首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Density of muscarinic receptors of rat parotid gland, although unchanged after 5 or 10 min of stimulation of the parasympathetic nerve to the gland, showed a decrease of 23% following a 15-min period of stimulation. After 30 min the decrease was 19% but by 60 min density of receptors returned to within 5% of receptor density of the unstimulated gland; there was virtually no change in density of beta adrenoceptors at any time during the 60 min of stimulation. Markedly elevated (30-fold increase) levels of cyclic GMP appeared within 5 min after initiation of nerve stimulation and remained at this level at 10 min, but dropped from 90 to 46 pmol/mg total protein by 15 min, the time at which a decrease in muscarinic receptors first was evident. GMP levels continued to decrease but were still four times basal levels after 60 min of stimulation and did not return to normal concentration until 120 min. Cyclic AMP was generally unchanged. These changes in muscarinic receptors and cyclic GMP are apparently closely related to the kind of neural stimulation, unlike the condition when stimulation of the sympathetic nerve was employed.  相似文献   

2.
beta-Adrenergic stimulation of rat parotid acinar cells markedly increases [3H]mannose incorporation into N-linked glycoproteins [Kousvelari, Grant, Banerjee, Newby & Baum (1984) Biochem. J. 222, 17-24]. More than 90% of this protein-bound [3H]mannose was preferentially incorporated into four secretory glycoproteins. The ratio of [3H]mannose/[14C]leucine present in these individual proteins was 1.7-4-fold greater with isoproterenol-treated cells than with untreated controls. In isoproterenol-stimulated cells, [3H]mannose incorporation into mannosylphosphoryl dolichol and oligosaccharide-PP-dolichol was increased 2-3-fold over that observed in unstimulated cells. Similarly, formation of mannosylated oligosaccharide-PP-dolichol was increased approx. 4-fold in microsomes prepared from isoproterenol-treated cells. Also, turnover of oligosaccharide-PP-dolichol was significantly increased (5-fold) by beta-adrenergic stimulation; the half-life for oligosaccharide-PP-dolichol decreased from 6 min in control cells to 1.2 min in isoproterenol-stimulated cells. By 15 min after isoproterenol addition to acinar cells, the specific radioactivity of parotid oligosaccharide moieties increased about 3-fold over the value observed in the absence of the agonist. Taken together, these results strongly suggest that elevation of N-linked protein glycosylation in rat parotid acinar cells after beta-adrenoreceptor stimulation resulted from significant enhancement in the synthesis of mannosylphosphoryl dolichol and oligosaccharide-PP-dolichol and the turnover of oligosaccharide-PP-dolichol.  相似文献   

3.
The ability of a large number of catecholamine analogs to stimulate DNA synthesis in the mouse parotid gland in vivo was compared to their effect on the levels of adenosine 3′,5′-monophosphate (cyclic AMP) and guanosine 3′,5′-monophosphate (cyclic GMP) in this tissue. In the normal parotid gland the level of cyclic GMP is very low (10?9 moles/kg wet wt), being only 1/800th of the cyclic AMP concentration. Isoproterenol increases the levels of cyclic AMP and cyclic GMP 30- and 3-fold, respectively. The increase in cyclic AMP is biphasic with an apparent early maximum at 2.5 min and a main peak at 15 min while the increase in cyclic GMP is monophasic with maximum levels at 15 min. Other analogs showed a similar effect on cyclic AMP levels but the time course of increases in cyclic GMP was very variable with peak stimulation as early as 1 min in some cases. The ability of analogs to cause the accumulation of cyclic AMP was correlated with their capacity to activate adenylate cyclase in parotid extracts and to act as β-adrenergic agonists in other systems. All compounds which raised cyclic AMP levels stimulated DNA synthesis but a number of other analogs also stimulated DNA synthesis. The effects of these analogs have been correlated with their ability to raise the intracellular concentration of cyclic GMP. Cholinergic agents also cause the accumulation of cyclic GMP but the effect of the analogs does not appear to be mediated through the cholinergic system as atropine does not block their effects and cholinergic agonists do not stimulate DNA synthesis. It is suggested that cholinergic agonists and the catecholamine analogs act primarily on the duct and acinar cells, respectively.Significant with inhibitors of the rises in cyclic nucleotide levels suggest that in isoproterenol stimulation it is the rise in cyclic GMP which is the more significant event in relation to stimulation of DNA synthesis.  相似文献   

