首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的:分析急性缺血性脑卒中患者入院时血浆脑钠肽(BNP)水平与缺血性脑卒中梗死部位的关系。方法:随机入选88例急性缺血性脑卒中患者,按梗死部位,将其分为前循环病灶组(66名)和后循环病灶组(22名)两组进行比较。测定入院时血浆脑钠肽(BNP)水平进行比较。两组脑卒中病人的危险因素血糖、糖化血红蛋白、血脂全套,肝肾功能分析对比,并将急性缺血性脑卒中患者梗死部位相关的多个变量采用单因素logistic回归分析。结果:前循环病灶组血浆脑利钠肽水平的中位数是225.90 pg/mL,四分位数间距为596.00 pg/mL;后循环病灶组的中位数是750.95 pg/mL,四分位数间距为907.00 pg/mL。后循环病灶组血浆脑利钠肽水平要显著高于前循环病灶组血浆脑利钠肽水平,两个部位间入院时的脑利钠肽水平有统计学差异(P=0.004)。通过入院时脑利钠肽水平与缺血性脑卒中梗死部位的关系的ROC曲线,得出截点299.50 pg/mL。入院时血浆脑利钠肽水平≥299.50 pg/mL可以作为后循环病灶组的预测指标,其敏感性72.72%,特异性62.12%。结论:急性缺血性脑卒中患者入院时血浆BNP水平可作为急性期区别前后循环脑梗死的预测因子。  相似文献   

2.
The brain glutamate system in liver failure   总被引:4,自引:0,他引:4  
Liver failure results in significant alterations of the brain glutamate system. Ammonia and the astrocyte play major roles in such alterations, which affect several components of the brain glutamate system, namely its synthesis, intercellular transport (uptake and release), and function. In addition to the neurological symptoms of hepatic encephalopathy, modified glutamatergic regulation may contribute to other cerebral complications of liver failure, such as brain edema, intracranial hypertension and changes in cerebral blood flow. A better understanding of the cause and precise nature of the alterations of the brain glutamate system in liver failure could lead to new therapeutic avenues for the cerebral complications of liver disease.  相似文献   

3.
4.
5.
Increased function of the central neurons results in increased neuronal metabolism and, as a consequence, increased concentration of metabolic end-products (H+, K+, adenosin) results in an increased cerebral blood flow (CBF). There is a general agreement among investigators that products of cerebral tissue metabolism as well as chemical stimuli are key factors that determine the rate of blood flow in the brain. CBF, however, may increase out of proportion to metabolic demands, may increase without significant change in local metabolism, and may increase much faster than the accumulation of the metabolic end-products. Therefore, the 100-year-old metabolic hypothesis of Roy and Sherrington, cannot fully explain the increases of CBF during increased functional activity of the central neurons. The tight coupling of neuronal activity and blood flow in the brain is demonstrated by a large amount of data. Therefore, the likelihood exists that neurogenic stimuli via perivascular nerve endings may act as rapid initiators, to induce a moment-to-moment dynamic adjustment of CBF to the metabolic demands, and further maintenance of these adjusted parameters is ensured by the metabolic and chemical factors. Perivascular nerve endings were identified in the outer smooth muscle layer of the cerebral arteries, arterioles and veins. Their axonterminals contain a large variety of neurotransmitters, often co-localised in synaptic vesicles. Stimulation of the nerves results in a release of transmitters into the narrow neuromuscular synaptic clefts in the cerebrovascular smooth muscle, close to specific receptor sites in the vessel wall. In spite of these facts, however, and in spite of the large number of new experimental evidences, the role of the nervous control of the cerebrovascular system is underestimated both in medical textbooks and in the common medical knowledge since decades. In the last 20 years major advances have been made that make it necessary to revise this false view. The purpose of this review is to facilitate this process at the end of this century, when the importance of the nervous control of the cerebral circulation has been fully appreciated among investigators.  相似文献   

