首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M. M. Moloney  P. E. Pilet 《Planta》1981,153(5):447-452
Auxin binding onto membrane fractions of primary roots of maize seedlings has been demonstrated using naphth-1yl-acetic acid (NAA) and indol-3yl-acetic acid (IAA) as ligands. This binding is compared with the already well characterized interaction between auxins and coleoptile membranes. The results indicate that while kinetic parameters are of the same order for root and coleoptile binding, a number of differences occur with respect to location in cells and relative affinity. The possible significance of the existence of such binding sites in root cells is discussed in relation to auxin action.Abbreviations 4-Cl-PA 4-chlorophenoxyacetic acid - EDTA ethylene diamine tetracetic acid - IAA indol-3yl-acetic acid - MCPA 2-methyl-4-chlorophenoxyacetic acid - NAA naphth-1yl-acetic acid - 2-NAA naphth-2yl-acetic acid - Tris 2-amino-2-(hydroxymethyl) propane-1,3 diol - TIBA 2,3,5 triiodobenzoic acid - NPA naphthylphthalamic acid - PCIB 4-chlorophenoxyisobutyric acid - PCPP 4-chlorophenoxyisopropionic acid - 2,4-D 2,4-dichlorophenoxyacetic acid  相似文献   

2.
The endogenous indol-3yl-acetic acid (IAA) of detipped apical segments from roots of maize (cv ORLA) was greatly reduced by an exodiffusion technique which depended upon the preferential acropetal transport of the phytohormone into buffered agar. When IAA was applied to the basal cut ends of freshly prepared root segments only growth inhibitions were demonstrable but after the endogenous auxin concentration had been reduced by the exodiffusion technique it became possible to stimulate growth by IAA application. The implications of the interaction between exogenous and endogenous IAA in the control of root segment growth are discussed with special reference to the role of endogenous IAA in the regulation of root growth and geotropism.Abbreviations IAA indol-3yl-acetic acid - GC-MS gas chromatography-mass spectrometry  相似文献   

3.
Treatment of bean cuttings with 4-chlororesorcinol (4-CR), known to increase the number of roots and extend their distribution, prevented the accumulation of free indol-3-yl-acetic acid (IAA) in the hypocotyls within 24 h after cutting preparation. In mung bean there was no change in the distribution (upper half vs. 1 ower half of the hypocotyl) of IAA within the hypocotyl as a result of the treatment. In bean cuttings the treatment with 4-CR prevented the accumulation of IAA in the bottom of the cutting. Oxidation of IAA as a measure of IAA oxidase activity in bean was enhanced appreciably by 4-chlororesorcinol. The level of abscisic acid in mung bean, on the other hand, remained 3–4 fold higher than in the control, yet still about 50% lower than the zero time level. In untreated mung bean cuttings the activity of peroxidase increased after cutting preparation. In contrast, the activity of peroxidase in 4-Cr-treated cuttings was consistently lower. In order to relate to the effect of exogenously applied auxin the level of peroxidase was measured also in indol-3-yl-butyric acid-treated cuttings. The overall peroxidase activity in IBA-treated cuttings was not affected. However, when assaying for the different isozymes the drop in peroxidase activity was most evident in the inducible basic isoperoxidases both in 4-CR and IBA treatments. It appears that the exposure to 4-CR exerts an effect that is similar to that of exogenously applied auxin, affecting the activity of basic peroxidases and enhancing the oxidation of endogenous IAA, thus allowing the organization of the primordia.Abbreviations ABA - abscisic acid - 4-CR - 4-chlororesorcinol - IAA - indol-3-yl-acetic acid - IBA - indol-3-yl-butyric acid  相似文献   