4.
beta-Adrenergic stimulation of rat parotid cells by isoprenaline (isoproterenol) results in 2-3-fold increases in [3H]mannose incorporation into N-linked oligosaccharides. This occurs without perceptible lag and is linear with time for 60 min after agonist addition. Concomitantly, isoprenaline markedly increases cellular cyclic AMP. Examination of individual proteins by sodium dodecyl sulphate/polyacrylamide-gradient-gel electrophoresis reveals that glycosylation changes are primarily associated with four secretory proteins, of approx. Mr 17000, 32000, 38000 and 220000. Beta-Adrenoreceptor activation additionally elicits a slight increase in parotid protein synthesis. The greatest increase in [14C]leucine incorporation is that into another secretory protein (Mr approx. 24000). Exposure of cells to dibutyryl cyclic AMP yields results comparable with those after isoprenaline treatment. Forskolin, which increases parotid-cell cyclic AMP, also causes similar effects. Conversely, dibutyryl cyclic GMP shows no such response. The data are consistent with the notion that beta-adrenergic stimulation of N-linked protein glycosylation in rat parotid cells is mediated by cyclic AMP.  相似文献   

5.
The effects of vasoactive intestinal polypeptide (VIP) on exocrine protein secretion were studied in enzymatically dispersed cell aggregates from rat parotid glands. VIP (10(-9) - 10(-7) M) stimulated secretion of alpha-amylase in a dose-dependent manner. The VIP-induced release of alpha-amylase was potentiated in the presence of a phosphodiesterase inhibitor. Basal levels of cyclic AMP of the dispersed cells were increased 6.7-fold after stimulation for 10 min by VIP (10(-7) M). The VIP-induced release of alpha-amylase was reduced by 40% when cells were incubated in a Ca2+-free medium in the presence of ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA). Efflux of 45Ca2+ was significantly increased over basal levels by stimulation with VIP (10(-8) and 10(-7) M), but this increased efflux was approximately only half the increased efflux induced by carbachol (10(-5) M). VIP had no effect on the incorporation of [14C]leucine into protein by parotid cells, whereas incorporation was reduced to 30% of the control value by carbachol (10(-5) M). Thus, the VIP-ergic secretory response in the rat parotid gland is associated with a raised intracellular cyclic AMP level and the mobilisation of a different intracellular Ca2+ pool than that mobilised by carbachol. It is, therefore, closely analogous to the beta-adrenergic response.  相似文献   

6.
Chloride (Cl) of saliva evoked by electrical stimulation of the parasympathetic nerve to parotid gland was from two to seven times higher than that elicited with sympathetic nerve stimulation; [Cl] remained elevated (125-135 mEq/liter) for 60 min of parasympathetic nerve stimulation, whereas Cl of sympathetically evoked saliva decreased from high levels of 58 to 15 to 20 mEq/liter. The administration of propranolol, the beta-adrenergic antagonist, 20 min prior to initiation of sympathetic nerve stimulation resulted in saliva with Cl of 100 mEq/liter; when phentolamine, the alpha-adrenergic antagonist was administered prior to sympathetic nerve stimulation, [Cl] was 48-35 mEq/liter. Values with the beta-agonist, isoproterenol, were about 35 mEq/liter, whereas phenylephrine, an alpha-adrenergic agonist, evoked saliva with Cl ranging from 113 to 85 mEq/liter. Flow rate was very high with parasympathetic nerve stimulation and low with sympathetic nerve stimulation, but [Cl] with beta-blockade was not flow dependent: flow was very low but Cl high. Cl secretion is principally regulated by activation of cholinergic and alpha-adrenergic receptors.  相似文献   

7.
Electrical stimulation of either the parasympathetic or the sympathetic nerve supply to the parotid and submaxillary glands increases the intracellular level of cyclic GMP and the rate of DNA synthesis and cell division while only sympathetic stimulation raises cyclic AMP levels. The periods of electrical stimulation inducing hyperplasia also raise the cyclic GMP concentration but there is no similar correlation with changes in cyclic AMP levels. However, the extent of hyperplasia induced by parasympathetic and sympathetic stimulation is not directly related to the size of the increase in cyclic GMP concentration that these treatments produce. Changes in cyclic AMP levels are reflected in altered in vitro adenylate cyclase activity. This activity is raised after 2 min sympathetic stimulation and markedly decreased with 30 min sympathetic or parasympathetic stimulation. Guanylate cyclase activity shows no such changes with nerve stimulation.  相似文献   

