首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The primary stroma of the cornea of the chick embryo consists of orthogonally arranged collagen fibrils embedded in glycosaminoglycan (GAG) produced by the epithelium under the early inductive influence of the lens. The experiments reported here were designed to test whether or not the collagen of the lens basement lamina is capable of stimulating corneal epithelium to produce primary stroma. Enzymatically isolated 5-day-old corneal epithelia were grown for 24 hr in vitro in the presence of 35SO4 or proline-3H on various substrata. Epithelia cultured on lens capsule synthesized 2.5 times as much GAG (as measured by incorporation of label into CPC precipitable material) and almost 3 times as much collagen (assayed by hot TCA extraction or collagenase sensitivity) as when cultured on Millipore filter or other noncollagenous substrata. A similar stimulatory response was observed when epithelium was combined with chemically pure chondrosarcoma collagen, NaOH-extracted lens capsule, vitreous humor, frozen-killed corneal stroma or cartilage, or tendon collagen gels; in the latter case, the magnitude of the effect can be shown to be related to concentration of the collagen in the gel. All of the collagenous substrata stimulate not only extracellular matrix production, but also polymerization of corneal-type matrix, as judged by ultrastructural criteria and by the association of more radioactivity with the tissue than the medium. Since purified chondrosarcoma collagen is as effective as lens capsule, the stimulatory effect on collagen and GAG synthesis by corneal epithelium is not specific for basal lamina (lens capsule) collagen.  相似文献   

2.
The present study traces corneal morphogenesis in a reptile, the lizard Calotes versicolor, from the lens placode stage (stage 24) until hatching (stage 42), and in the adult. The corneal epithelium separates from the lens placode as a double layer of peridermal and basal cells and remains bilayered throughout development and in the adult. Between stages 32– and 33+, the corneal epithelium is apposed to the lens, and limbic mesodermal cells migrate between the basement membrane of the epithelium and the lens capsule to form a monolayered corneal endothelium. Soon thereafter a matrix of amorphous ground substance and fine collagen fibrils, the presumptive stroma, is seen between the epithelium and the endothelium. Just before stage 34 a new set of limbic mesodermal cells, the keratocytes, migrate into the presumptive stroma. Migrating limbic mesodermal cells, both endothelial cells and keratocytes, use the basement membrane of the epithelium as substratum. Keratocytes may form up to six cell layers at stage 37, but in the adult stroma they form only one or two cell layers. The keratocytes sysnthesize collagen, which aggregates as fibrils and fibers organized in lamellae. The lamellae become condensed as dense collagen layers subepithelially or become compactly organized into a feltwork structure in the rest of the stroma. The basement membrane of the endothelium is always thin. Thickness of the entire cornea increases up to stage 38 and decreases thereafter until stage 41. In the adult the cornea is again nearly as thick as at stage 38.  相似文献   

3.
Hemidesmosome formation in vitro   总被引:13,自引:6,他引:7       下载免费PDF全文
Intact, viable sheets of adult rabbit corneal epithelium, 9 mm in diameter, were prepared by the Dispase II method (Gipson, I. K., and S. M. Grill, 1982, Invest. Ophthalmol. Vis. Sci. 23:269-273). The sheets, freed of the basal lamina, retained their desmosomes and stratified epithelial characteristics, but lacked hemidesmosomes (HD). Epithelial sheets were placed on fresh segments of corneal stroma with denuded basal laminae and incubated in serum-free media for 1, 3, 6, 18, or 24 h. Tissue was processed for electron microscopy, and the number of HD/micron membrane, the number of HDs with anchoring fibrils directly across the lamina densa from them, and the number of anchoring fibrils not associated with HDs were counted. After 6 h in culture, the number of newly formed HD was 82% of controls (normal rabbit corneas), and by 24 h the number had reached 95% of controls. At all time periods studied, 80-86% of HDs had anchoring fibrils directly across the lamina densa from them. Anchoring fibrils not associated with HDs decreased with culture time. These data indicate that the sites where anchoring fibrils insert into the lamina densa may be nucleation sites for new HD formation. Corneal epithelial sheets placed on two other ocular basal laminae, Descemet's membrane and lens capsule, had not formed HDs after 24 h in culture. These two laminae do not have anchoring fibrils associated with them. Rabbit epithelial sheets placed on the denuded epithelial basal lamina of rat and human corneas formed new HDs. Thus, at least in these mammalian species, HD formation may involve some of the same molecular components.  相似文献   

