共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrate tolerance aggravates postischemic myocardial apoptosis and impairs cardiac functional recovery after ischemia 总被引:3,自引:0,他引:3
Fan Q Gao F Zhang L Christopher TA Lopez BL Ma XL 《Apoptosis : an international journal on programmed cell death》2005,10(6):1235-1242
Objectives: This study examined the effects of nitrate tolerance (NT) on myocardial ischemia reperfusion (MI/R) injury and elucidated
the potential mechanisms involved. Furthermore, the effects of GSH on postischemic myocardial apoptosis in NT rats were investigated.
Methods and results: Male Sprague–Dawley rats were randomized to receive nitroglycerin (60 μg/kg/h) or saline for 12 h followed by 40 min of
MI and 4 h of reperfusion. Myocardial apoptosis, infarct size, nitrotyrosine formation, plasma CK and LDH activity, and cardiac
function were determined. MI/R resulted in significant apoptotic cell death, which was further increased in animals with NT.
In addition, NT further increased plasma CK and LDH activity, enlarged infarct size, and impaired cardiac functional recovery
after ischemia. Myocardial nitrotyrosine, a footprint for cytotoxic reactive nitrogen species formation, was further enhanced
in the NT heart after MI/R. Treatment of NT animals with exogenous GSH inhibited nitrotyrosine formation, reduced apoptosis,
decreased infarct size, and improved cardiac functional recovery.
Conclusion: Our results demonstrate that nitrate tolerance markedly enhances MI/R injury and that increased peroxynitrite formation
likely plays a role in this pathologic process. In addition, our results suggest that GSH could decrease peroxynitrite formation
and reduce MI/R injury in nitrate tolerant hearts. 相似文献
2.
Rastaldo R Cappello S Folino A Berta GN Sprio AE Losano G Samaja M Pagliaro P 《American journal of physiology. Heart and circulatory physiology》2011,300(6):H2308-H2315
We studied whether apelin-13 is cardioprotective against ischemia/reperfusion injury if given as either a pre- or postconditioning mimetic and whether the improved postischemic mechanical recovery induced by apelin-13 depends only on the reduced infarct size or also on a recovery of function of the viable myocardium. We also studied whether nitric oxide (NO) is involved in apelin-induced protection and whether the reported ischemia-induced overexpression of the apelin receptor (APJ) plays a role in cardioprotection. Langendorff-perfused rat hearts underwent 30 min of global ischemia and 120 min of reperfusion. Left ventricular pressure was recorded. Infarct size and lactate dehydrogenase release were determined to evaluate the severity of myocardial injury. Apelin-13 was infused at 0.5 μM concentration for 20 min either before ischemia or in early reperfusion, without and with NO synthase inhibition by N(G)-nitro-l-arginine (l-NNA). In additional experiments, before ischemia also 1 μM apelin-13 was tested. APJ protein level was measured before and after ischemia. Whereas before ischemia apelin-13 (0.5 and 1.0 μM) was ineffective, after ischemia it reduced infarct size from 54 ± 2% to 26 ± 4% of risk area (P < 0.001) and limited the postischemic myocardial contracture (P < 0.001). l-NNA alone increased postischemic myocardial contracture. This increase was attenuated by apelin-13, which, however, was unable to reduce infarct size. Ischemia increased APJ protein level after 15-min perfusion, i.e., after most of reperfusion injury has occurred. Apelin-13 protects the heart only if given after ischemia. In this protection NO plays an important role. Apelin-13 efficiency as postconditioning mimetic cannot be explained by the increased APJ level. 相似文献
3.