8.
We have employed a neutral-pH extraction technique to look for inositol 1,2-cyclic phosphate derivatives in [3H]inositol-labelled parotid gland slices stimulated with carbachol. The incubations were terminated by adding cold chloroform/methanol (1:2, v/v), the samples were dried under vacuum and inositol phosphates were extracted from the dried residues by phenol/chloroform/water partitioning. Water-soluble inositol metabolites were separated by h.p.l.c. at pH 3.7. 32P-labelled inositol phosphate standards (inositol 1-phosphate, inositol 1,2-cyclic phosphate, inositol 1,4,5-trisphosphate and inositol 1,2-cyclic 4,5-trisphosphate) were quantitively recovered through both extraction and chromatography steps. Treatment of inositol cyclic phosphate standards with 5% (w/v) HClO4 for 10 min prior to chromatography resulted in formation of the expected non-cyclic compounds. [3H]Inositol 1-phosphate and [3H]inositol 1,4,5-trisphosphate were both present in parotid gland slices and both increased during stimulation with 1 mM-carbachol. There was no evidence for significant quantities of [3H]inositol 1,2-cyclic phosphate or [3H]inositol 1,2-cyclic 4,5-trisphosphate in control or carbachol-stimulated glands. Parotid gland homogenates rapidly converted inositol 1,4,5-trisphosphate to inositol bisphosphate and inositol tetrakisphosphate, but metabolism of the inositol cyclic trisphosphate was much slower. The results suggest that inositol 1,4,5-trisphosphate, but not inositol 1,2-cyclic 4,5-trisphosphate, is the water-soluble product of muscarinic receptor-stimulated phospholipase C in rat parotid glands.  相似文献   

9.
The effects of bradykinin (BK) and lithium on the phosphatidylinositol cycle were examined in PC12 cells cultured for 20 h in the presence [PC12(+)] or in the absence [PC12(-)] of nerve growth factor (NGF). BK (1 microM) induced a small stimulation of the incorporation of myo-[2-3H]inositol into the lipids of PC12(-) cells and a three- to fourfold stimulation of such incorporation into the lipids of PC12 (+) cells. About 15 h of incubation with NGF and greater than 10 min of incubation with BK were needed for maximal stimulation of inositol incorporation by BK. In the presence of 25 mM LiCl, BK stimulated the inositol monophosphate levels nine-fold in PC12 (-) and 30-fold in PC12 (+) cells. After incubation for 20 h with NGF, an increased binding of [3H]BK to the PC12 (+) cells was observed at 4 degrees C. Exposure of the cells for 30 min to 25 mM LiCl enhanced the effect of BK on the inositol incorporation into total inositol lipids, especially in PC12(+) cells. In these cells, LiCl in the presence of BK also increased several-fold the intracellular levels of inositol bisphosphate and inositol trisphosphate.  相似文献   

10.
Glutamate carboxypeptidase II (GCPII), a glial ectoenzyme, is responsible for N-acetylaspartylglutamate (NAAG) hydrolysis. Its regulation in crayfish nervous tissue was investigated by examining uptake of [3H]glutamate derived from N-acetylaspartyl-[3H]glutamate ([3H]NAAG) to measure GCPII activity. Electrical stimulation (100 Hz, 10 min) during 30 min incubation with [3H]NAAG increased tissue [3H]glutamate tenfold. This was prevented by 2-(phosphonomethyl)-pentanedioic acid (2-PMPA), a GCPII inhibitor, suggesting that stimulation increased the hydrolysis of [3H]NAAG and metabolic recycling of [3H]glutamate. Antagonists of glial group II metabotropic glutamate receptors (mGLURII), NMDA receptors and acetylcholine (ACh) receptors that mediate axon-glia signaling in crayfish nerve fibers decreased the effect of stimulation by 58-83%, suggesting that glial receptor activation leads to stimulation of GCPII activity. In combination, they reduced [3H]NAAG hydrolysis during stimulation to unstimulated control levels. Agonist stimulation of mGLURII mimicked the effect of electrical stimulation, and was prevented by antagonists of GCPII or mGLURII. Raising extracellular K+ to three times the normal level stimulated [3H]NAAG release and GCPII activity. These effects were also blocked by antagonists of GCPII and mGLUR(II). No receptor antagonist or agonist tested or 2-PMPA affected uptake of [3H]glutamate. We conclude that NAAG released from stimulated nerve fibers activates its own hydrolysis via stimulation of GCPII activity mediated through glial mGLURII, NMDA and ACh receptors.  相似文献   

