首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Due to the constant increasing of bacterial resistance against known antibiotics, it is now necessary to find new sources of antimicrobials including the marine environment. The aim of this study was to evaluate antimicrobial activity of bacterial strains isolated from different coastal regions of the Caspian Sea and to provide phylogenetic analyses of antibiotic producing strains. Water samples collected from the Caspian Sea were serially diluted and plated on selective media. Isolates were tested against a panel of reference strains (Streptococcus pyogenes, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa) by microbial antagonism and disc diffusion assay. Unweighted Pair Group Method with Arithmetic Mean (UPGMA) method was also employed to produce a phylogenetic tree based on 16S rDNA sequences. Amongst 162 isolates, 8 strains (4.93%) showed antibacterial activity. Isolated bacteria displayed more activity against gram-positive bacteria than gram-negative bacteria. Moreover, the 16S sequences obtained for the 8 selected strains were compared using a BLAST algorithm and allowed us to determine the strains genus as followed: Bacillus (RS28, RS54, RS56, RS82, RS116, and NS53), Brevundimonas (RS32), and Arthrobacter (NS25). The findings of the present study recommend that culturally marine bacteria collected from the Caspian Sea might be a potent source of novel bioactive compounds such as antibiotics.  相似文献   

2.
Quorum-sensing (QS) interference is a novel therapy to fight bacterial infections that, unlike conventional antibiotic treatments, is focused on reducing the damage caused by pathogens (virulence) rather than focused on inhibiting their growth. Given this ideal, it was predicted that this approach will be impervious to or at least much less prone to resistance in bacterial populations. However, recently, resistance mechanisms against well-characterized quorum quenchers (QQs) have been found in the laboratory as well as in clinical strains, demonstrating that the rise of resistance against these kinds of compounds is possible. Nevertheless, it has been argued that even if resistance mechanisms against QS interference exist, this fact does not guarantee that resistance will spread. In the present work, we discuss recent insights derived from the latest experiments to address this question. In addition, we explain how environmental conditions like the stress produced by the host immune system may influence the selection of resistance and eventually lead to the selection of QS interference-resistant bacteria in a clinical setting.  相似文献   

3.

Background

The present study reports the antibacterial capacity of alkaloid compounds in combination with Methicillin and Ampicillin-resistants bacteria isolated from clinical samples. The resistance of different bacteria strains to the current antibacterial agents, their toxicity and the cost of the treatment have led to the development of natural products against the bacteria resistant infections when applied in combination with conventional antimicrobial drugs.

Method

The antibacterial assays in this study were performed by using inhibition zone diameters, MIC, MBC methods, the time-kill assay and the Fractional Inhibitory Concentration Index (FICI) determination. On the whole, fifteen Gram-positive bacterial strains (MRSA/ARSA) were used. Negative control was prepared using discs impregnated with 10 % DMSO in water and commercially available Methicillin and Ampicillin from Alkom Laboratories LTD were used as positive reference standards for all bacterial strains.

Results

We noticed that the highest activities were founded with the combination of alkaloid compounds and conventional antibiotics against all bacteria strains. Then, results showed that after 7 h exposition there was no viable microorganism in the initial inoculums.

Conclusion

The results of this study showed that alkaloid compounds in combination with conventional antibiotics (Methicillin, Ampicillin) exhibited antimicrobial effects against microorganisms tested. These results validate the ethno-botanical use of Cienfuegosia digitata Cav. (Malvaceae) in Burkina Faso. Moreover, this study demonstrates the potential of this herbaceous as a source of antibacterial agent that could be effectively used for future health care purposes.  相似文献   

4.
Abstract Several purple and green sulfur bacteria (genera Chromatium, Thiocapsa and Chlorobium ) were tested for their sensitivity to different antimicrobial agents by a disc diffusion assay, using thioacetamide as a source of hydrogen sulfide for plate growth. Chlorobium limicola strains were more sensitive to amoxicillin, erythromycin and nalidixic acid, whereas gentamicin and netilmicin were more active against the purple bacteria tested. None of the organisms were sensitive to oxacillin and trimethoprim + sulfamethoxazole. The critical concentrations at the edge of the inhibition zone were also calculated for three organisms and the antimicrobials colistin, mitomycin C, penicillin G, rifampicin, and streptomycin. The results obtained suggest that colistin, mitomycin C, penicillin G would provide selective conditions against the growth of Chlorobium limicola strains, while streptomycin and other aminoglycoside antibiotics would select against purple bacteria.  相似文献   