Background
The present study was to investigate the effects and mechanism of Luteolin on myocardial infarct size, cardiac function and cardiomyocyte apoptosis in diabetic rats with myocardial ischemia/reperfusion (I/R) injury.Methodology/Principal Findings
Diabetic rats underwent 30 minutes of ischemia followed by 3 h of reperfusion. Animals were pretreated with or without Luteolin before coronary artery ligation. The severity of myocardial I/R induced LDH release, arrhythmia, infarct size, cardiac function impairment, cardiomyocyte apoptosis were compared. Western blot analysis was performed to elucidate the target proteins of Luteolin. The inflammatory cytokine production were also examined in ischemic myocardium underwent I/R injury. Our results revealed that Luteolin administration significantly reduced LDH release, decreased the incidence of arrhythmia, attenuated myocardial infarct size, enhanced left ventricular ejection fraction and decreased myocardial apoptotic death compared with I/R group. Western blot analysis showed that Luteolin treatment up-regulated anti-apoptotic proteins FGFR2 and LIF expression, increased BAD phosphorylation while decreased the ratio of Bax to Bcl-2. Luteolin treatment also inhibited MPO expression and inflammatory cytokine production including IL-6, IL-1a and TNF-a. Moreover, co-administration of wortmannin and Luteolin abolished the beneficial effects of Luteolin.Conclusions/Significance
This study indicates that Luteolin preserves cardiac function, reduces infarct size and cardiomyocyte apoptotic rate after I/R injury in diabetic rats. Luteolin exerts its action by up-regulating of anti-apoptotic proteins FGFR2 and LIF expression, activating PI3K/Akt pathway while increasing BAD phosphorylation and decreasing ratio of Bax to Bcl-2. 相似文献4.
Taniguchi M Wilson C Hunter CA Pehowich DJ Clanachan AS Lopaschuk GD 《American journal of physiology. Heart and circulatory physiology》2001,280(4):H1762-H1769
Dichloroacetate (DCA) is a pyruvate dehydrogenase activator that increases cardiac efficiency during reperfusion of ischemic hearts. We determined whether DCA increases efficiency of mitochondrial ATP production by measuring proton leak in mitochondria from isolated working rat hearts subjected to 30 min of ischemia and 60 min of reperfusion. In untreated hearts, cardiac work and efficiency decreased during reperfusion to 26% and 40% of preischemic values, respectively. Membrane potential was significantly lower in mitochondria from reperfused (175.6 +/- 2.2 mV) versus aerobic (185.8 +/- 3.1 mV) hearts. DCA (1 mM added at reperfusion) improved recovery of cardiac work (1.9-fold) and efficiency (1.5-fold) but had no effect on mitochondrial membrane potential (170.6 +/- 2.9 mV). At the maximal attainable membrane potential, O(2) consumption (nmol O(2) x mg(-1) x min(-1)) did not differ between untreated or DCA-treated hearts (128.3 +/- 7.5 and 120.6 +/- 7.6, respectively) but was significantly greater than aerobic hearts (76.6 +/- 7.6). During reperfusion, DCA increased glucose oxidation 2.5-fold and decreased H(+) production from glucose metabolism to 53% of untreated hearts. Because H(+) production decreases cardiac efficiency, we suggest that DCA increases cardiac efficiency during reperfusion of ischemic hearts by increasing the efficiency of ATP use and not by increasing the efficiency of ATP production. 相似文献
5.
6.
Qu WS Wang YH Ma JF Tian DS Zhang Q Pan DJ Yu ZY Xie MJ Wang JP Wang W 《Journal of neurochemistry》2011,116(2):217-226
Astrogliosis occurs after brain ischemia, and excessive astrogliosis can devastate the neuronal recovery. Previous reports show that galectin-1 (Gal-1) regulates proliferation of several cell types and plays an important role after nervous system injuries. Here, we found that expression of Gal-1 was remarkably up-regulated in activated astrocytes around ischemic infarct. Furthermore, under ischemic conditions either in vitro or in vivo, Gal-1 was found to inhibit the proliferation of astrocytes in a dose-dependent manner, attenuate astrogliosis and down-regulate the astrogliosis associated expression of nitric oxide synthase and interleukin-1β after the ischemia. All these changes were blocked by lactose, suggesting a lectin dependent manner of Gal-1's function. Moreover, 7-day Gal-1 treatment reduced apoptosis of neurons, decreased brain infarction volume and improved neurological function induced by the ischemia. Together, these findings indicate that through reducing astrogliosis related damages, Gal-1 is a potential therapeutical target for attenuating neuronal damage and promoting recovery of brain ischemia. 相似文献
7.