11.
1. Protein synthesis in the rat parotid gland in vitro was studied by measuring the incorporation of [3H]phenylalanine into trichloroacetic acid-insoluble proteins. In the unstimulated gland, the rate of incorporation was dependent on the phenylalanine concentration in the medium and proceeded linearly for up to 3h. 2. Adrenaline, carbamoylcholine, phenylephrine and ionophore A23187 inhibited the incorporation of [3H]phenylalanine into acid-insoluble protein; isoprenaline, dibutyryl cyclic AMP and 8-bromo-cyclic GMP were inactive. 3. Inhibition by adrenaline and carbamoylcholine but not by ionophore A23187 required extracellular Ca2+. 4. Both adrenaline and carbamoylcholine increased the magnitude of the acid-soluble [3H]phenylalanine pool at 10 micrometer extracellular phenylalanine, but had no effect if the phenylalanine concentration was increased to 200 micrometer. 5. There was no correlation between cellular ATP content and the observed inhibition of protein synthesis. 6. Our results suggest that both alpha-adrenergic and cholinergic receptors may play a role in the regulation of protein synthesis in the rat parotid gland, and that their effects are mediated by a rise in intracellular free Ca2+.  相似文献   

12.
The molecular mechanisms underlying the ability of muscarinic agonists to enhance the metabolism of inositol phospholipids were studied using rat parotid gland slices prelabelled with tracer quantities of [3H]inositol and then washed with 10 mM unlabelled inositol. Carbachol treatment caused rapid and marked increases in the levels of radioactive inositol 1-phosphate, inositol 1,4-bisphosphate, inositol 1,4,5-trisphosphate and an accumulation of label in the free inositol pool. There were much less marked changes in the levels of [3H]phosphatidylinositol, [3H]phosphatidylinositol 4-phosphate and [3H]phosphatidylinositol 4,5-bisphosphate. At 5 s after stimulation with carbachol there were large increases in [3H]inositol 1,4-bisphosphate and [3H]inositol 1,4,5-trisphosphate, but not in [3H]inositol 1-phosphate. After stimulation with carbachol for 10 min the levels of radioactive inositol 1,4-bisphosphate and inositol 1,4,5-trisphosphate greatly exceeded the starting level of radioactivity in phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate respectively. When carbachol treatment was followed by addition of sufficient atropine to block all the muscarinic receptors the radioactive inositol phosphates rapidly returned towards control levels. The carbachol-evoked changes in radioactive inositol phosphate and phospholipid levels were blocked in the presence of 2,4-dinitrophenol (an uncoupler of oxidative phosphorylation). The results suggest that muscarinic agonists stimulate a polyphosphoinositide-specific phospholipase C and that these lipids are continuously replenished from the labelled phosphatidylinositol pool. [3H]Inositol 1-phosphate in the stimulated glands probably arises via hydrolysis of inositol 1,4-bisphosphate and not directly from phosphatidylinositol.  相似文献   