4.
The effect of continuous exposure to indol-3-yl acetic acid(IAA) on primordium initiation and their subsequent emergenceas lateral roots was determined in excised and attached rootsof Pisum sativum. IAA was found to stimulate the number of primordiainitiated per centimetre of attached or excised primary. Similarly,lateral emergence in terms of the number produced per centimetreof primary was promoted in the presence of IAA. This stimulationof lateral emergence even took place in excised roots whichwere 1 cm in length at the onset of culture and which neverproduced secondary roots over a 6-d culture period when grownin the absence of auxin. These effects of IAA on lateral rootdevelopment have been considered in relation to the concurrentchanges which take place in proliferative activity in the apicalmeristem of the primary root during exposure to auxin. Pisum sativum, garden pea, anlage, primordium, emerged lateral, cell proliferation, indol-3-yl acetic acid  相似文献   

5.
Correlatively inhibited pea shoots (Pisum sativum L.) did not transport apically applied 14C-labelled indol-3yl-acetic acid ([14C]IAA), and polar IAA transport did not occur in internodal segments cut from these shoots. Polar transport in shoots and segments recovered within 24 h of removing the dominant shoot apex. Decapitation of growing shoots also resulted in the loss of polar transport in segments from internodes subtending the apex. This loss was prevented by apical applications of unlabelled IAA, or by low temperatures (approx. 2° C) after decapitation. Rates of net uptake of [14C]IAA by 2-mm segments cut from subordinate or decapitated shoots were the same as those in segments cut from dominant or growing shoots. In both cases net uptake was stimulated to the same extent by competing unlabelled IAA and by N-1-naphthylphthalamic acid. Uptake of the pH probe [14C]-5,5-dimethyloxazolidine-2,4-dione from unbuffered solutions was the same in segments from both types of shoot. Patterns of [14C]IAA metabolism in shoots in which polar transport had ceased were the same as those in shoots capable of polar transport. The reversible loss of polar IAA transport in these systems, therefore, was not the result of loss or inactivation of specific IAA efflux carriers, loss of ability of cells to maintain transmembrane pH gradients, or the result of a change in IAA metabolism. Furthermore, in tissues incapable of polar transport, no evidence was found for the occurrence of inhibitors of IAA uptake or efflux. Evidence is cited to support the possibility that the reversible loss of polar auxin transport is the result of a gradual randomization of effluxcarrier distribution in the plasma membrane following withdrawal of an apical auxin supply and that the recovery of polar transport involves reestablishment of effluxcarrier asymmetry under the influence of vectorial gradients in auxin concentration.Abbreviations DMO 5,5-dimethyloxazolidine-2,4-dione - IAA indol-3yl-acetic acid - NPA N-1-naphthylphthalamic acid - TIBA 2,3,5-triiodobenzoic acid This work was supported by grant no. GR/D/08760 from the U.K. Science and Engineering Research Council. We thank Mrs. R.P. Bell for technical assistance.  相似文献   

6.
Hypocotyl explants of pumpkin ( Cucurbita pepo L.) were inoculated aseptically on solid media containing Murashige and Skoog (MS) macro- and micronutrients, organic supplements, glucose as a carbon source, and indoleacetic acid (IAA) or one of its possible metabolic precursors, i.e. indole-3-ethanol [3-(2-hydroxyethyl)-indole, tryptophol], 2-(indol-3-yl)-ethyl α-L-arabinopyranoside (tryptophol arabinoside), and 2-(indol-3-yl)-ethyl β-D-glucopyranoside (tryptophol glucoside). Embryogenic callus and adventitious roots developed on the explants, the response depending on the source of auxin, its concentration, and endogenous, possibly genetic, factors. Hypocotyl sections did not form embryogenic tissues and did not survive on media which did not contain an auxin or auxin precursors. Fewer explants responded to IAA than to indole-3-ethanol. Its arabinopyranoside was even more effective, while only a few hypocotyl sections proliferated in the presence of the corresponding glucopyranoside. Embryogenic callus induced by any of the four above compounds could be subcultured on media containing the same source of auxin. Selected callus lines have been maintained for more than three years and have continued to form embryoids. Indole-3-ethanol and IAA were suitable for clonal propagation of regenerated plantlets by axillary and apical bud culture.  相似文献   

