significantly larger in G-CSF-treated rats. Immunohistochemical analysis showed that G-CSF promoted up-regulation of anti-apoptotic protein Bcl-Xl on oligpodendrocytes and suppressed apoptosis of oligodendrocytes after SCI. Moreover, administration of G-CSF promoted better functional recovery of hind limbs.

Conclusions

G-CSF protects oligodendrocyte from SCI-induced cell death via the suppression of inflammatory cytokines and up-regulation of anti-apoptotic protein. As a result, G-CSF attenuates white matter loss and promotes hindlimb functional recovery.  相似文献   

5.

Background

To compare the efficacy of the therapy of spinal cord injury with intravenous transplantation of bone marrow mesenchymal stem cells (BMSCs) by Meta-analysis.

Methods

Studies of the BBB scores after intravenous transplantation of BMSCs were searched out from Pubmed, SCI, Cochrane Library, Chinese journal full-text database, China Biology Medicinedisc and Wanfang data-base and analyzed by Review Manager 5.2.5.

Results

Nine randomized controlled animal trials were selected with 235 rats enrolled. The studies are divided to different subgroups by different models of SCI and different time to transplantion. The results of Meta-analysis in different subgroups both indicated that the rats of experimental group (BMSCs group) got better BBB scores than control group at 1, 3 and over 5 weeks after intravenous transplantation of BMSCs with significant differences. The heterogeneity between impacted injury model and oppressed injury model subgroups decreased with the passage of time (I2 = 75.8%, 39.7%, 0%). No heterogeneity was found between 3 d and 7 d subgroups.

Conclusion

The intravenous transplantation of BMSCs is an efficient way to cure spinal cord injury, which can improve the motor function of rats. The therapeutic window is wide.  相似文献   

6.

Introduction

Targeting CD74 as the invariant chain of major histocompatibility complexes (MHC) became possible by the availability of a specific humanized monoclonal antibody, milatuzumab, which is under investigation in patients with hematological neoplasms. CD74 has been reported to regulate chemo-attractant migration of macrophages and dendritic cells, while the role of CD74 on peripheral naïve and memory B cells also expressing CD74 remains unknown. Therefore, the current study addressed the influence of milatuzumab on B-cell proliferation, chemo-attractant migration, and adhesion molecule expression.

Methods

Surface expression of CD74 on CD27- naïve and CD27+ memory B cells as well as other peripheral blood mononuclear cells (PBMCs) obtained from normals, including the co-expression of CD44, CXCR4, and the adhesion molecules CD62L, β7-integrin, β1-integrin and CD9 were studied after binding of milatuzumab using multicolor flow cytometry. The influence of the antibody on B-cell proliferation and migration was analyzed in vitro in detail.

Results

In addition to monocytes, milatuzumab also specifically bound to human peripheral B cells, with a higher intensity on CD27+ memory versus CD27- naïve B cells. The antibody reduced B-cell proliferation significantly but moderately, induced enhanced spontaneous and CXCL12-dependent migration together with changes in the expression of adhesion molecules, CD44, β7-integrin and CD62L, mainly of CD27- naïve B cells. This was independent of macrophage migration-inhibitory factor as a ligand of CD74/CD44 complexes.

Conclusions

Milatuzumab leads to modestly reduced proliferation, alterations in migration, and adhesion molecule expression preferentially of CD27- naïve B cells. It thus may be a candidate antibody for the autoimmune disease therapy by modifying B cell functions.  相似文献   

7.
8.

Background

Although macrophages (MΦ) are known as essential players in wound healing, their contribution to recovery from spinal cord injury (SCI) is a subject of debate. The difficulties in distinguishing between different MΦ subpopulations at the lesion site have further contributed to the controversy and led to the common view of MΦ as functionally homogenous. Given the massive accumulation in the injured spinal cord of activated resident microglia, which are the native immune occupants of the central nervous system (CNS), the recruitment of additional infiltrating monocytes from the peripheral blood seems puzzling. A key question that remains is whether the infiltrating monocyte-derived MΦ contribute to repair, or represent an unavoidable detrimental response. The hypothesis of the current study is that a specific population of infiltrating monocyte-derived MΦ is functionally distinct from the inflammatory resident microglia and is essential for recovery from SCI.