13.
In dispersed rat parotid gland acinar cells, the beta-adrenergic agonist (-)-isoproterenol, but not its stereoisomer (+)-isoproterenol, induced a transient 1.6-fold (at maximum stimulation, 2 x 10(-4) M) increase in cytosolic free calcium ([Ca2+]i) within 9 s, which returned to resting levels (approximately 190 nM) by 60 s. This [Ca2+]i response was not altered by chelating extracellular Ca2+ with [ethylenebis(oxyethylenenitrilo)]tetraacetic acid (EGTA) and could be completely blocked by the beta-adrenergic antagonists propranolol (beta 1 + beta 2) and ICI 118,551 (beta 2) but not by atenolol (beta 1). The muscarinic-cholinergic agonist carbachol (at maximum stimulation, 10(-5) M) induced a 3-4-fold elevation in [Ca2+]i within 6 s, which slowly returned to resting levels by 8-10 min. The peak carbachol [Ca2+]i response was not substantially altered by the addition of EGTA to the extracellular medium. However, if the cells were first stimulated with isoproterenol in the EGTA-containing medium, the peak carbachol response was decreased approximately 54%. When carbachol was added to cells in the presence of high extracellular calcium, at the isoproterenol-stimulated [Ca2+]i peak, the resulting [Ca2+]i level was equal to that achieved when carbachol was either added alone or added after propranolol and isoproterenol. 8-Bromo-cyclic AMP induced a [Ca2+]i response similar to that elicited by isoproterenol, which was not additive to that by carbachol. Carbachol induced a approximately 3.5-fold increase in inositol trisphosphate (IP3) production in parotid cells within 30 s. 8-Bromo-cAMP, N6,O2'-dioctanoyl-cAMP, and isoproterenol consistently induced a significant stimulation in IP3 production. The half-maximal concentration of isoproterenol required for [Ca2+]i mobilization and IP3 production was comparable (approximately 10(-5) M). Isoproterenol-induced IP3 formation was blocked by propranolol. The data show that in rat parotid acinar cells, beta-adrenergic stimulation results in IP3 formation and mobilization of a carbachol-sensitive intracellular Ca2+ pool by a mechanism involving cAMP. This demonstrates an interaction between the cAMP and phosphoinositide second messenger systems in these cells.  相似文献   

14.
Ornithine decarboxylase in a human parotid gland adenocarcinoma cell line was induced by both cholinergic (carbachol) and beta-adrenergic (isoproterenol) sialagogues. The enzyme protein level, measured with anti-peptide antiserum, as well as the enzyme activity, was found to be high in unstimulated cells and to increase approximately 2-fold on stimulation, while the mRNA level increased 3-4 fold, as revealed by Northern hybridization. The rise in activity was completely blocked by the simultaneous addition of antagonists or actinomycin D. These results suggest that receptor-mediated stimulation of ornithine decarboxylase activity by sialagogues involves alterations in the level of mRNA and that the proliferative responses of human parotid cells to these sialagogues resemble those of the murine parotid gland.  相似文献   

15.
In mouse neuroblastoma x Chinese hamster brain clonal cell line NCB-20, bradykinin (BK) receptor stimulation causes phosphoinositide hydrolysis and release of inositol phosphates. Maximum stimulation (4-fold) of [2-3H]inositol trisphosphate (IP3) release in the absence of Li+ from NCB-20's prelabelled for 20-24 hours with [2-3H]myo-inositol (15 microCi/confluent 60mm dish) occurred after 5-10 seconds of bradykinin exposure, with an EC50 of approximately 100nM. Inositol bisphosphate (IP2) and inositol monophosphate (IP1) also showed increases (2.9-fold and 1.5 fold, respectively), with peaks at 15-20 seconds and 50 seconds, respectively. Under these same conditions, D-Ala2-D-Leu5 enkephalin (DADLE) (10 microM), an opiate agonist with 2nM affinity, gave no stimulation of IP3 release. Furthermore, it did not block BK-initiated release, both when applied simultaneously with BK and when cells were preincubated with DADLE for 100 minutes to lower cyclic AMP levels. These results show that pain-inducing BK has a major acute stimulatory effect on receptor-phospholipase C-coupled IP3 release, the opioid peptide DADLE has no such effect and, DADLE does not block the IP3 release induced by BK.  相似文献   