6.
Intrauterine growth restriction (IUGR) due to placental insufficiency is associated with blood flow redistribution in order to maintain delivery of oxygenated blood to the brain. Given that, in the fetus the aortic isthmus (AoI) is a key arterial connection between the cerebral and placental circulations, quantifying AoI blood flow has been proposed to assess this brain sparing effect in clinical practice. While numerous clinical studies have studied this parameter, fundamental understanding of its determinant factors and its quantitative relation with other aspects of haemodynamic remodeling has been limited. Computational models of the cardiovascular circulation have been proposed for exactly this purpose since they allow both for studying the contributions from isolated parameters as well as estimating properties that cannot be directly assessed from clinical measurements. Therefore, a computational model of the fetal circulation was developed, including the key elements related to fetal blood redistribution and using measured cardiac outflow profiles to allow personalization. The model was first calibrated using patient-specific Doppler data from a healthy fetus. Next, in order to understand the contributions of the main parameters determining blood redistribution, AoI and middle cerebral artery (MCA) flow changes were studied by variation of cerebral and peripheral-placental resistances. Finally, to study how this affects an individual fetus, the model was fitted to three IUGR cases with different degrees of severity. In conclusion, the proposed computational model provides a good approximation to assess blood flow changes in the fetal circulation. The results support that while MCA flow is mainly determined by a fall in brain resistance, the AoI is influenced by a balance between increased peripheral-placental and decreased cerebral resistances. Personalizing the model allows for quantifying the balance between cerebral and peripheral-placental remodeling, thus providing potentially novel information to aid clinical follow up.  相似文献   

7.
In this study, we use dual‐wavelength optical imaging‐based laser speckle technique to assess cerebral blood flow and metabolic parameters in a mouse model of acute hyperglycemia (high blood glucose). The effect of acute glucose levels on physiological processes has been extensively described in multiple organ systems such as retina, kidney, and others. We postulated that hyperglycemia also alters brain function, which in turn can be monitored optically using dual‐wavelength laser speckle imaging (DW‐LSI) platform. DW‐LSI is a wide‐field, noncontact optical imaging modality that integrates the principles of laser flowmetry and oximetry to obtain macroscopic information such as hemoglobin concentration and blood flow. A total of eight mice (C57/BL6) were used, randomized into two groups of normoglycemia (control, n = 3) and hyperglycemia (n = 5). Hyperglycemia was induced by intraperitoneal injection of a commonly used anesthetic drug combining ketamine and xylazine (KX combo). We found that this KX combo increases blood glucose (BG) levels from 150 to 350 mg/dL, approximately, when measured 18 minutes post‐administration. BG continues to increase throughout the test period, with BG reaching an average of 463 ± 20.34 mg/dL within 60 minutes. BG levels were measured every 10 minutes from tail blood using commercially available glucometer. Experimental results demonstrated reductions in cerebral blood flow (CBF) by 55%, tissue oxygen saturation (SO2) by 15%, and cerebral metabolic rate of oxygen (CMRO2) by 75% following acute hyperglycemia. The observed decrease in these parameters was consistent with results reported in the literature, measured by a variety of experimental techniques. Measurements with laser Doppler flowmetry (LDF) were also performed which confirmed a reduction in CBF following acute hyperglycemia. In summary, our findings indicate that acute hyperglycemia modified brain hemodynamic response and induced significant changes in blood flow and metabolism. As far as we are aware, the implementation of the DW‐LSI to monitor brain hemodynamic and metabolic response to acute hyperglycemia in intact mouse brain has not been previously reported.   相似文献   

8.
Atrial natriuretic peptide (ANP) was originally isolated from cardiac atria, and has potent natriuretic, diuretic, and vasorelaxant properties. It has been localized in neurons and astrocytes in the cerebral cortex and the white matter. We hypothesize that glial ANP may contribute to the regulation of cerebral blood flow in brain infarction. In order to elucidate this possible role, the immunohistochemistry of ANP was studied in cases of brain infarction and in other cases of brain trauma for comparison. A statistically significant increase in the number of ANP-immunoreactive glial cells (mainly astrocytes) was observed in the white matter surrounding the brain infarction compared with the intact area. No statistically significant increase in ANP-immunoreactive glial cell number was observed in the cerebral white matter from brain haemorrhage, contusion and control cases. Our results indicate that glial ANP may increase in number in brain infarction, and that it may be involved in the regulation of the cerebral blood flow in the infarcted area.  相似文献   