Resveratrol reduces infarct size and improves ventricular function after myocardial ischemia in rats 总被引:2,自引:0,他引:2
The purpose of this study was to investigate the effect of resveratrol, a polyphenol present in grapes and red wine, on ventricular remodeling after myocardial infarction (MI) in rats. After permanent ligation of the left anterior descending artery, surviving rats were randomly allocated to three groups and treated with 1 mg/kg/day resveratrol (R-1 group), 0.1 mg/kg/day resveratrol (R-0.1 group), or vehicles (control group) administered by intraperitoneal injection once daily for four weeks. We examined the effects of resveratrol by echocardiography, hemodynamic studies, histologic examinations, and real-time quantitative polymerase chain reaction. The R-1 group had significantly increased fractional shortening of the left ventricle, ameliorated left ventricular dilatation, reduced left ventricular end-diastolic pressure, and reduced infarct size. In contrast, the R-0.1 group experienced no beneficial effects on myocardial infarction. The R-1 group also had significantly attenuated expression of myocardial atrial natriuretic peptide and transforming growth factor-beta1 mRNAs. This study indicates that resveratrol is a potent cardioprotective agent in MI rats. Its cardioprotective effects may be due to a reduction of atrial natriuretic peptide and transforming growth factor-beta1, which are known to protect the heart from detrimental remodeling. 相似文献
8.
Yin M van der Horst IC van Melle JP Qian C van Gilst WH Silljé HH de Boer RA 《American journal of physiology. Heart and circulatory physiology》2011,301(2):H459-H468
Metformin is the first choice drug for the treatment of patients with diabetes, but its use is debated in patients with advanced cardiorenal disease. Epidemiological data suggest that metformin may reduce cardiac events, in patients both with and without heart failure. Experimental evidence suggests that metformin reduces cardiac ischemia-reperfusion injury. It is unknown whether metformin improves cardiac function (remodeling) in a long-term post-MI remodeling model. We therefore studied male, nondiabetic, Sprague-Dawley rats that were subjected to either myocardial infarction (MI) or sham operation. Animals were randomly allocated to treatment with normal water or metformin-containing water (250 mg·kg(-1)·day(-1)). At baseline, 6 wk, and 12 wk, metabolic parameters were analyzed and oral glucose tolerance tests (OGTT) were performed. Echocardiography and hemodynamic parameters were assessed 12 wk after MI. In the MI model, infarct size was significantly smaller after 12-wk metformin treatment (29.6 ± 3.2 vs. 38.0 ± 2.2%, P < 0.05). Moreover, metformin resulted in less left ventricular dilatation (6.0 ± 0.4 vs. 7.6 ± 0.6 mm, P < 0.05) and preservation of left ventricular ejection fraction (65.8 ± 3.7% vs. 48.6 ± 5.6%, P < 0.05) compared with MI control. The improved cardiac function was associated with decreased atrial natriuretic peptide mRNA levels in the metformin-treated group (50% reduction compared with MI, P < 0.05). Insulin resistance did not occur during cardiac remodeling (as indicated by normal OGTT) and fasting glucose levels and the pattern of the OGTT were not affected by metformin. Molecular analyses suggested that altered AMP kinase phosphorylation status and low insulin levels mediate the salutary effects of metformin. Altogether our results indicate that metformin may have potential to attenuate heart failure development after myocardial infarction, in the absence of diabetes and independent of systemic glucose levels. 相似文献
9.