16.
The human T lymphoblastoid cell line designated CCRF-CEM responds to phytohemagglutinin with a 3.7-fold enhancement of the 32PO4 incorporation into phosphatidylinositol. In myo-[2-3H]inositol-prelabeled CCRF-CEM cells, phytohemagglutinin induced a 3.3-fold accumulation of myo-[2-3H]inositol phosphate during 15 min incubation at 37 degrees C in the presence of 5 mM LiCl. Since Li+ is a potent inhibitor of myo-inositol-1-phosphatase, the results indicate that phytohemagglutinin induces the hydrolysis of inositol lipids in CCRF-CEM cells. In 32PO4-prelabeled CCRF-CEM cells, phytohemagglutinin induced a breakdown of 28% of [32P]phosphatidylinositol 4,5-bisphosphate 40-60 s after the stimulation. The decrease of [32P]phosphatidylinositol 4,5-bisphosphate was found as early as 10 s after the stimulation. This decrease was followed by an increased 32P-labeling of phosphatidic acid. In [2-3H]glycerol-prelabeled CCRF-CEM cells, phytohemagglutinin induced a transient accumulation of [3H]phosphatidic acid and [3H]diacylglycerol. The amount of [3H]phosphatidic acid in the stimulated cells was 3.7-times the control value at 2 min after the stimulation, whereas the amount of [3H]diacylglycerol in the stimulated cells was 1.5-times the control value at 5 min after the stimulation. In [3H8]arachidonate-prelabeled CCRF-CEM cells, phytohemagglutinin induced a transient accumulation of [3H]phosphatidic acid; the amount was 2.5-times the control value at 2 min after the stimulation. Quinacrine (1 mM) caused 41% reduction in the amount of [3H]phosphatidic acid accumulated by the stimulation in [2-3H]glycerol-prelabeled cells. Stimulation in a Ca2+-free saline containing 1 mM EGTA caused 53% reduction in the amount of [3H]phosphatidic acid accumulated by the stimulation. The results presented in this paper indicate that a human T lymphoblastoid cell line, CCRF-CEM, responds to phytohemagglutinin with a rapid turnover of inositol lipids.  相似文献   

17.
Stimulation of the human T cell line, Jurkat, by the addition of monoclonal antibodies reactive with the T cell antigen receptor complex (CD3/Ti) leads to sustained increases in levels of inositol 1,4,5-trisphosphate. To investigate the possibility that the production of polyphosphoinositides is regulated during CD3/Ti stimulation, we studied Jurkat cells whose inositol phospholipids had been labeled to steady state with [3H]inositol, as well as Jurkat cells during nonequilibrium labeling with [32P]orthophosphate. The addition of CD3 monoclonal antibodies led to a 4-5-fold increase in [3H]inositol trisphosphate that was sustained for greater than 20 min. Within 60 s of CD3/Ti stimulation, [3H] phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) and [3H]phosphatidylinositol 4-phosphate (PtdIns4P) decreased by 65 and 35%, respectively. This change in [3H]PtdIns(4,5)P2 persisted for greater than 20 min. The decrease in [3H]PtdIns4P, however, was transient, and, after 5 min, the levels of [3H]PtdIns4P were comparable in stimulated and unstimulated cells. To examine the rate of flux through inositol phospholipids, we measured the CD3/Ti-stimulated changes in the ratio, 32P cpm/3H cpm, in each inositol phospholipid. CD3/Ti stimulation led to accelerated fluxes through PtdIns(4,5)P2 and phosphatidylinositol (PtdIns) that were maintained for greater than 20 min. After the initial 30 s, however, there was no detectable effect of anti-CD3 on flux through Ptsins4p. This observation suggested that, during CD3/Ti stimulation, production of PtdIns(4,5)P2 from PtdIns might occur via a small pool of PtdIns4P with a very high turnover. The existence of such a pool was established by determining that, in stimulated cells, the 32P-specific activity of the 1-position phosphate of PtdIns(4,5)P2 was 8-10-fold that of PtdIns4P. We conclude that, during the initial 60 s of CD3/Ti stimulation, there is a substantial depletion of cellular PtdIns(4,5)P2 and PtdIns4P. Thereafter, a CD3/Ti-regulated pathway generates PtdIns(4,5)P2 from PtdIns through a small, but highly labile, pool of PtdIns4P.  相似文献   