4.
The development of the basement membrane and collagen fibrils below placodes, including the corneal region of the ectoderm, lens epithelium, nasal plate, and auditory vesicle in anuran larvae was observed by transmission electron microscopy and compared with that in nonplacodal regions such as the epidermis, neural tube, and optic vesicle. In the corneal region the lamina densa becomes thick concomitantly with the development of the connecting apparatuses such as hemidesmosomes and anchoring fibrils. The collagen fibrils increase in number and form a multilayered structure, showing similar morphology to the connective tissues below the epidermis. These two areas, i.e., the corneal region and epidermis, possess much collagenous connective tissue below them. On the other hand, the neural tube and ophthalmic vesicle that originated from the neural tube each have a thin lamina densa and a small number of underlying collagen fibrils. The lamina densa does not thicken and the number of collagen fibrils do not significantly increase during development. These two areas possess little extracellular matrix. The nasal plate and auditory vesicle show intermediate characteristics between the epidermis-type and the neural tube-type areas. In these areas, the lamina densa becomes thick and hemidesmosomes and anchoring fibrils develop. The number of collagen fibrils increases during development, but does not show an orderly arrangement; rather, they are randomly distributed. It is thought that the difference in the arrangement of collagen fibrils in different tissues is due to differences in the extracellular matrix around the collagen fibrils. Placodal epithelia have the same origin as epidermis, but during development their morphological characteristics differ and they are not associated with the pattern of extracellular matrix with characteristics of epidermal and corneal multilayered collagen fibril areas.  相似文献   

5.
Harald  Kryvi 《Journal of Zoology》1976,180(2):253-261
The purely embryonic external gill filaments of sharks consist of a single capillary loop, covered by a two-layered epithelium with short microvilli. Towards the end of the embryonic period, the epithelial cells are filled with fibrils, about 10 nm in diameter, and mitochondria, endoplasmic reticulum and Golgi bodies disappear. The basal lamina increases in thickness, and collagen fibrils accumulate beneath. Numerous dense vesicles appear in the endothelial cells.  相似文献   

6.
Between the third and sixth day of embryonic development, the avian corneal epithelium produces both a basal lamina and the primary corneal stroma composed of 20 orthogonally arranged layers of collagen fibrils. If the epithelium is removed by enzyme treatment from the basal lamina and stroma, the basal cell surface extends cell processes (blebs) which contain disorganized actin filaments and the epithelium decreases production of collagen. When placed on extracellular matrix or on Millipore filters in media containing soluble matrix molecules, the epithelium retracts the blebs, forms an organized basal actin cortical mat, and doubles its production of collagen. In the current investigation, we provide evidence for the hypothesis that organization of the RER by the actin cytoskeleton mediates this stimulation of collagen production. Laminin-treated epithelia and epithelia isolated with the basal lamina intact were treated with an actin-disrupting drug, cytochalasin D. Actin aggregates occur throughout the epithelium, the RER becomes disorganized, and the increase in collagen production expected to result from addition of laminin does not take place. Morphometrical analysis of the distribution of RER in the basal compartment of control and cytochalasin-treated epithelia shows that the decrease in collagen production is accompanied by displacement of the RER from the basal area of the cells, suggesting that attachment of RER to the intact actin cytoskeleton is essential to maintenance of normal RER organization and function. We also found that laminin-mediated bleb retraction requires intact actin microfilaments, whereas bleb extension does not, and that nocodazole does not inhibit bleb extension or retraction.  相似文献   

7.
The corneal stroma of the chick embryo is deposited in two steps. The primary stroma is laid down by the corneal epithelium and it contains type I, type II and type IX collagens. Its formation is subsequent to the presumptive epithelial cells' migration onto the lens capsule (which is rich in type IV collagen). The secondary, ultimate stroma is synthesized by fibroblasts whcih, on day 5 of development, invade the swollen primary stroma. It is composed of a matrix of thin (25 nm), regular fibrils containing type I and type V collagens.We found that a chick corneal epithelium isolated from either a 6-day or a 14-day embryo was able to produce, in vitro, stroma-containing type I collagen fibrils. However, the amount of collagen deposited and its organization were highly dependent on the substratum used. Plastic or purified bovine type I collagen substrata led to the release of very few fibrils. Purified human type IV collagen induced the production of an abundant matrix made of large irregular collagen fibrils.When compared to native corneal stroma, there were two aspects in which this matrix differed: (1) it contained only type I collagen, as shown by indirect immunofluorescence, and (2) there were numerous large, irregular fibrils of about 100 to 130 nm in diameter.In conclusion, it is suggested that purified type IV collagen substitutes, in part, for the basement membrane and allows the production of a corneal stroma-like matrix by an embryonic corneal epithelium in culture. This production is possible even with a 14-day epithelium which, in vivo, is no more involved in the synthesis of the stroma collagens. Moreover, the regulatory effect of type II collagen, previously suggested by in vivo observations, may be confirmed in this in vitro system by the appearance of large fibrils in the newly deposited stroma that are made only by type I collagen.  相似文献   