Methods and Findings

We inflicted SCI in adult mice, and tested the effect of infiltrating monocyte-derived MΦ on the recovery process. Adoptive transfer experiments and bone marrow chimeras were used to functionally distinguish between the resident microglia and the infiltrating monocyte-derived MΦ. We followed the infiltration of the monocyte-derived MΦ to the injured site and characterized their spatial distribution and phenotype. Increasing the naïve monocyte pool by either adoptive transfer or CNS-specific vaccination resulted in a higher number of spontaneously recruited cells and improved recovery. Selective ablation of infiltrating monocyte-derived MΦ following SCI while sparing the resident microglia, using either antibody-mediated depletion or conditional ablation by diphtheria toxin, impaired recovery. Reconstitution of the peripheral blood with monocytes resistant to ablation restored the lost motor functions. Importantly, the infiltrating monocyte-derived MΦ displayed a local anti-inflammatory beneficial role, which was critically dependent upon their expression of interleukin 10.

Conclusions

The results of this study attribute a novel anti-inflammatory role to a unique subset of infiltrating monocyte-derived MΦ in SCI recovery, which cannot be provided by the activated resident microglia. According to our results, limited recovery following SCI can be attributed in part to the inadequate, untimely, spontaneous recruitment of monocytes. This process is amenable to boosting either by active vaccination with a myelin-derived altered peptide ligand, which indicates involvement of adaptive immunity in monocyte recruitment, or by augmenting the naïve monocyte pool in the peripheral blood. Thus, our study sheds new light on the long-held debate regarding the contribution of MΦ to recovery from CNS injuries, and has potentially far-reaching therapeutic implications. Please see later in the article for Editors'' Summary  相似文献   

9.

Background

HIV infection is characterized by ineffective anti-viral T-cell responses and impaired dendritic cell (DC) functions, including response to Toll-Like Receptor (TLR) ligands. Because TLR responsiveness may affect a host''s response to virus, we examined TLR ligand induced Myeloid and Plasmacytoid DC (MDC and PDC) activation of naïve T-cells in HIV+ subjects.

Methods

Freshly purified MDC and PDC obtained from HIV+ subjects and healthy controls were cultured in the presence and absence of TLR ligands (poly I∶C or R-848). We evaluated indices of maturation/activation (CD83, CD86, and HLA-DR expression), cytokine secretion (IFN-alpha and IL-6), and ability to activate allogeneic naïve CD4 T-cells to secrete IFN-gamma and IL-2.

Results

MDC from HIV+ subjects had increased spontaneous IL-6 production and increased CD83 and CD86 expression when compared to MDC of controls. MDC IL-6 expression was associated with plasma HIV level. At the same time, poly I∶C induced HLA-DR up-regulation on MDC was reduced in HIV+ persons when compared to controls. The latter finding was associated with impaired ability of MDC from HIV+ subjects to activate allogeneic naïve CD4 T-cells. PDC from HIV+ persons had increased spontaneous and TLR ligand induced IL-6 expression, and increased HLA-DR expression at baseline. The latter was associated with an intact ability of HIV PDC to activate allogeneic naïve CD4 T-cells.

Conclusion

These results have implications for the ability of the HIV+ host to form innate and adaptive responses to HIV and other pathogens.  相似文献   

10.
Yang CC  Shih YH  Ko MH  Hsu SY  Cheng H  Fu YS 《PloS one》2008,3(10):e3336

Background

Human umbilical mesenchymal stem cells (HUMSCs) isolated from Wharton''s jelly of the umbilical cord can be easily obtained and processed compared with embryonic or bone marrow stem cells. These cells may be a valuable source in the repair of spinal cord injury.