5.
Maintenance of antimicrobial drug resistance in bacteria can be influenced by factors unrelated to direct selection pressure such as close linkage to other selectively advantageous genes and secondary advantage conveyed by antimicrobial resistance genes in the absence of drug selection. Our previous trials at a dairy showed that the maintenance of the antimicrobial resistance genes is not influenced by specific antimicrobial selection and that the most prevalent antimicrobial resistance phenotype of Escherichia coli is specifically selected for in young calves. In this paper we examine the role of secondary advantages conveyed by antimicrobial resistance genes. We tested antimicrobial-susceptible null mutant strains for their ability to compete with their progenitor strains in vitro and in vivo. The null mutant strains were generated by selection for spontaneous loss of resistance genes in broth supplemented with fusaric acid or nickel chloride. On average, the null mutant strains were as competitive as the progenitor strains in vitro and in newborn calves (in vivo). Inoculation of newborn calves at the dairy with antimicrobial-susceptible strains of E. coli did not impact the prevalence of antimicrobial-resistant E. coli. Our results demonstrate that the antimicrobial resistance genes are not responsible for the greater fitness advantage of antimicrobial-resistant E. coli in calves, but the farm environment and the diet clearly exert critical selective pressures responsible for the maintenance of antimicrobial resistance genes. Our current hypothesis is that the antimicrobial resistance genes are linked to other genes responsible for differential fitness in dairy calves.  相似文献   

6.
Defensins are natural mucosal antimicrobial peptides and their broad spectrum activity against aerobic or facultative anaerobic bacteria has been well investigated. The aim of this study was to systematically examine the antibacterial activity of the small intestinal Paneth cell derived α-defensin HD5 and the major colonic β-defensins HBD-1–3 against strict anaerobic intestinal bacteria. The antibacterial activity was assessed with a flow cytometric assay employing a membrane potential sensitive dye as marker for loss of cell viability. The majority of the tested strains belonging to the dominant anaerobe genera of the gut, Bacteroides and Parabacteroides, were only minimally affected by the constitutively expressed defensins HD5 and HBD-1. The inducible defensin HBD-2 had a limited antibacterial effect, whereas the inducible HBD-3 exhibited potent activity against most strains. The effect of HBD-3 on Bacteroides sp. appeared to be dependent on the presence of oxygen. Bacteroides fragilis strains isolated from blood during bacteremia or from extraintestinal infections were more resistant to HBD-3 than strains from the physiological gut flora. Thus, defensin resistance is not only species- but also strain-specific and may be clinically relevant in the host–bacteria interaction influencing mucosal translocation and systemic infection.  相似文献   

7.
Bacteriocins are proteinaceous anticompetitor molecules produced by bacteria against closely related species. A number of theoretical models have been used to explain experimental data that indicate high polymorphisms among bacteriocins and a frequency-dependent nature of selection for bacteriocin-producing strains. The majority of these experimental data were, however, obtained from investigations into the colicin group of bacteriocins produced by Gram-negative bacteria. The conclusions drawn from these models have been extrapolated to other bacteriocins and allelopathic compounds in general. Examination of more recent experimental investigations into the bacteriocins of Gram-positive bacteria indicate a lower degree of polymorphism and a less frequency dependent mode of selection among these strains them among the colicin-producing strains. Here we examine these contradictions in the light of the assumptions and conclusions of the theoretical models and reported data. We show that fitness costs as indicated by decreased relative maximum growth rate associated with bacteriocin production may be much lower in many cases than is assumed in the present models. A lower fitness cost associated with bacteriocin production adequately explains the newer data from Gram-positive bacteria cited here, and indicates that extrapolation of existing models to all bacteriocins and other allelopathic compounds is not appropriate.  相似文献   