Dai-Shi Tian Jun-Li Liu† Min-Jie Xie Yan Zhan Wen-Sheng Qu Zhi-Yuan Yu Zhou-Ping Tang Deng-Ji Pan Wei Wang 《Journal of neurochemistry》2009,109(6):1658-1667
Tamoxifen has been found to be neuroprotective in both transient and permanent experimental ischemic stroke. However, it remains unknown whether this agent shows a similar beneficial effect after spinal cord injury (SCI), and what are its underlying mechanisms. In this study, we investigated the efficacy of tamoxifen treatment in attenuating SCI-induced pathology. Blood–spinal cord barrier (BSCB) permeability, tissue edema formation, microglial activation, neuronal cell death and myelin loss were determined in rats subjected to spinal cord contusion. The results showed that tamoxifen, administered at 30 min post-injury, significantly decreased interleukin-1β (IL-1β) production induced by microglial activation, alleviated the amount of Evans blue leakage and edema formation. In addition, tamoxifen treatment clearly reduced the number of apoptotic neurons post-SCI. The myelin loss and the increase in production of myelin-associated axonal growth inhibitors were also found to be significantly attenuated at day 3 post-injury. Furthermore, rats treated with tamoxifen scored much higher on the locomotor rating scale after SCI than did vehicle-treated rats, suggesting improved functional outcome after SCI. Together, these results demonstrate that tamoxifen provides neuroprotective effects for treatment of SCI-related pathology and disability, and is therefore a potential neuroprotectant for human spinal cord injury therapy. 相似文献
10.
Li-Sheng Chu San-Hua Fang Yu Zhou Yuan-Jun Yin Wei-Yan Chen Jian-Hao Li Ji Sun Meng-Ling Wang Wei-Ping Zhang Er-Qing Wei 《Life sciences》2010,86(5-6):170-177
AimsWe previously reported that minocycline attenuates acute brain injury and inflammation after focal cerebral ischemia, and this is partly mediated by inhibition of 5-lipoxygenase (5-LOX) expression. Here, we determined the protective effect of minocycline on chronic ischemic brain injury and its relation with the inhibition of 5-LOX expression after focal cerebral ischemia.Main methodsFocal cerebral ischemia was induced by 90 min of middle cerebral artery occlusion followed by reperfusion for 36 days. Minocycline (45 mg/kg) was administered intraperitoneally 2 h and 12 h after ischemia and then every 12 h for 5 days. Sensorimotor function was evaluated 1–28 days after ischemia and cognitive function was determined 30–35 days after ischemia. Thereafter, infarct volume, neuron density, astrogliosis, and 5-LOX expression in the brain were determined.Key findingsMinocycline accelerated the recovery of sensorimotor and cognitive functions, attenuated the loss of neuron density, and inhibited astrogliosis in the boundary zone around the ischemic core, but did not affect infarct volume. Minocycline significantly inhibited the increased 5-LOX expression in the proliferated astrocytes in the boundary zone, and in the macrophages/microglia in the ischemic core.SignificanceMinocycline accelerates functional recovery in the chronic phase of focal cerebral ischemia, which may be partly associated with the reduction of 5-LOX expression. 相似文献
11.
In this study, we sought to determine whether there was any evidence for the idea that cardiac ATP-sensitive K+ (K(ATP)) channels play a role in the training-induced increase in the resistance of the heart to ischemia-reperfusion (I/R) injury. To do so, the effects of training and an K(ATP) channel blocker, glibenclamide (Glib), on the recovery of left ventricular (LV) contractile function after 45 min of ischemia and 45 min of reperfusion were examined. Female Sprague-Dawley rats were sedentary (Sed; n = 18) or were trained (Tr; n = 17) for >20 wk by treadmill running, and the hearts from these animals used in a Langendorff-perfused isovolumic LV preparation to assess contractile function. A significant increase in the amount of 72-kDa class of heat shock protein was observed in hearts isolated from Tr rats. The I/R protocol elicited significant and substantial decrements in LV developed pressure (LVDP), minimum pressure (MP), rate of pressure development, and rate of pressure decline and elevations in myocardial Ca(2+) content in both Sed and Tr hearts. In addition, I/R elicited a significant increase in LV diastolic stiffness in Sed, but not Tr, hearts. When administered in the perfusate, Glib (1 microM) elicited a normalization of all indexes of LV contractile function and reductions in myocardial Ca(2+) content in both Sed and Tr hearts. Training increased the functional sensitivity of the heart to Glib because LVDP and MP values normalized more quickly with Glib treatment in the Tr than the Sed group. The increased sensitivity of Tr hearts to Glib is a novel finding that may implicate a role for cardiac K(ATP) channels in the training-induced protection of the heart from I/R injury. 相似文献
12.