Methodology/Principal Findings

We examine the effects of HUMSC transplantation after complete spinal cord transection in rats. Approximately 5×105 HUMSCs were transplanted into the lesion site. Three groups of rats were implanted with either untreated HUMSCs (referred to as the stem cell group), or HUMSCs treated with neuronal conditioned medium (NCM) for either three days or six days (referred to as NCM-3 and NCM-6 days, respectively). The control group received no HUMSCs in the transected spinal cord. Three weeks after transplantation, significant improvements in locomotion were observed in all the three groups receiving HUMSCs (stem cell, NCM-3 and NCM-6 days groups). This recovery was accompanied by increased numbers of regenerated axons in the corticospinal tract and neurofilament-positive fibers around the lesion site. There were fewer microglia and reactive astrocytes in both the rostral and caudal stumps of the spinal cord in the stem cell group than in the control group. Transplanted HUMSCs survived for 16 weeks and produced large amounts of human neutrophil-activating protein-2, neurotrophin-3, basic fibroblast growth factor, glucocorticoid induced tumor necrosis factor receptor, and vascular endothelial growth factor receptor 3 in the host spinal cord, which may help spinal cord repair.

Conclusions/Significance

Transplantation of HUMSCs is beneficial to wound healing after spinal cord injury in rats.  相似文献   

11.

Introduction

While numerous studies have documented evidence for plasticity of the human brain there is little evidence that the human spinal cord can change after injury. Here, we employ a novel spinal fMRI design where we stimulate normal and abnormal sensory dermatomes in persons with traumatic spinal cord injury and perform a connectivity analysis to understand how spinal networks process information.

Methods

Spinal fMRI data was collected at 3 Tesla at two institutions from 38 individuals using the standard SEEP functional MR imaging techniques. Thermal stimulation was applied to four dermatomes in an interleaved timing pattern during each fMRI acquisition. SCI patients were stimulated in dermatomes both above (normal sensation) and below the level of their injury. Sub-group analysis was performed on healthy controls (n = 20), complete SCI (n = 3), incomplete SCI (n = 9) and SCI patients who recovered full function (n = 6).

Results

Patients with chronic incomplete SCI, when stimulated in a dermatome of normal sensation, showed an increased number of active voxels relative to controls (p = 0.025). There was an inverse relationship between the degree of sensory impairment and the number of active voxels in the region of the spinal cord corresponding to that dermatome of abnormal sensation (R2 = 0.93, p<0.001). Lastly, a connectivity analysis demonstrated a significantly increased number of intraspinal connections in incomplete SCI patients relative to controls suggesting altered processing of afferent sensory signals.

Conclusions

In this work we demonstrate the use of spinal fMRI to investigate changes in spinal processing of somatosensory information in the human spinal cord. We provide evidence for plasticity of the human spinal cord after traumatic injury based on an increase in the average number of active voxels in dermatomes of normal sensation in chronic SCI patients and an increased number of intraspinal connections in incomplete SCI patients relative to healthy controls.  相似文献   

12.
13.

Background

Traumatic spinal cord injury (SCI) results in partial or complete paralysis and is characterized by a loss of neurons and oligodendrocytes, axonal injury, and demyelination/dysmyelination of spared axons. Approximately 1,250,000 individuals have chronic SCI in the U.S.; therefore treatment in the chronic stages is highly clinically relevant. Human neural stem cells (hCNS-SCns) were prospectively isolated based on fluorescence-activated cell sorting for a CD133+ and CD24−/lo population from fetal brain, grown as neurospheres, and lineage restricted to generate neurons, oligodendrocytes and astrocytes. hCNS-SCns have recently been transplanted sub-acutely following spinal cord injury and found to promote improved locomotor recovery. We tested the ability of hCNS-SCns transplanted 30 days post SCI to survive, differentiate, migrate, and promote improved locomotor recovery.

Methods and Findings

hCNS-SCns were transplanted into immunodeficient NOD-scid mice 30 days post spinal cord contusion injury. hCNS-SCns transplanted mice demonstrated significantly improved locomotor recovery compared to vehicle controls using open field locomotor testing and CatWalk gait analysis. Transplanted hCNS-SCns exhibited long-term engraftment, migration, limited proliferation, and differentiation predominantly to oligodendrocytes and neurons. Astrocytic differentiation was rare and mice did not exhibit mechanical allodynia. Furthermore, differentiated hCNS-SCns integrated with the host as demonstrated by co-localization of human cytoplasm with discrete staining for the paranodal marker contactin-associated protein.