7.
Saturable uptake of indol-3yl-acetic Acid by maize roots   总被引:1,自引:1,他引:0       下载免费PDF全文
The uptake of 5-[3H]indol-3yl-acetic acid (IAA*) by segments of Zea mays L. roots was measured in the presence of nonradioactive indol-3yl-acetic acid (IAA°) at different concentrations. IAA uptake was found to have a nonsaturable component and a saturable part with (at pH 5.0) an apparent Km of 0.285 micromolar and apparent Vmax 55.0 picomoles per gram fresh mass per minute. These results are consistent with those which might be expected for a saturable carrier capable of regulating IAA levels. High performance liquid chromatography analyses showed that very little metabolism of IAA* took place during 4 minute uptake experiments. Whereas nonsaturable uptake was similar for all 2 millimeter long segments prepared within the 2 to 10 millimeter region, saturable uptake was greatest for the 2 to 4 millimeter region. High levels of uptake by stelar (as compared with cortical) segments are partly attributable to the saturable carrier, and also to a high level of uptake by nonsaturable processes. The carrier may play an essential role in controlling IAA levels in maize roots, especially the accumulation of IAA in the apical region. The increase in saturable uptake toward the root tip may also contribute to the acropetal polarity of auxin transport.  相似文献   

8.
Phytohormones are involved in the organogenesis of legume root nodules. The source of the auxin indole-3-acetic acid (IAA) in nodules has not been clearly determined. We studied the enzyme aldehyde oxidase (AO; EC 1.2.3.1), that catalyzes the last step of IAA biosynthesis in plants, in the nodules of Lupinus albus and Medicago truncatula. Primordia and young lupin nodules and mature M. truncatula nodules showed AO activity bands after native polyacrylamide gel electrophoresis. Gel activity analyses using indole-3-aldehyde as substrate indicated that the nodules of white lupin and M. truncatula have the capability to synthesize IAA via the indole-3-pyruvic acid pathway. Immunolocalization and in situ hybridization experiments revealed that AO is preferentially expressed in the meristematic and the invasion zones in Medicago nodules and in the lateral meristematic zone of Lupinus nodules. High IAA immunolabeling was also detected in the meristematic and invasion zones. Low expression levels and no AO activity were detected in lupin Fix- nodules that displayed restricted growth and early senescence. We propose that local synthesis of IAA in the root nodule meristem and modulation of AO expression and activity are involved in regulation of nodule development.  相似文献   

9.
The localization of the auxin receptor relevant to the control of elongation growth is still a matter of controversy. Auxin-induced elongation of maize coleoptile segments was measured by means of a high resolution auxanometer. When indole-3-acetic acid (IAA) was removed from the bathing solution, a rapid cessation of auxin-induced elongation was detected. This decline was delayed when the auxin efflux carrier was blocked by the phytotropins naphthylphthalamic acid (NPA) and pyrenoylbenzoic acid (PBA) or by triiodobenzoic acid (TIBA). The IAA concentration in NPA-pretreated segments was 2–3 times higher than in NPA-free controls 35 min after the removal of IAA in the bathing medium.
A similar rapid drop of growth after removal of auxin was observed for the rapidly-transported synthetic auxin, naphthaleneacetic acid (NAA). When the auxin efflux was blocked, growth induced by NAA was sustained much longer than IAA-stimulated elongation.
In comparison with NAA, the synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D) is known to be excreted very slowly by the efflux carrier. 2,4-D-induced growth remained at a stimulated level when the auxin was washed off, even in the absence of any auxin efflux inhibitor. We conclude from these results that the presence of intracellular auxin is a necessary and sufficient condition for sustained auxin-induced elongation growth, at least for the phases during the 2 h after its application. Consequently, we postulate the existence of an intracellular auxin receptor relevant to the control of growth.  相似文献   