9.
1. We review the biochemical and molecular changes in brain with developing cerebral infarction, based on recent findings in experimental focal cerebral ischemia.2. Occlusion of a cerebral artery produces focal ischemia with a gradual decline of blood flow, differentiating a severely ischemic core where infarct develops rapidly and an area peripheral to the core where the blood flow reduction is moderate (called penumbra). Neuronal injury in the penumbra is essentially reversible but only for several hours. The penumbra area tolerates a longer duration of ischemia than the core and may be salvageable by pharmacological agents such as glutamate antagonists or prompt reperfusion.3. Upon reperfusion, brain cells alter their genomic properties so that protein synthesis becomes restricted to a small number of proteins such as stress proteins. Induction of the stress response is considered to be a rescue program to help to mitigate neuronal injury and to endow the cells with resistance to subsequent ischemic stress. The challenge now is to determine how the neuroprotection conferred by prior sublethal ischemia is achieved so that rational strategies can be developed to detect and manipulate gene expression in brain cells vulnerable to ischemia.4. Expansion of infarction may be caused by an apoptotic mechanism. Investigation of apoptosis may also help in designing novel molecular strategies to prevent ischemic cell death.5. Ischemia/reperfusion injury is accompanied by inflammatory reactions induced by neutrophils and monocytes/macrophages infiltrated and accumulated in ischemic areas. When the role of the inflammatory/immune systems in ischemic brain injury is revealed, new therapeutic targets and agents will emerge to complement and synergize with pharmacological intervention directed against glutamate and Ca2+ neurotoxicity.  相似文献   

10.
2型糖尿病可能加重颈动脉斑块的易损性并增加缺血性中风的风险,关于2型糖尿病患者伴有颈动脉斑块特征的急性中风亚型鲜有研究报道。本研究旨在探讨2型糖尿病患者颈动脉斑块特征与MRI确定的急性脑梗死病变特征之间的关系。本研究以颈内动脉区急性脑血管病患者为研究对象,所有患者分为2型糖尿病组和非2型糖尿病组,分别行颈动脉和脑部MRI扫描,测定同侧颈动脉斑块的形态和特征,以及颅内和颅外颈动脉狭窄。基于中风亚型和急性脑梗塞病变模式对患者进行评估。研究结果表明,与非2型糖尿病患者相比,2型糖尿病患者颈动脉型IV-VI病变的患病率更高,斑块负荷更大,以及富脂质坏死核(LRNC)更大。在有症状的颈动脉LRNC患者中,与非2型糖尿病组相比,2型糖尿病组颈内动脉区出现较多的伴有大穿孔动脉梗塞形态和较大的急性脑梗塞。LRNC%>23.5%的颈动脉斑块是2型糖尿病患者存在颈动脉狭窄的急性脑梗塞病变的独立危险因素。颈动脉斑块特征的量化,尤其是MRI诊断的富脂质坏死核对中风风险具有潜在应用价值。  相似文献   

11.
In patients with acute liver failure (ALF), hyperammonemia is related to development of cerebral edema and herniation. The present review discusses the mechanisms for the cerebral uptake of ammonia. A mathematical framework is provided to allow a quantitative examination of whether published studies can be explained by the conventional view that cerebral uptake of ammonia is restricted to diffusion of the unprotonated form (NH(3)) (the diffusion hypothesis). An increase in cerebral blood flow (CBF) enhanced ammonia uptake more than expected, possibly due to recruitment or heterogeneity of brain capillaries. Reported effects of pH on ammonia uptake were in the direction predicted by the diffusion hypothesis, but often less pronounced than expected. The published effects of mannitol, cooling, and indomethacin in experimental animals and patients were difficult to explain by the diffusion hypothesis alone, unless dramatic changes of capillary surface area or permeability for ammonia were induced. Therefore we considered the possible role of membrane protein mediated transport of NH(4)(+) across the blood-brain barrier (BBB). Early tracer studies in Rhesus monkeys suggested that NH(4)(+) is responsible for 20% or even more of the transport of ammonia from plasma to brain. In other locations, such as in the thick ascending limb of Hendle's loop and in isolated astrocytes, transport protein mediated translocation of NH(4)(+) is predominant. Many of the ion-transporters involved in renal NH(4)(+) reabsorbtion are also present in brain capillary membranes and could mediate uptake of NH(4)(+). Astrocytic uptake of NH(4)(+) is associated with increased extracellular K(+), which is a potent cerebral vasodilator. Such interference between transport of NH(4)(+) and other cations could be clinically important because increased cerebral blood flow often precedes cerebral herniation in acute liver failure. We suggest that protein mediated transport of NH(4)(+) through the brain capillary wall is a realistic possibility that should be more intensely studied.  相似文献   