Conclusions

The results suggest that hCNS-SCns are capable of surviving, differentiating, and promoting improved locomotor recovery when transplanted into an early chronic injury microenvironment. These data suggest that hCNS-SCns transplantation has efficacy in an early chronic SCI setting and thus expands the “window of opportunity” for intervention.  相似文献   

14.

Objective and Methods

This study investigated the potential for protective effects of human umbilical cord blood mononuclear cells (UCB-MCs) genetically modified with the VEGF and GNDF genes on contusion spinal cord injury (SCI) in rats. An adenoviral vector was constructed for targeted delivery of VEGF and GDNF to UCB-MCs. Using a rat contusion SCI model we examined the efficacy of the construct on tissue sparing, glial scar severity, the extent of axonal regeneration, recovery of motor function, and analyzed the expression of the recombinant genes VEGF and GNDF in vitro and in vivo.

Results

Transplantation of UCB-MCs transduced with adenoviral vectors expressing VEGF and GDNF at the site of SCI induced tissue sparing, behavioral recovery and axonal regeneration comparing to the other constructs tested. The adenovirus encoding VEGF and GDNF for transduction of UCB-MCs was shown to be an effective and stable vehicle for these cells in vivo following the transplantation into the contused spinal cord.

Conclusion

Our results show that a gene delivery using UCB-MCs-expressing VEGF and GNDF genes improved both structural and functional parameters after SCI. Further histological and behavioral studies, especially at later time points, in animals with SCI after transplantation of genetically modified UCB-MCs (overexpressing VEGF and GDNF genes) will provide additional insight into therapeutic potential of such cells.  相似文献   

15.

Background

Human central nervous system-stem cells grown as neurospheres (hCNS-SCns) self-renew, are multipotent, and have potential therapeutic applications following trauma to the spinal cord. We have previously shown locomotor recovery in immunodeficient mice that received a moderate contusion spinal cord injury (SCI) and hCNS-SCns transplantation 9 days post-injury (dpi). Engrafted hCNS-SCns exhibited terminal differentiation to myelinating oligodendrocytes and synapse-forming neurons. Further, selective ablation of human cells using Diphtheria toxin (DT) abolished locomotor recovery in this paradigm, suggesting integration of human cells within the mouse host as a possible mechanism for the locomotor improvement. However, the hypothesis that hCNS-SCns could alter the host microenvironment as an additional or alternative mechanism of recovery remained unexplored; we tested that hypothesis in the present study.

Methods and Findings

Stereological quantification of human cells using a human-specific cytoplasmic marker demonstrated successful cell engraftment, survival, migration and limited proliferation in all hCNS-SCns transplanted animals. DT administration at 16 weeks post-transplant ablated 80.5% of hCNS-SCns. Stereological quantification for lesion volume, tissue sparing, descending serotonergic host fiber sprouting, chondroitin sulfate proteoglycan deposition, glial scarring, and angiogenesis demonstrated no evidence of host modification within the mouse spinal cord as a result of hCNS-SCns transplantation. Biochemical analyses supplemented stereological data supporting the absence of neural stem-cell mediated host repair. However, linear regression analysis of the number of engrafted hCNS-SCns vs. the number of errors on a horizontal ladder beam task revealed a strong correlation between these variables (r = −0.78, p<0.05), suggesting that survival and engraftment were directly related to a quantitative measure of recovery.

Conclusions

Altogether, the data suggest that the locomotor improvements associated with hCNS-SCns transplantation were not due to modifications within the host microenvironment, supporting the hypothesis that human cell integration within the host circuitry mediates functional recovery following a 9 day delayed transplant.  相似文献   

16.
Yu SL  Wong CK  Wong PT  Chen DP  Szeto CC  Li EK  Tam LS 《PloS one》2011,6(8):e23855

Background

Pattern recognition receptors (PRRs) such as Toll-like receptors are aberrantly expressed of peripheral blood mononuclear cells (PBMCs) in systemic lupus erythematosus (SLE) patients, for playing immunopathological roles.