10.
A. R. Sheldrake 《Planta》1979,145(2):113-117
Segments of mesocotyls of Avena sativa L. transported [1-14C]indol-3yl-acetic acid (IAA) with strictly basipetal polarity. Treatment of the segments with solutions of sorbitol caused a striking increase in basipetal auxin transport, which was greatest at concentrations around 0.5 M. Similar effects were observed with mannitol or quebrachitol as osmotica, but with glucose or sucrose the increases were smaller. Polar transport was still detectable in segments treated with 1.2 M sorbitol. The effects of osmotic stress on the polar transport of auxin were reversible, but treatment with sorbital solutions more concentrated than 0.5 M reduced the subsequent ability of mesocotyl segments to grow in response to IAA. The increased transport of auxin in the osmotically stressed segments could not be explained in terms of an increased uptake from donor blocks. The velocity of transport declined with higher concentrations of osmoticum. The reasons for the enhancement of auxin transport by osmotic stress are not known.  相似文献   

11.
Bound auxin formation in growing stems   总被引:4,自引:3,他引:1       下载免费PDF全文
Davies PJ 《Plant physiology》1976,57(2):197-202
The term “bound auxin” is herein used to describe auxin conjugates insoluble in organic solvents which dissolve indoleacetic acid (IAA) and its derivatives, but hydrolyzable by NaOH to release IAA. Bound auxin from pea stems was fractionated into water-soluble, water-insoluble/NaOH-hydrolyzable, and insoluble components. Formation of bound auxin commenced with 15 minutes of applying exogenous labeled IAA, and progressively increased in amount, relative to IAA uptake, over 6 hours. Formation was not restricted to any particular zone of the stem and occurred in both light- and dark-grown stems. A greater quantity of bound auxin was formed in light-grown stems, reaching 4.2 and 7.7%, of the IAA taken up, in the water-soluble and water-insoluble/NaOH-hydrolyzable fractions after 6 hours. The presence of sucrose, during either the IAA treatment or an aging pretreatment had no effect, though 6 hours aging did cause a subsequent increase in the water-insoluble fraction of the bound auxin. Bound auxin formation in light-grown stems was dependent on respiratory metabolism, being reduced by KCN. It was also reduced, compared to total uptake, by inhibitors of RNA, and protein synthesis (6-methylpurine and cycloheximide) but only when the inhibitors preceded auxin addition and were present for a 4-hour period. Addition of inhibitors following auxin had no effect, suggesting an early inductive effect of auxin on bound auxin formation. Inhibitors of cell elongation had no effect. Deoxyglucose, an inhibitor of glucan synthesis, had only a small effect on the water-soluble fraction. Bound auxin is an important auxin product in growing plants. Its function is unknown, but some possibilities are discussed.  相似文献   

12.
The effects of auxin and gibberellic acid on cell wall composition in various regions of epicotyls of azuki bean ( Vigna angularis Ohwi and Ohashi cv. Takara) were investigated with the following results. (1) Young segments excised from apical regions of the epicotyl elongated in response to added 10−4 M indole-3-acetic acid (IAA). When the segments were supplied with 50 m M sucrose, the IAA-induced segment growth was accompanied by enhanced overall synthesis of cell wall polysaccharides, such as xyloglucans, polyuronides and cellulose. This IAA effect on the cell wall synthesis is a consequence of extension growth induced by IAA. Gibberellic acid (GA) at 10−4 M synergistically enhanced the IAA-induced cell wall synthesis as well as IAA-induced extension growth, although GA by itself neither stimulated the cell wall synthesis nor extension growth. In the absence of sucrose, cell wall synthesis was not induced by IAA or GA. (2) In mature segments excised from basal regions of the epicotyl, no extension growth was induced by IAA or GA. GA enhanced the synthesis of xylans and cellulose when the segments were supplied with 50 m M sucrose. IAA had no effect on the cell wall synthesis. These findings indicate that synthesis of polyuronides, xyloglucans and cellulose, which occurs during extension growth of the apical region of the epicotyl, is regulated chiefly by auxin whereas synthesis of xylans and cellulose during cell maturation in the basal region of the epicotyl is regulated by GA.  相似文献   