8.
Maintenance of antimicrobial drug resistance in bacteria can be influenced by factors unrelated to direct selection pressure such as close linkage to other selectively advantageous genes and secondary advantage conveyed by antimicrobial resistance genes in the absence of drug selection. Our previous trials at a dairy showed that the maintenance of the antimicrobial resistance genes is not influenced by specific antimicrobial selection and that the most prevalent antimicrobial resistance phenotype of Escherichia coli is specifically selected for in young calves. In this paper we examine the role of secondary advantages conveyed by antimicrobial resistance genes. We tested antimicrobial-susceptible null mutant strains for their ability to compete with their progenitor strains in vitro and in vivo. The null mutant strains were generated by selection for spontaneous loss of resistance genes in broth supplemented with fusaric acid or nickel chloride. On average, the null mutant strains were as competitive as the progenitor strains in vitro and in newborn calves (in vivo). Inoculation of newborn calves at the dairy with antimicrobial-susceptible strains of E. coli did not impact the prevalence of antimicrobial-resistant E. coli. Our results demonstrate that the antimicrobial resistance genes are not responsible for the greater fitness advantage of antimicrobial-resistant E. coli in calves, but the farm environment and the diet clearly exert critical selective pressures responsible for the maintenance of antimicrobial resistance genes. Our current hypothesis is that the antimicrobial resistance genes are linked to other genes responsible for differential fitness in dairy calves.  相似文献   

9.
One hundred six strains of aerobic bacteria were isolated from the Fiora River which drains an area of cinnabar deposits in southern Tuscany, Italy. Thirty-seven of the strains grew on an agar medium containing 10g/ml Hg (as HgCl2) with all of these strains producing elemental mercury. Seven of the 37 strains also degraded methylmercury. None of 106 sensitive and resistant strains produced detectable monomethylmercury although 15 strains produced a benzene-soluble mercury species. Two strains of alkylmercury (methyl-, ethyl- and phenylmercury) degrading bacteria were tested for the ability to degrade several other analogous organometals and organic compounds, but no activity was detected toward these compounds. Mercury methylation is not a mechanism of Hg resistance in aerobic bacteria from this environment. Growth of bacteria on the agar medium containing 10g/ml HgCl2 was diagnostic for Hg detoxification based on reduction.  相似文献   

10.
beta-lactams are the antibiotic compounds most widely used against hospital and community acquired infections. However, resistance has emerged in both Gram-positive and Gram-negative bacteria, limiting their therapeutic efficacy. The choice of appropriate treatment depends on analysis of susceptibility data that indicates a specific mechanism of resistance. Correct interpretation of susceptibility tests permits a rational approach to the resistance problem and selection of alternatives for treatment. The laboratory must first be able to identify accurately microorganisms to the species level and then test a minimum of relevant antimicrobials. beta-lactam resistance in Enterobacteriaceae is mainly due to the production of plasmid or chromosomal encoded beta-lactamases. In Gram-negative non-fermenting bacteria, impermeability and efflux are relatively more important to the treatment selected. In Gram-positive bacteria, resistance mechanisms can involve changes in penicillin-binding proteins (PBPs), production of new PBPs or synthesis of beta-lactamases. The range of therapeutic options must be based on the current status of local resistance mechanisms.  相似文献   

11.
The detection of DNA-damaging agents by repair-deficient bacterial assays is based on the differential inhibition of growth of repair-proficient and repair-deficient bacterial pairs. The various methodologies used are described and recommendations are made for their improved use. In a survey of the literature through April 1979, 91 of 276 papers evaluated contained usable data, resulting in an analysis of 611 compounds that had been assayed in 1 or more of 55 pairs of repair-proficient and repair-deficient strains. The results indicate that (1) a liquid suspension assay is more sensitive than a spot (diffusion) test. In a review of the Escherichia coli polA assay, 45 compounds that gave "No Test" in the spot test were clearly positive or negative in the liquid suspension assay. (2) Of the 21 compounds analyzed by the E. coli polA assay and by other E. coli repair-deficient strains (e.g., rec, uvr, hcr, and exr derivatives of WP2 and AB1157), 10 were in complete agreement in all strains except uvrA strains. This indicates that strains other than polA+/polA- are useful for detecting DNA-damaging agents. However, in selecting strains for use in these assays, care should be taken to consider repair pathway specificity for particular compounds. (3) There was a 78% correspondence between results obtained with E. coli polA and Bacillus subtilis (H17/M45, 17A/45T) rec assay and between E. coli polA and Proteus mirabilis. (4) In a comparison of test results with carcinogenicity data, 44 of 71 (62%) carcinogenic compounds assayed by the polA system were positive, 10 (14%) were negative, and 17 (24%) gave No Test or doubtful results. 7 carcinogens were assayed by other E. coli strains and all were positive. 56 carcinogens were assayed in B. subtilis: 24 (43%) were positive, 9 (16%) were negative, and 23 (41%) gave No Test or doubtful results. Of the 7 carcinogens assayed in P. mirabilis, 6 (86%) were positive and 1 (14%) was negative. (5) The results were analyzed with respect to chemical classes. E. coli polA detected the highest percentage of hydroxylamines and alkyl epoxides. The B. subtilis rec assay detected the highest percentage of nitrosamines and sulfur and nitrogen oxides. It is concluded that some of these test systems are effective tools for the detection of DNA-damaging and potentially carcinogenic compounds, especially if the assay is done in liquid suspension and if more than 1 pair of tester strains is used. Advantages and disadvantages of the assay are discussed and suggestions are made for improvements in the system.  相似文献   