Methodology/Principal Findings

We investigated the expression and function of the PRR nucleotide-binding oligomerization domain (NOD2) in SLE. NOD2 expression in T, B lymphocytes, monocytes, myeloid dendritic cells (mDCs) and plasmacytoid dendritic cells (pDCs) was assessed in SLE patients and healthy controls (HCs) using flow cytometric analysis. Ex vivo production of cytokines from PBMCs upon NOD2 agonist muramyl dipeptide (MDP) stimulation was assessed using Cytometric Bead Array. Over-expression of NOD2 in monocytes was observed in immunosuppressant naïve SLE patients, and was positively associated with longer disease duration. Immunosuppressive therapy was an independent explanatory variable for downregulating NOD2 expression in CD8+ T, monocytes, mDCs and pDCs. Ex vivo basal productions of cytokines (IL-6, IL-8 and IL-10) were significantly increased in immunosuppressant naïve patients and patients with active disease despite immunosuppressants compared with HCs. Upon MDP stimulaiton, relative induction (%) of cytokines (IL-1β) from PBMC was significantly increased in immunosuppressant naïve patients with inactive disease, and patients with active disease despite immunosuppressant treatment compared with HCs. Immunosuppressant usage was associated with a decreased basal production and MDP induced relative induction (%) of IL-10 in patients with inactive disease compared with immunosuppressant naïve patients and HCs.

Conclusions/Significance

Bacterial exposure may increase the NOD2 expression in monocytes in immunosuppressant naïve SLE patients which can subsequently lead to aberrant activation of PBMCs to produce proinflammatory cytokines, implicating the innate immune response for extracellular pathogens in the immunopathological mechanisms in SLE. Immunosuppressant therapy may downregulate NOD2 expression in CD8+ T lymphocytes, monocytes, and DCs in SLE patients which subsequently IL-10 reduction, contributing towards the regulation of immunopathological mechanisms of SLE, at the expense of increasing risk of bacterial infection.  相似文献   

17.

Background

Olprinone hydrochloride is a newly developed compound that selectively inhibits PDE type III and is characterized by several properties, including positive inotropic effects, peripheral vasodilatory effects, and a bronchodilator effect. In clinical settings, olprinone is commonly used to treat congestive cardiac failure, due to its inotropic and vasodilating effects. The mechanism of these cardiac effects is attributed to increased cellular concentrations of cAMP. The aim of the present study was to evaluate the pharmacological action of olprinone on the secondary damage in experimental spinal cord injury (SCI) in mice.

Methodology/Principal Findings

Traumatic SCI is characterized by an immediate, irreversible loss of tissue at the lesion site, as well as a secondary expansion of tissue damage over time. Although secondary injury should be preventable, no effective treatment options currently exist for patients with SCI. Spinal cord trauma was induced in mice by the application of vascular clips (force of 24 g) to the dura via a four-level T5–T8 laminectomy. SCI in mice resulted in severe trauma characterized by edema, neutrophil infiltration, and production of inflammatory mediators, tissue damage, apoptosis, and locomotor disturbance. Olprinone treatment (0.2 mg/kg, i.p.) 1 and 6 h after the SCI significantly reduced: (1) the degree of spinal cord inflammation and tissue injury (histological score), (2) neutrophil infiltration (myeloperoxidase activity), (3) nitrotyrosine formation, (4) pro-inflammatory cytokines, (5) NF-κB expression, (6) p-ERK1/2 and p38 expression and (7) apoptosis (TUNEL staining, FAS ligand, Bax and Bcl-2 expression). Moreover, olprinone significantly ameliorated the recovery of hind-limb function (evaluated by motor recovery score).

Conclusions/Significance

Taken together, our results clearly demonstrate that olprinone treatment reduces the development of inflammation and tissue injury associated with spinal cord trauma.  相似文献   

18.

Background

Advanced intercross lines (AIL) are segregating populations created using a multi-generation breeding protocol for fine mapping complex trait loci (QTL) in mice and other organisms. Applying QTL mapping methods for intercross and backcross populations, often followed by naïve permutation of individuals and phenotypes, does not account for the effect of AIL family structure in which final generations have been expanded and leads to inappropriately low significance thresholds. The critical problem with naïve mapping approaches in AIL populations is that the individual is not an exchangeable unit.