12.
Progress in experimental stroke and translational medicine could be accelerated by high-resolution in vivo imaging of disease progression in the mouse cortex. Here, we introduce optical microscopic methods that monitor brain injury progression using intrinsic optical scattering properties of cortical tissue. A multi-parametric Optical Coherence Tomography (OCT) platform for longitudinal imaging of ischemic stroke in mice, through thinned-skull, reinforced cranial window surgical preparations, is described. In the acute stages, the spatiotemporal interplay between hemodynamics and cell viability, a key determinant of pathogenesis, was imaged. In acute stroke, microscopic biomarkers for eventual infarction, including capillary non-perfusion, cerebral blood flow deficiency, altered cellular scattering, and impaired autoregulation of cerebral blood flow, were quantified and correlated with histology. Additionally, longitudinal microscopy revealed remodeling and flow recovery after one week of chronic stroke. Intrinsic scattering properties serve as reporters of acute cellular and vascular injury and recovery in experimental stroke. Multi-parametric OCT represents a robust in vivo imaging platform to comprehensively investigate these properties.  相似文献   

13.
Cerebral tissues possess highly selective and dynamic protection known as blood brain barrier (BBB) that regulates brain homeostasis and provides protection against invading pathogens and various chemicals including drug molecules. Such natural protection strictly monitors entry of drug molecules often required for the management of several diseases and disorders including cerebral vascular and neurological disorders. However, in recent times, the ischemic cerebrovascular disease and clinical manifestation of acute arterial thrombosis are the most common causes of mortality and morbidity worldwide. The management of cerebral Ischemia requires immediate infusion of external thrombolytic into systemic circulation and must cross the blood brain barrier. The major challenge with available thrombolytic is their poor affinity towards the blood brain barrier and cerebral tissue subsequently. In the clinical practice, a high dose of thrombolytic often prescribed to deliver drugs across the blood brain barrier which results in drug dependent toxicity leading to damage of neuronal tissues. In recent times, more emphasis was given to utilize blood brain barrier transport mechanism to deliver drugs in neuronal tissue. The blood brain barrier expresses a series of receptor on membrane became an ideal target for selective drug delivery. In this review, the author has given more emphasis molecular biology of receptor on blood brain barrier and their potential as a carrier for drug molecules to cerebral tissues. Further, the use of nanoscale design and real-time monitoring for developed therapeutic to encounter drug dependent toxicity has been reviewed in this study.KEY WORDS: blood brain barrier (BBB), cerebral ischemic disorders, drug delivery, earthworm protease, neurodegenerative disorder, thrombolytic  相似文献   