18.
The effects of various sugars on the simultaneous release of insulin and accumulation of cyclic AMP were studied in collagenase isolated rat pancreatic islets. D-Glucose stimulated the formation of cyclic AMP at 3 and 60 min of incubation, whether measured by a label incorporation technique, or by the protein kinase binding assay of Gilman. Only D-glucose and D-mannose were able to stimulate insulin release and cyclic [3H]AMP accumulation in the absence of other substrate. D-fructose had a stimulatory effect in the presence of 3.3 mM D-glucose only at a high concentration (33.8 mM), and enhanced the effects of 8.3 mM glucose when added at the concentration of 8.3 mM. D-Galactose was effective only together with 8.3 mM D-glucose. The order of potency of these hexoses, both regarding insulin secretion and cyclic [3H]AMP accumulation, was glucose-mannose-fructose-galactose. L-Glucose and 3-O-methylglucose had no effects at 60 min when incubated together with 8.3 mM D-glucose, whereas at 3 min, 3-O-methylglucose induced a small stimulation of the cyclic [3H]AMP response. D-mannoheptulose and D-glucosamine inhibited the insulin and cyclic [3H]AMP responses to 27.7 mM glucose. Mannoheptulose suppressed completely the glucose effect on cyclic nucleotide accumulation within 90 s. Although under all incubation conditions, the threshold stimulatory or inhibitory concentration of a given agent was identical for insulin release and cyclic [3H]AMP accumulation, these two variables showed quantitative differences in incubations of 60 min, the magnitude of the changes in insulin secretion being larger than that for the cyclic nucleotide. It is suggested that modulation of islet cyclic AMP level is an important step in the transmission of the effect of various sugars on insulin release; however, glucose and possibly other sugars may also enhance insulin release by additional mechanisms not involving the adenylate cyclase-cyclic AMP system of the beta-cell.  相似文献   

19.
Neonatal rats treated with chronic injections of isoprenaline (isoproterenol) for 10 days revealed differential induction of proline-rich proteins and glycoprotein synthesis between the parotid and submandibular glands. Biosynthesis of proline-rich proteins (Mr 17000-35000) and a Mr-220000 glycoprotein were detectable by solubilization in 10%-trichloroacetic acid extracts from parotid glands 14 days after birth. The enzyme lactose synthase (UDP-galactose: 2-acetamido-2-deoxy-D-glucosamine 4 beta-galactosyltransferase) (EC 2.4.1.22) is also induced 4-7-fold in specific activity compared with control neonatal rats, but again only after 14 days post partum, with isoprenaline treatment. This is in accord with the ability of the parotid gland to respond to beta-receptor stimulation and subsequent increases in intracellular cyclic AMP necessary for induction of protein synthesis [Grand, Chong & Ryan (1975) Am. J. Physiol. 228, 608-612]. Induction of the proline-rich proteins and a Mr-190000 glycoprotein in the soluble fraction from the submandibular gland were not detected until 49 days after birth under identical conditions in the same animal. Cyclic AMP in the submandibular gland undergoes increases on beta-receptor stimulation similar to those achieved in the adult animal, 1 day after birth (Grand et al., 1975). This same differential induction between parotid and submandibular gland was obtained with a range of isoprenaline dosages in adult animals. Trichloroacetic acid-soluble proline-rich proteins were isolated from parotid glands at a dosage of 4.0 mg of isoprenaline/kg body wt., but 7.0 mg/kg was required to induce also biosynthesis of these proteins in the submandibular gland. Gland hypertrophy showed the same differential dosage kinetics, based on gland weight, between the two glands; however, hypertrophy could be accomplished at a lower dosage of isoprenaline than that used to induce proline-rich-protein biosynthesis.  相似文献   

20.
Human platelets were labelled with [32P]Pi and [3H]glycerol before gel filtration. In unstimulated cells, the specific 32P radioactivity in phosphatidic acid (PtdOH) was similar to that of phosphatidylinositol (PtdIns) but only 4% of that of the gamma-phosphate of ATP. Upon 3 min of stimulation with 0.5 U/ml of thrombin, there was a 20-fold increase in specific 32P radioactivity of PtdOH which approached that of the ATP gamma-phosphate. Based on constant rates of synthesis and removal, this thrombin-induced increase in specific 32P radioactivity in PtdOH allowed us to calculate the flux of phosphate through PtdOH upon stimulation. Synthesis and removal occurred at rates of 107 and 52 nmol min-1/10(11) cells, respectively. The specific [3H]glycerol radioactivity was similar in PtdIns, phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate in unstimulated platelets. In PtdOH, it was 50% of that of the inositol phospholipids. Thrombin stimulation induced no changes in the specific 3H radioactivity of the inositol phospholipids whereas specific [3H]PtdOH increased to the level of these lipids. It is concluded that PtdIns, PtdInsP and PtdInsP2 exist in a metabolic homogenous pool in human platelets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号