12.
In the present work a family of novel secnidazole-derived Schiff base compounds and their copper(II) complexes were synthesized. The antimicrobial activities of the compounds were evaluated against clinically important anaerobic bacterial strains. The compounds exhibited in vitro antibacterial activity against Bacteroides fragilis, Bacteroides thetaiotaomicron, Bacteroides vulgatus, Bacteroides ovatus, Parabacteroides distasonis and Fusubacterium nucleatum pathogenic anaerobic bacteria. Upon coordination to copper(II) the antibacterial activity significantly increased in several cases. Some derivatives were even more active than the antimicrobial drugs secnidazole and metronidazole. Therefore, the compounds under study are suitable for in vivo evaluation and the microorganisms should be classified as susceptible to them. Electrochemical studies on the reduction of the nitro group revealed that the compounds show comparable reduction potentials, which are in the same range of the bio-reducible drugs secnidazole and benznidazole. The nitro group reduction potential is more favorable for the copper(II) complexes than for the starting ligands. Hence, the antimicrobial activities of the compounds under study might in part be related to intracellular bio-reduction activation. Considering the increasing resistance rates of anaerobic bacteria against a wide range of antimicrobial drugs, the present work constitutes an important contribution to the development of new antibacterial drug candidates.  相似文献   

13.

Background

Bacteria produce small molecule iron chelators, known as siderophores, to facilitate the acquisition of iron from the environment. The synthesis of more than one siderophore and the production of multiple siderophore uptake systems by a single bacterial species are common place. The selective advantages conferred by the multiplicity of siderophore synthesis remains poorly understood. However, there is growing evidence suggesting that siderophores may have other physiological roles besides their involvement in iron acquisition.

Methods and Principal Findings

Here we provide the first report that pyochelin displays antibiotic activity against some bacterial strains. Observation of differential sensitivity to pyochelin against a panel of bacteria provided the first indications that catecholate siderophores, produced by some bacteria, may have roles other than iron acquisition. A pattern emerged where only those strains able to make catecholate-type siderophores were resistant to pyochelin. We were able to associate pyochelin resistance to catecholate production by showing that pyochelin-resistant Escherichia coli became sensitive when biosynthesis of its catecholate siderophore enterobactin was impaired. As expected, supplementation with enterobactin conferred pyochelin resistance to the entE mutant. We observed that pyochelin-induced growth inhibition was independent of iron availability and was prevented by addition of the reducing agent ascorbic acid or by anaerobic incubation. Addition of pyochelin to E. coli increased the levels of reactive oxygen species (ROS) while addition of ascorbic acid or enterobactin reduced them. In contrast, addition of the carboxylate-type siderophore, citrate, did not prevent pyochelin-induced ROS increases and their associated toxicity.