13.
Ethylene and auxin both enhance cell elongation growth in the rachis of the frond of Regnellidium diphyllum. Measurements of the stress relaxation modulus of the walls of methanol-killed rachis segments show that both auxin and ethylene cause an increase in cell wall extensibility, that the effects are additive, and that they occur in the presence of hypertonic solutions of mannitol that preclude cell elongation. The results are taken as evidence for the operation of two separate mechanisms for cell wall loosening.Abbreviation IAA indol-3yl-acetic acid  相似文献   

14.
1. The uptake of indol-3-yl acetic acid ([1-14C]IAA, 0–2.0 M) into light-grown pea stem segments was measured under various conditions to investigate the extent to which mechanisms of auxin transport in crown gall suspension culture cells (Rubery and Sheldrake, Planta 118, 101–121, 1974) are also found in a tissue capable of polar auxin transport. — 2. IAA uptake increased as the external pH was lowered. IAA uptake was less than that of benzoic acid (BA), naphthylacetic acid (NAA) or 2,4 dichlorophenoxyacetic acid (2,4D) under equivalent conditions. TIBA enhanced net IAA uptake through inhibition of efflux, and to a lesser extent, also increased uptake of NAA and 2,4D while it had no effect on BA uptake. — 3. Both DNP and, at higher concentrations, BA, reduced IAA uptake probably because of a reduction of cytoplasmic pH. However, low concentrations of both BA and DNP caused a slight enhancement of IAA net uptake, possibly through a reduction of carrier-mediated IAA efflux. In the presence of TIBA, the inhibitory effects of DNP and BA were more severe and there was no enhancement of uptake at low concentrations. — 4. Non-radioactive IAA (10 M) reduced uptake of labelled IAA but further increases in concentration up to 1.0 mM produced first an inhibition (0–10 min) of labelled IAA uptake, followed by a stimulation at later times. Non-radioactive 2,4 D decreased, but was not observed to stimulate, uptake of labelled IAA. In the presence of TIBA labelled IAA uptake was inhibited by non-radioactive IAA regardless of its concentration. — 5. Sulphydryl reagents PCMB and PCMBS promoted or inhibited IAA uptake depending, respectively, on whether they penetrated or were excluded from the cells. The penetrant PCMB also reduced the promotion of labelled IAA uptake by TIBA or by high concentrations of added non-labelled IAA. — 6. Our findings are interpreted as being consistent with the diffusive entry of unionised IAA into cells together with some carrier-mediated uptake. Auxin efflux from the cells also appears to have a carrier-mediated contribution, at least part of which is inhibited by TIBA, and which has a capacity at least as great as that of the uptake carrier. The data indicate that pea stem segments contain cells whose mechanisms of trans-membrane auxin transport fit the model of polar auxin transport proposed from experiments with crown gall suspension cells, although differences, particularly of carrier specificity, are apparent between the two systems.Abbreviations IAA indol-3-yl acetic acid - BA benzoic acid - NAA 1-naphthylacetic acid - 2,4-D 2,4-dichlorophenoxyacetic acid - TIBA 2,3,5-triiodobenzoic acid - DNP 2,4-dinitrophenol - PCMB p-chloromercuribenzoic acid - PCMBS p-chloromercuribenzene sulphonic acid This work was performed in Cambridge during the tenure of a sabbatical leave by P.J.D. Supported by a grant for supplies from the American Philosophical Society to P.J.D.  相似文献   