14.
The cerebral vasculature is a target tissue for sex steroid hormones. Estrogens, androgens, and progestins all influence the function and pathophysiology of the cerebral circulation. Estrogen decreases cerebral vascular tone and increases cerebral blood flow by enhancing endothelial-derived nitric oxide and prostacyclin pathways. Testosterone has opposite effects, increasing cerebral artery tone. Cerebrovascular inflammation is suppressed by estrogen but increased by testosterone and progesterone. Evidence suggests that sex steroids also modulate blood-brain barrier permeability. Estrogen has important protective effects on cerebral endothelial cells by increasing mitochondrial efficiency, decreasing free radical production, promoting cell survival, and stimulating angiogenesis. Although much has been learned regarding hormonal effects on brain blood vessels, most studies involve young, healthy animals. It is becoming apparent that hormonal effects may be modified by aging or disease states such as diabetes. Furthermore, effects of testosterone are complicated because this steroid is also converted to estrogen, systemically and possibly within the vessels themselves. Elucidating the impact of sex steroids on the cerebral vasculature is important for understanding male-female differences in stroke and conditions such as menstrual migraine and preeclampsia-related cerebral edema in pregnancy. Cerebrovascular effects of sex steroids also need to be considered in untangling current controversies regarding consequences of hormone replacement therapies and steroid abuse.  相似文献   

15.
1. The original concept of the ischemic penumbra surrounding a focus of dense cerebral ischemia is based on electrophysiological observations. In the cortex of baboons following middle cerebral artery occlusion, complete failure of the cortical evoked potential was observed at a cerebral blood flow (CBF) threshold level of approx. 0.15 ml/g/min—a level at which extracellular potassium ion activity was only mildly elevated. With a greater CBF decrement to the range of 0.06–0.10 ml/g/min, massive increases in extracellular potassium occurred and were associated with complete tissue infarction. Thus, the ischemic penumbra has been conceptualized as a region in which CBF reduction has exceeded the threshold for failure of electrical function but not that for membrane failure.2. Recent studies demonstrate that the penumbra as defined classically by the flow thresholds does not survive prolonged periods of ischemia. The correlation of CBF autoradiograms with diffusion-weighted MR images and the regional distribution of cerebral metabolites reveals that the ischemic core region enlarges when adjacent, formerly penumbral, areas undergo irreversible deterioration during the initial hours of vascular occlusion. At the same time, the residual penumbra becomes restricted to the periphery of the ischemic territory, and its fate may depend critically upon early therapeutic intervention.3. In the border zone of brain infarcts, marked uncoupling of local CBF and glucose utilization is consistently observed. The correlation with electrophysiological measurements shows that metabolism-flow uncoupling is associated with sustained deflections of the direct current (DC) potential resembling transient depolarizations. Such penumbral cell depolarizations, which are associated with an increased metabolic workload, induce episodes of tissue hypoxia due to the constrained collateral flow, stimulate anaerobic glycolysis leading to lactacidosis, suppress protein synthesis, and, finally, compromise energy metabolism. The frequency of their occurrence correlates with the final volume of ischemic injury. Therefore, penumbral depolarizations are regarded as a key event in the pathogenesis of ischemic brain injury. Periinfarct DC deflections can be suppressed by NMDA and non-NMDA antagonists, resulting in a significant reduction of infarct size.4. The histopathological sequelae within the penumbra consist of various degrees of scattered neuronal injury, also termed incomplete infarction. The reduction of neuronal density at the infarct border is a flow- and time-dependent event which is accompanied by an early response of glial cells. As early as 3 hr after vascular occlusion a generalized microglial activation can be detected throughout the ipsilateral cortex. Astrocytic activation is observed in the intact parts of the ischemic hemisphere from 6 hr postocclusion onward. Thus, the penumbra is a spatially dynamic brain region of limited viability which is characterized by complex pathophysiological changes involving neuronal function as well as glial activation in response to local ischemic injury.  相似文献   

16.
During the recent 25-30 years, sophisticated experiments and mathematical simulation significantly changed the generally accepted theory of oxygen transport in tissue, which was based on two major postulates, namely: 1) Blood flows in capillaries continuously at uniform velocity, 2) Gas circulation between blood and tissue takes place exclusively in capillaries. As was shown by modern research techniques, blood flow in microvessels has irregular sharp velocity fluctuations in very short time intervals (seconds). In addition, mean velocity of blood flow in microvessels of the same caliber and the same micro-region of tissue may differ several times. Therefore, efficiency of microcirculation reactions may be assessed exclusively witH mean blood velocity in capillaries of the whole micro-region, and with complicated changes of the histogram of mean velocity distribution in capillaries. It was shown that arteriolas and venulas of inactive muscles and brain account for 30 to 50% of gas circulation between blood and tissue. This resulted in fundamental change of the previous postulates in the area of tissue gas circulation physiology, and, in effect, in replacement of oxygen transport paradigm created by A. Krog. This study is an attempt to present a new modern concept of oxygen transport in tissue, to show its research significance, and possible applications.  相似文献   