Coombes JS Powers SK Hamilton KL Demirel HA Shanely RA Zergeroglu MA Sen CK Packer L Ji LL 《American journal of physiology. Regulatory, integrative and comparative physiology》2000,279(6):R2149-R2155
The purpose of these experiments was to examine the effects of dietary antioxidant supplementation with vitamin E (VE) and alpha-lipoic acid (alpha-LA) on biochemical and physiological responses to in vivo myocardial ischemia-reperfusion (I-R) in aged rats. Male Fischer-334 rats (18 mo old) were assigned to either 1) a control diet (CON) or 2) a VE and alpha-LA supplemented diet (ANTIOX). After a 14-wk feeding period, animals in each group underwent an in vivo I-R protocol (25 min of myocardial ischemia and 15 min of reperfusion). During reperfusion, peak arterial pressure was significantly higher (P < 0.05) in ANTIOX animals compared with CON diet animals. I-R resulted in a significant increase (P < 0.05) in myocardial lipid peroxidation in CON diet animals but not in ANTIOX animals. Compared with ANTIOX animals, heart homogenates from CON animals experienced significantly less (P < 0.05) oxidative damage when exposed to five different in vitro radical producing systems. These data indicate that dietary supplementation with VE and alpha-LA protects the aged rat heart from I-R-induced lipid peroxidation by scavenging numerous reactive oxygen species. Importantly, this protection is associated with improved cardiac performance during reperfusion. 相似文献
13.
Molecular and Cellular Biochemistry - The aims of this study were to investigate the impact of caloric restriction (CR) on cardiac senescence in an animal model of diabetes and examine the signal... 相似文献
14.
15.
Martindale JJ Wall JA Martinez-Longoria DM Aryal P Rockman HA Guo Y Bolli R Glembotski CC 《The Journal of biological chemistry》2005,280(1):669-676
The mitogen-activated protein kinases (MAPK) have been the subject of many studies to identify signaling pathways that promote cell survival or death. In cultured cardiac myocytes, p38 MAPK promotes cell survival or death depending on whether it is activated by mitogen-activated protein kinase kinase 6 (MKK6) or MKK3, respectively. The objectives of the current study were to examine the effects of MKK6-mediated p38 activation in the heart in vivo. Accordingly, we generated transgenic (TG) mice that overexpress wild type MKK6 in a cardiac-restricted manner. Although p38 was about 17-fold more active in TG than non-transgenic (NTG) mouse hearts, TG mouse hearts were morphologically and functionally similar to those of NTG littermates. However, upon transient ischemia followed by reperfusion, the MKK6 TG mouse hearts exhibited significantly better functional recovery and less injury than NTG mouse hearts. Because MKK6 increases levels of the protective small heat shock protein, alpha B-crystallin (alpha BC), in cultured cardiac myocytes, we examined alpha BC levels in the mouse hearts. The level of alpha BC was 2-fold higher in MKK6 TG than NTG mouse hearts. Moreover, ischemia followed by reperfusion induced a 6.4-fold increase in alpha BC levels in the mitochondrial fractions of TG mouse hearts but no increase in alpha BC levels in any of the other fractions analyzed. These alterations in alpha BC expression and localization suggest possible mechanisms of cardioprotection in MKK6 TG mouse hearts. 相似文献
16.