15.
Application of 10 to 100 μg indol-3-ylacetic acid to the leaves of rooted cuttings of aspen caused inhibition of root growth after three hours. Root growth recovered within 24 hours after IAA treatment. Swelling of the root tips occurred during the period of inhibition. The roots responded in the same way if IAA was applied in solution to the cut stem surface above the mature leaves. IAA-1-14C applied through a cut stem surface or to mature leaves was translocated downwards in the plants and labelled IAA could be isolated from the roots 3 to 24 hours after application. The ethanol-soluble activity decreased rapidly indicating a rapid metabolism or binding of IAA. IAA-1-14C applied to growing leaves was not translocated. From the rapid response of root growth it was concluded that IAA was translocated into the roots at a rate of about 7 cm per hour. This rate of translocation indicates that the sieve tubes are involved in the translocation. Implications of the results for the translocation of endogenous auxin into the roots are discussed.  相似文献   

16.
The longitudinal distribution of unaltered radioactive indole-3-acetic acid (IAA), after application of [5-3H]-IAA to decapitated etiolated lupin hypocotyls. exhibited a wave-like pattern similar to that obtained with endogenous IAA. Waves of radioactive IAA were localizated both in the elongation zone and in the non-growing basal region of the hypocotyl. These IAA waves were transient because of basipetal polar transport and metabolism of IAA.
The level of endogenous IAA in different zones of the hypocotyl varied with age, following a wave-like pattern. During the elongation period of each zone, IAA was parallel to the bell-shaped curve of the growth rate. In addition, a role in secondary cell wall deposition is suggested for the other IAA wave that appeared after the cell elongation period, since an electron microscopic morphometric analysis of the cell wall showed that the cell wall thickness increased once the cell elongation ceased.
As the oscillation of endogenous IAA level occured in both space (distribution along the hypocotyl) and time (variation with age), it is suggested that the level of IAA really depended on the growth status of the cells. The response of the cells to the positional information submitted by the auxin waves as regards the growth status of the cell is discussed.  相似文献   

17.
Cotyledon segments derived from zygote embryos of mango (Mangifera indica L. cv. Zihua) were cultured on agar medium for 28 days. Depending on different pre-treatments with plant growth regulators, two distinct patterns of adventitious roots were observed. A first pattern of adventitious roots was seen at the proximal cut surface, whereas no roots were formed on the opposite, distal cut surface. The rooting ability depended on the segment length and was significantly promoted by pre-treatment of embryos with indol-3-acetic acid (IAA) or indole-3-butyric acid (IBA) for 1 h. A pre-treatment with the auxin transport inhibitor 2,3,5-triiodobenzoic acid (TIBA) completely inhibited adventitious root formation on proximal cut surfaces. A second pattern of roots was observed on abaxial surfaces of cotyledon segments when embryos were pre-treated with 2,700 μM 1-naphthalenacetic acid (NAA) for 1 h. Histological observations indicated that both patterns of adventitious roots originated from parenchymal cells, but developmental directions of the root primordia were different. A polar auxin transport assay was used to demonstrate transport of [3H] indole-3-acetic acid (IAA) in cotyledon segments from the distal to the proximal cut surface. In conclusion, we suggest that polar auxin transport plays a role in adventitious root formation at the proximal cut surface, whereas NAA levels (influx by diffusion; carrier mediated efflux) seem to control development of adventitious roots on the abaxial surface of cotyledon segments.  相似文献   