Methodology/Principal Findings

The effect of family structure has immediate implications for the optimal AIL creation (many crosses, few animals per cross, and population expansion before the final generation) and we discuss these and the utility of AIL populations for QTL fine mapping. We also describe Genome Reshuffling for Advanced Intercross Permutation, (GRAIP) a method for analyzing AIL data that accounts for family structure. GRAIP permutes a more interchangeable unit in the final generation crosses – the parental genome – and simulating regeneration of a permuted AIL population based on exchanged parental identities. GRAIP determines appropriate genome-wide significance thresholds and locus-specific P-values for AILs and other populations with similar family structures. We contrast GRAIP with naïve permutation using a large densely genotyped mouse AIL population (1333 individuals from 32 crosses). A naïve permutation using coat color as a model phenotype demonstrates high false-positive locus identification and uncertain significance levels, which are corrected using GRAIP. GRAIP also detects an established hippocampus weight locus and a new locus, Hipp9a.

Conclusions and Significance

GRAIP determines appropriate genome-wide significance thresholds and locus-specific P-values for AILs and other populations with similar family structures. The effect of family structure has immediate implications for the optimal AIL creation and we discuss these and the utility of AIL populations.  相似文献   

19.

Background

A series of epidemiologic studies have identified the fungus Alternaria as a major risk factor for asthma. The airway epithelium plays a critical role in the pathogenesis of allergic asthma. These reports suggest that activated airway epithelial cells can produce cytokines such as IL-25, TSLP and IL-33 that induce Th2 phenotype. However the epithelium-derived products that mediate the pro-asthma effects of Alternaria are not well characterized. We hypothesized that exposure of the airway epithelium to Alternaria releasing cytokines that can induce Th2 differentiation.

Methodology/Principal Finding

We used ELISA to measure human and mouse cytokines. Alternaria extract (ALT-E) induced rapid release of IL-18, but not IL-4, IL-9, IL-13, IL-25, IL-33, or TSLP from cultured normal human bronchial epithelial cells; and in the BAL fluids of naïve mice after challenge with ALT-E. Both microscopic and FACS indicated that this release was associated with necrosis of epithelial cells. ALT-E induced much greater IL-18 release compared to 19 major outdoor allergens. Culture of naïve CD4 cells with rmIL-18 induced Th2 differentiation in the absence of IL-4 and STAT6, and this effect was abrogated by disrupting NF- κB p50 or with a NEMO binding peptide inhibitor.

Conclusion/Significance

Rapid and specific release of IL-18 from Alternaria-exposed damaged airway epithelial cells can directly initiate Th2 differentiation of naïve CD4+ T-cells via a unique NF-κB dependent pathway.  相似文献   

20.
Neurogenin2 (Ngn2) is a proneural gene that directs neuronal differentiation of progenitor cells during development. This study aimed to investigate whether the use of adipose-derived stem cells (ADSCs) over-expressing the Ngn2 transgene (Ngn2–ADSCs) could display the characteristics of neurogenic cells and improve functional recovery in an experimental rat model of SCI. ADSCs from rats were cultured and purified in vitro, followed by genetically modified with the Ngn2 gene. Forty-eight adult female Sprague–Dawley rats were randomly assigned to three groups: the control, ADSCs, and Ngn2–ADSCs groups. The hind-limb motor function of all rats was recorded using the Basso, Beattie, and Bresnahan locomotor rating scale for 8 weeks. Moreover, hematoxylineosin staining and immunohistochemistry were also performed. After neural induction, positive expression rate of NeuN in Ngn2–ADSCs group was upon 90 %. Following transplantation, a great number of ADSCs was found around the center of the injury spinal cord at 1 and 4 weeks, which improved retention of tissue at the lesion site. Ngn2–ADSCs differentiated into neurons, indicated by the expression of neuronal markers, NeuN and Tuj1. Additionally, transplantation of Ngn2–ADSCs upregulated the trophic factors (brain-derived neurotrophic factor and vascular endothelial growth factor), and inhibited the glial scar formation, which was indicated by immunohistochemistry with glial fibrillary acidic protein. Finally, Ngn2–ADSCs-treated animals showed the highest functional recovery among the three groups. These findings suggest that transplantation of Ngn2-overexpressed ADSCs promote the functional recovery from SCI, and improve the local microenvironment of injured cord in a more efficient way than that with ADSCs alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号