17.
Effects of a stable analogue of thyrotrophin-releasing hormone, RX77368, on cerebral blood flow and infarct size have been studied in an acute model of cerebral ischaemia in the rat. Two hours after electrocoagulation of the left middle cerebral artery (MCA), the mean area of ischaemia (+/- SEM), determined histochemically, was 11.5 +/- 2.2% of a single hemisphere and blood flow, determined using radiolabelled microspheres, was reduced by 40% in the left forebrain (p less than 0.001 compared with sham-operated animals). Administration of RX77368 (50 micrograms/kg, intracerebroventricularly) within 10 min of arterial occlusion caused a significant (p less than 0.01) reduction in mean lesion size to 3.7 +/- 1.8% and stimulation of blood flow to the left ischaemic forebrain (60% above saline treated). Peripheral administration of RX77368 (1 mg/kg intraperitoneally) also significantly stimulated blood flow to the ischaemic forebrain and caused an apparent decrease in frequency of large infarcted areas of brain tissue, although mean lesion size was not significantly affected. These findings indicate that RX77368 ameliorates tissue damage in acute focal cerebral ischaemia. Such effects may be related to stimulation of cerebral blood flow.  相似文献   

18.
The amyloid-beta (A beta) peptide, which is derived from the amyloid precursor protein (APP), is involved in the pathogenesis of Alzheimer's dementia and impairs endothelium-dependent vasodilation in cerebral vessels. We investigated whether cerebrovascular autoregulation, i.e., the ability of the cerebral circulation to maintain flow in the face of changes in mean arterial pressure (MAP), is impaired in transgenic mice that overexpress APP and A beta. Neocortical cerebral blood flow (CBF) was monitored by laser-Doppler flowmetry in anesthetized APP(+) and APP(-) mice. MAP was elevated by intravenous infusion of phenylephrine and reduced by controlled exsanguination. In APP(-) mice, autoregulation was preserved. However, in APP(+) mice, autoregulation was markedly disrupted. The magnitude of the disruption was linearly related to brain A beta concentration. The failure of autoregulation was paralleled by impairment of the CBF response to endothelium-dependent vasodilators. Thus A beta disrupts a critical homeostatic mechanism of the cerebral circulation and renders CBF highly dependent on MAP. The resulting alterations in cerebral perfusion may play a role in the brain dysfunction and periventricular white-matter changes associated with Alzheimer's dementia.  相似文献   

19.
The effect of CO2 on the cerebral circulation was assessed 24 hours after induction of unilateral brain infarction performed in the rat by injecting radioactive calibrated 50 microns microspheres into the internal carotid artery. The intracerebral distribution of microspheres and regional cerebral blood flow were measured bilaterally in 8 brain regions. In control rats, increase in arterial pCO2 to about 80 mm Hg resulted in 30 to 100% increase in flow according to the area. Cerebral blood flow was also enhanced in the embolized rats, the basal values being multiplied by a factor 1.7 in the embolized hemisphere and by a factor 1.8 in the contralateral hemisphere. These results do not provide evidence for the existence of a "steal" phenomenon between the non infarcted and infarcted hemispheres.  相似文献   

20.
The effect of irradiation of the central nervous system by microwaves (MW) at a frequency of 2450 MHz and power 5-40 W on the regulation of cerebral circulation and oxygen supply to the nervous tissue were studied in rabbits. Local irradiation of the exposed cerebral cortex resulted in hyperemia and hyperoxia in the zone of exposure induced by the hyperthermal effect of MW. When the region of the medulla oblongata was irradiated even with low MW power (not leading to hyperthermia), the local circulation and oxygen tension increased in the whole brain, apparently due to the impairment of the regulation of the cerebral blood flow and oxygen supply to the brain tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号