18.
M. Sabater  P. H. Rubery 《Planta》1987,171(4):514-518
Carrier-mediated uptake of indole-3-acetic acid (IAA) by microsomal vesicles from Cucurbita pepo L. hypocotyls was strongly inhibited by 2,4-dichlorophenoxyacetic acid (2,4-D; i 50= 0.3 M) but only weakly by 1-naphthylacetic acid (NAA). The fully ionised auxin indol-3-yl methanesulphonic acid also inhibited (i 50=3 M). The same affinity ranking of these auxins for the uptake carrier, an electroimpelled auxin anion-H+ symport, is demonstrable in hypocotyl segments. The specificity of the auxin-anion eflux carrier was tested by the ability of different nonradioactive auxins to compete with [3H]IAA and reduce the stimulation of net radioactive uptake by N-1-naphthylphthalamic acid (NPA), a noncompetitive inhibitor of this carrier. By this criterion, NAA and IAA had comparable affinities, with 2,4-D interaction more weakly. Stimulation of [3H]IAA uptake by NAA, as a result of competition for the efflux carrier, could also be demonstrated when a suitable concentration of 2,4-D was used selectively to inhibit the uptake carrier. However, when [3H]NAA was used, no stimulation of its association with vesicles by NPA, 2,3,5-triiodobenzoic acid, or nonradioactive NAA was found. In hypocotyl segments, [3H]NAA net uptake was much less sensitive to NPA stimulation than was [14C]IAA uptake. The apparent contradictions concerning NAA could be explained by carrier-mediated auxin efflux making a smaller relative contribution to the overall transport of NAA than of IAA. The relationship between carrier specificity as manifested in vitro and the specificity of polar auxin transport is discussed.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - IAA indole-3-acetic acid - ION3 mixture of 4 M carbonylcyanide m-chlorophenylhydrazone, nigericin and valinomycin - IMS indol-3-yl methanesulphonic acid - NAA 1-naphthylacetic aci - NPA N-1-naphthylphthalamic acid  相似文献   

19.
Daphne Vince 《Planta》1968,82(3):261-279
Summary Ligh-induced anthocyanin synthesis in excised dark-grown internodes of Sorghum was depressed by the addition of auxin to the incubating medium at physiological concentrations. Both IAA and the synthetic auxin, 2,4-D, reduced anthocyanin yield. Similar results were obtained with isolated internode segments and in internodes incubated with coleoptiles (the major source of endogenous auxins) attached. Auxin increased the duration of the lag phase before anthocyanin synthesis began and reduced the rate during the subsequent linear phase. Elongation continued longer with IAA than without it and anthocyanin formation did not begin until extension growth had ceased or was slowing down in both cases; the rate of anthocyanin synthesis in the IAA solution remained depressed compared with that in buffer even after extension growth had ceased in both.At low concentrations IAA stimulated elongation growth without reducing anthocyanin yield and it is unlikely that the effect of IAA on anthocyanin synthesis results from the increased utilisation in growth of substrates needed for anthocyanin formation. The results of reciprocal transfer experiments from dark to light, and vice versa, showed that the action of IAA was associated with its presence in the incubating medium during the irradiation period. If present only in darkness, before or after transfer to light, IAA did not reduce anthocyanin formation; in the former case total yield was increased by IAA as a result of the stimulation of elongation growth, the concentration of anthocyanin remaining unchanged.GA3 also decreased anthocyanin content; the effect was greater in sections incubated with coleoptiles attached and it is possible that GA3 acts by increasing the concentration of endogenous auxins. However, CCC, which has been reported to decrease endogenous auxin levels, also reduced anthocyanin yield.The effect of IAA was not influenced by the presence of ascorbate in the incubating medium, nor did added ascorbate result in the formation of any acylated cyanidin derivative in internodes maintained in darkness.Possible relationships between light-induced anthocyanin formation and the photo-inhibition of elongation are discussed.  相似文献   

20.
Auxin transport was investigated in excised stem segments ofNicotiana tabacum L. by the agar block technique using [1-14C]indol-3yl-acetic acid (IAA). The ability of the stems to transportauxin basipetally increased as secondary development proceeded;by contrast the ability of the pith to transport auxin declinedwith age. By separation of the stem tissues it was shown thatthe great majority of auxin transport took place in cells associatedwith the internal phloem and in cells close to the cambium;in both cases similar velocities of transport were found (c.5.0 mm h–1 at 22°C). The effects of osmotic gradientson auxin transport through the internal phloem were investigated.IAA was found by chromatography to account for practically allthe radioactivity in receiver blocks and other extracts of stemsegments. The significance of these results is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号