Numerous strategies have been managed to improve functional recovery after spinal cord injury (SCI) but an optimal strategy doesn't exist yet. Actually, it is the complexity of the injured spinal cord pathophysiology that begets the multifactorial approaches assessed to favour tissue protection, axonal regrowth and functional recovery. In this context, it appears that mesenchymal stem cells (MSCs) could take an interesting part. The aim of this study is to graft MSCs after a spinal cord compression injury in adult rat to assess their effect on functional recovery and to highlight their mechanisms of action. We found that in intravenously grafted animals, MSCs induce, as early as 1 week after the graft, an improvement of their open field and grid navigation scores compared to control animals. At the histological analysis of their dissected spinal cord, no MSCs were found within the host despite their BrdU labelling performed before the graft, whatever the delay observed: 7, 14 or 21 days. However, a cytokine array performed on spinal cord extracts 3 days after MSC graft reveals a significant increase of NGF expression in the injured tissue. Also, a significant tissue sparing effect of MSC graft was observed. Finally, we also show that MSCs promote vascularisation, as the density of blood vessels within the lesioned area was higher in grafted rats. In conclusion, we bring here some new evidences that MSCs most likely act throughout their secretions and not via their own integration/differentiation within the host tissue. 相似文献
17.
Deborah L Carlson David L Maass Jean White Patricia Sikes Jureta W Horton 《Journal of applied physiology》2007,103(1):323-330
In the heart, thermal injury activates a group of intracellular cysteine proteases known as caspases, which have been suggested to contribute to myocyte inflammation and dyshomeostasis. In this study, Sprague-Dawley rats were given either a third-degree burn over 40% total body surface area plus conventional fluid resuscitation or sham burn injury. Experimental groups included 1) sham burn given vehicle, 400 microl DMSO; 2) sham burn given Q-VD-OPh (6 mg/kg), a highly specific and stable caspase inhibitor, 24 and 1 h prior to sham burn; 3) burn given vehicle, DMSO as above; 4) burn given Q-VD-OPh (6 mg/kg) 24 and 1 h prior to burn. Twenty-four hours postburn, hearts were harvested and studied with regard to myocardial intracellular sodium concentration, intracellular pH, ATP, and phosphocreatine (23Na/31P nuclear magnetic resonance); myocardial caspase-1, -3,and -8 expression; myocyte Na+ (fluorescent indicator, sodium-binding benzofurzan isophthalate); myocyte secretion of TNF-alpha, IL-1beta, IL-6, and IL-10; and myocardial performance (Langendorff). Burn injury treated with vehicle alone produced increased myocardial expression of caspase-1, -3, and -8, myocyte Na+ loading, cytokine secretion, and myocardial contractile depression; cellular pH, ATP, and phosphocreatine were stable. Q-VD-OPh treatment in burned rats attenuated myocardial caspase expression, prevented burn-related myocardial Na+ loading, attenuated myocyte cytokine responses, and improved myocardial contraction and relaxation. The present data suggest that signaling through myocardial caspases plays a pivotal role in burn-related myocyte sodium dyshomeostasis and myocyte inflammation, perhaps contributing to burn-related contractile dysfunction. 相似文献
18.
Jung KH Chu K Lee ST Sunwoo JS Park DK Kim JH Kim S Lee SK Kim M Roh JK 《Biochemical and biophysical research communications》2010,403(1):66-80
Our data have shown that nitrite therapy can rescue the ischemic brain when injected <3 h after cerebral ischemic-reperfusion (I/R) injury and its effects can be prolonged to 4.5 h in combination with memantine. We investigated whether or not long-term nitrite therapy is beneficial in ischemic brains. Sodium nitrite (1-100 μg/kg ip) or saline were administered to rats subjected to focal I/R injury for 7 days beginning 24 h after I/R. Behavioral tests for 5 weeks revealed better functional recovery in the high-dose nitrite group than the control group. Other nitrite groups with relatively low doses showed no functional benefits. Hemispheric atrophy was attenuated by approximately 30% in the high-dose nitrite group. High-dose nitrite therapy also reduced inflammatory cytokine levels and caspase activity in the subacute period, and increased BrdU+MAP2+ and BrdU+laminin+ cells, and vascular density in the 5-week ischemic brain. Long-term nitrite therapy, when initiated 24 h after I/R, corrected the subacute hostile environment, induced tissue and vascular regeneration, and improved functional recovery. Early and subsequent long term nitrite therapy may be effective in the management for ischemic stroke patients. 相似文献
19.