Conclusions

We have shown that the catecholate siderophore enterobactin protects E. coli against the toxic effects of pyochelin by reducing ROS. Thus, it appears that catecholate siderophores can behave as protectors of oxidative stress. These results support the idea that siderophores can have physiological roles aside from those in iron acquisition.  相似文献   

14.
Capsaicinoids are reported to have a bunch of promising pharmacological activities, among them antibacterial effects against various strains of bacteria. In this study the effect on efflux pumps of mycobacteria was investigated. The importance of efflux pumps, and the inhibition of these, is rising due to their involvement in antibiotic resistance development. In order to draw structure and activity relationships we tested natural and synthetical capsaicinoids as well as synthetical capsinoids. In an accumulation assay these compounds were evaluated for their ability to accumulate ethidium bromide into mycobacterial cells, a well-known substrate for efflux pumps. Capsaicin and dihydrocapsaicin, the two most abundant capsaicinoids in Capsicum species, proved to be superior efflux pump inhibitors compared to the standard verapamil. A dilution series showed dose dependency of both compounds. The compound class of less pungent capsinoids qualified for further investigation as antibacterials against Mycobacterium smegmatis.  相似文献   

15.
Ten standard strains of hiochi bacteria were selected based on the SDS-PAGE patterns of their cellular proteins. We then obtained ten hybridoma systems that secreted highly reactive monoclonal antibodies (MAbs) to the whole cells of each strain. It was apparent that these MAbs were highly reactive and specific for hiochi bacterial whole cells when using an enzyme-linked immunosorbent assay (ELISA). Three MAbs (two against the homo-fermentative hiochi lactobacilli and an MAb against the hetero-fermentative true hiochi bacilli) showed cross-reactivity to some of the other strains of lactobacilli tested. However, the other MAbs did not react with strains other than the immunogen. A sensitive ELISA method for the detection of hiochi bacteria was examined. It was possible to detect the order of 103 cells of the ten standard strains. Using this procedure and a mixture of the ten MAbs, a detection limit of 104 cells or less could be obtained for 98.2% of the hiochi bacteria isolated from sake brewing factories. Thus, this immunological technique using MAbs specific for hiochi bacteria is a sensitive and rapid detection method for hiochi bacteria, which can be used in the quality control of sake.  相似文献   

16.
The aim of the study was to assay antibacterial and antifungal activity of newly synthesised N-alkoxycarbonylmethyl-N-alkyl-piperidinium chlorides. The compounds tested were found to inhibit the growth of some Gram-negative bacteria, Gram-positive strains and some representatives of yeast-type Candida. From microbiological experiments two of the compounds tested, N-dodecyloxycarbonylmethyl-N-methyl-piperidinium chloride (3) and N-dodecyl-N-ethoxycarbonylmethyl-piperidinium chloride (6), emerged as more active than the other compounds. Since the resistance of biofilms to biocides should be noted during the design and testing of new antimicrobial agents therefore, we have analysed antibacterial properties of the most active compounds towards biofilms. Our study focused on strains of Pseudomonas aeruginosa and Staphylococcus aureus that served as main model organisms for the biofilm studies.  相似文献   

17.
Drug resistance is a common problem in the fight against infectious diseases. Recent studies have shown conditions (which we call antiR) that select against resistant strains. However, no specific drug administration strategies based on this property exist yet. Here, we mathematically compare growth of resistant versus sensitive strains under different treatments (no drugs, antibiotic, and antiR), and show how a precisely timed combination of treatments may help defeat resistant strains. Our analysis is based on a previously developed model of infection and immunity in which a costly plasmid confers antibiotic resistance. As expected, antibiotic treatment increases the frequency of the resistant strain, while the plasmid cost causes a reduction of resistance in the absence of antibiotic selection. Our analysis suggests that this reduction occurs under competition for limited resources. Based on this model, we estimate treatment schedules that would lead to a complete elimination of both sensitive and resistant strains. In particular, we derive an analytical expression for the rate of resistance loss, and hence for the time necessary to turn a resistant infection into sensitive (tclear). This time depends on the experimentally measurable rates of pathogen division, growth and plasmid loss. Finally, we estimated tclear for a specific case, using available empirical data, and found that resistance may be lost up to 15 times faster under antiR treatment when compared to a no treatment regime. This strategy may be particularly suitable to treat chronic infection. Finally, our analysis suggests that accounting explicitly for a resistance-decaying rate may drastically change predicted outcomes in host-population models.  相似文献   