O. I. Pisarenko V. S. Shulzhenko I. M. Studneva 《Biochemistry (Moscow) Supplemental Series B: Biomedical Chemistry》2009,3(3):289-294
The effect of myosin ATPase inhibitor, 2,3-butanedione monoxime (BDM) used in the range of concentrations 1.25–10.0 mM), on recovery of functions of isolated rat heart subjected to normothermic (37 °C) total ischemia for 35 min has been investigated. BDM perfusion was performed at a flow rate of 4 ml/min during 5 min before ischemia (BDM-I) or before 25-min reperfusion (BDM-R). Control hearts were perfused with Krebs solution at the same flow rate. The highest functional recovery of heart and coronary vessels was observed during infusion of 2.5 mM BDM before ischemia. At the end of reperfusion ATP and phosphocreatine (PCr) content in hearts of this group was significantly higher whereas the level of lactate was two times lower than in control; total creatine content (ΣCr) did not differ from the initial level. Similar but less pronounced changes in the improvement of aerobic metabolism and maintenance of ΣCr after reperfusion were also observed in the case of infusion of 2.5 mM BDM before reperfusion. They were consistent with reduced recovery of functions of heart and coronary flow compared with these parameters observed in the BDM-I group. 2.5 mM BDM caused almost 2-fold decrease in release of cardiac lactate dehydrogenase into myocardial perfusate in the BDM-I and BDM-R groups (compared with control); this suggests lower damage of cell membranes. These results suggest that improvement of energy supply of postischemic cardiomyocytes may be a key factor determining cardioprotector effectiveness of short-term administration of BDM before ischemia. 相似文献
20.
I. Andrade Ferreira M. Schutte E. Oosterloo W. Dekker B. W. Mooi J. H. E. Dambrink A. W. J. van ’t Hof 《Netherlands heart journal》2009,17(10):378-384
Purpose. Therapeutic mild hypothermia (TMH) is indicated for comatose survivors of an out-ofhospital cardiac arrest (OHCA) to improve general outcome. Although widely used, there are not many reports on its use on a critical care unit (CCU) or on the comparison of cooling methods. Methods. In a retrospective analysis covering January 2005 to December 2006, 75 consecutive comatose subjects post-OHCA due to ventricular fibrillation and nonventricular fibrillation rhythms (asystole/pulseless electrical activity) were studied in a single tertiary PCI centre. Subjects treated with conventional post-resuscitation care without TMH served as controls (n=26; Jan 2005–Sep 2005). Outcome from controls at hospital discharge was compared with subjects treated with TMH (n=49; Oct 2005–Dec 2006). During the study period, TMH was induced by either external (n=25; Oct 2005–Feb 2006) or endovascular (n=24; Mar 2006–Dec 2006) approach. Results. Besides more females in the control group, there were no major differences in baseline characteristics present between all groups. TMH improved survival (OR 0.36 [0.13–0.95], p<0.05) and neurological outcome (OR 0.23 [0.07–0.70], p<0.01). After subanalysis, TMH-improved outcome did not differ between the two cooling methods used. However, the times to reach TMH and normothermia were shorter with the endovascular approach. Conclusion. TMH induced on a CCU improves survival and neurological outcome after post-OHCA coma. TMH by endovascular approach was more feasible compared with external cooling, but the two cooling methods did not result in a different outcome. (Neth Heart J 2009;17:378–84.) 相似文献