18.
SurA is a gram-negative, periplasmic chaperone protein involved in the proper folding of outer membrane porins (OMPs), which protect bacteria against toxins in the extracellular environment by selectively regulating the passage of nutrients into the cell. Previous studies demonstrated that deletion of SurA renders bacteria more sensitive to toxins that compromise the integrity of the outer membrane. Inhibitors of SurA will perturb the folding of OMPs, leading to disruption of the outer membrane barrier and making the cell more vulnerable to toxic insults. The discovery of novel SurA inhibitors is therefore of great importance for developing alternative strategies to overcome antibiotic resistance. Our laboratory has screened over 10,000,000 compounds in silico by computationally docking these compounds onto the crystal structure of SurA. Through this screen and a screen of fragment compounds (molecular weight?less than?250?g/mol), we found twelve commercially readily available candidate compounds that bind to the putative client binding site of SurA. We confirmed binding to SurA by developing and employing a competitive fluorescence anisotropy-based binding assay. Our results show that one of these compounds, Fmoc-β-(2-quinolyl)-d-alanine, binds the client binding site with high micromolar affinity. Using this compound as a lead, we also discovered that Fmoc-l-tryptophan and Fmoc-l-phenylalanine, but not Fmoc-l-tyrosine, bind SurA with similar micromolar affinity. To our knowledge, this is the first report of a competitive fluorescence anisotropy assay developed for the identification of inhibitors of the chaperone SurA, and the identification of three small molecules that bind SurA at its client binding site.  相似文献   

19.
The chemotactic response of bacteria to root exudates plays an important role in the colonization of bacteria in the rhizosphere. In this study, 420 strains of antifungal bacteria against Fusarium oxysporum f. sp. cubense (Foc) were screened for chemotaxis based on a cheA molecular diagnostic method. A total of 124 strains with antifungal efficiencies of 27.26-67.14?% generated a characteristic band of cheA. The chemotaxis of 97 bacterial strains producing a cheA band was confirmed using the drop assay and swarm plate assay using catechol, p-hydroxybenzoic acid, salicylic acid, and asparagine as the attractants. A phylogenetic analysis based on restriction fragment length polymorphisms (RFLPs) and 16S rDNA sequences indicated that the 124 chemotactic antagonists of Foc were affiliated with 18 species of Paenibacillaceae, Bacillaceae, Streptomycineae, Enterobacteriaceae, and Pseudomonadaceae. The chemical composition of banana root exudates were analyzed by GC-MS, and 62 compounds, including alkanes, alkenes, naphthalenes, benzenes, and alcohols, were evaluated. Five representative antagonists of Foc showed 1.76- to 7.75-fold higher chemotactic responses than the control to seven compounds in banana root exudates, as determination by capillary assays.  相似文献   

20.
Pseudomonas aeruginosa and Escherichia coli are resistant to wide range of antibiotics rendering the treatment of infections very difficult. A main mechanism attributed to the resistance is the function of efflux pumps. MexAB-OprM and AcrAB-TolC are the tripartite efflux pump assemblies, responsible for multidrug resistance in P. aeruginosa and E. coli respectively. Substrates that are more susceptible for efflux are predicted to have a common pharmacophore feature map. In this study, a new criterion of excluding compounds with efflux substrate-like features was used, thereby refining the selection process and enriching the inhibitor identification process. An in-house database of phytochemicals was created and screened using high-throughput virtual screening against AcrB and MexB proteins and filtered by matching with the common pharmacophore models (AADHR, ADHNR, AAHNR, AADHN, AADNR, AAADN, AAADR, AAANR, AAAHN, AAADD and AAADH) generated using known efflux substrates. Phytochemical hits that matched with any one or more of the efflux substrate models were excluded from the study. Hits that do not have features similar to the efflux substrate models were docked using XP docking against the AcrB and MexB proteins. The best hits of the XP docking were validated by checkerboard synergy assay and ethidium bromide accumulation assay for their efflux inhibition potency. Lanatoside C and diadzein were filtered based on the synergistic potential and validated for their efflux inhibition potency using ethidium bromide accumulation study. These compounds exhibited the ability to increase the accumulation of ethidium bromide inside the bacterial cell as evidenced by these increase in fluorescence in the presence of the compounds. With this good correlation between in silico screening and positive efflux inhibitory activity in vitro, the two compounds, lanatoside C and diadzein could be promising efflux pump inhibitors and effective to use in combination therapy against drug resistant strains of P. aeruginosa and E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号