8.
The intracellular position of the Golgi apparatuses in the basal cell layer of the corneal epithelium in embryonic and hatched chicks has been studied in the light microscope by impregnating the Golgi apparatus with silver. During two distinct periods in development the Golgi apparatuses in the basal cells shift from an apical to basal position. Each of these periods correlates in time with the appearance of an acellular collagenous matrix beneath the epithelium. Examination of the basal epithelial cells in the electron microscope confirms the intracellular shifts in position of the Golgi apparatus. The results suggest that the Golgi apparatus shifts to the basal cell pole of the corneal epithelium in order to excrete connective tissue materials into the developing corneal stroma.  相似文献   

9.
Mouse mammary epithelial cells (NMuMG cells) deposit at their basal surfaces an extracellular heparan sulfate-rich proteoglycan that binds to type I collagen. The binding of the purified proteoglycan to collagen was studied by (i) a solid phase assay, (ii) a suspension assay using preformed collagen fibrils, and (iii) a collagen fibril affinity column. The binding interaction occurs at physiological pH and ionic strength and can be inhibited only by salt concentrations that greatly exceed those found physiologically. Binding requires the intact proteoglycan since the protein-free glycosaminoglycan chains will not bind under the conditions of these assays. However, binding is mediated through the heparan sulfate chains as it can be inhibited by block-sulfated polysaccharides, including heparin. Binding requires native collagen structure which may be optimal when the collagen is in a fibrillar configuration. Binding sites on collagen fibrils are saturable, high affinity (Kd approximately 10(-10) M), and selective for heparin-like glycosaminoglycans. Because a culture substratum of type I collagen fibrils causes NMuMG cells to accumulate heparan sulfate proteoglycan into a basal lamina-like layer, binding of heparan sulfate proteoglycans to type I collagen may lead to the formation of a basal lamina and may link the basal lamina to the connective tissue matrix, an association found in basement membranes.  相似文献   

10.
Ultrastructural changes in the intestinal connective tissue of Xenopus laevis during metamorphosis have been studied. Throughout the larval period to stage 60, the connective tissue consists of a few immature fibroblasts surrounded by a sparse extracellular matrix: few collagen fibrils are visible except close to the thin basal lamina. At the beginning of the transition from larval to adult epithelial form around stage 60, extensive changes are observed in connective tissue. The cells become more numerous and different types appear as the collagen fibrils increase in number and density. Through gaps in the thickened and extensively folded basal lamina, frequent contacts between epithelial and connective tissue cells are established. Thereafter, with the progression of fold formation, the connective tissue cells become oriented according to their position relative to the fold structure. The basal lamina beneath the adult epithelium becomes thin after stage 62, while that beneath the larval epithelium remains thick. Upon the completion of metamorphosis, the connective tissue consists mainly of typical fibroblasts with definite orientation and numerous collagen fibrils. These observations indicate that developmental changes in the connective tissue, especially in the region close to the epithelium, are closely related spatiotemporarily to the transition from the larval to the adult epithelial form. This suggests that tissue interactions between the connective tissue and the epithelium play important roles in controlling the epithelial degeneration, proliferation, and differentiation during metamorphic climax.  相似文献   

11.
Epithelial origin of cutaneous anchoring fibrils   总被引:5,自引:3,他引:2       下载免费PDF全文
《The Journal of cell biology》1990,111(5):2109-2115
Anchoring fibrils are essential structural elements of the dermoepidermal junction and are crucial to its functional integrity. They are composed largely of type VII collagen, but their cellular origin has not yet been confirmed. In this study, we demonstrate that the anchoring fibrils are primarily a product of epidermal keratinocytes. Human keratinocyte sheets were transplanted to a nondermal connective tissue graft bed in athymic mice. De novo anchoring fibril formation was studied ultrastructurally by immunogold techniques using an antiserum specific for human type VII procollagen. At 2 d after grafting, type VII procollagen/collagen was localized both intracellularly within basal keratinocytes and extracellularly beneath the discontinuous basal lamina. Within 6 d, a subconfluent basal lamina had developed, and newly formed anchoring fibrils and anchoring plaques subjacent to the xenografts were labeled. Throughout the observation period of the experiment, the maturity, population density, and architectural complexity of anchoring fibrils beneath the human epidermal graft continuously increased. Identical findings were obtained using xenografts cultivated from cloned human keratinocytes, eliminating the possibility of contributions to anchoring fibril regeneration from residual human fibroblasts. Immunolabeling was not observed at the mouse dermoepidermal junction at any time. These results demonstrate that the type VII collagen of human cutaneous anchoring fibrils and plaques is secreted by keratinocytes and can traverse the epidermal basal lamina and that the fibril formation can occur in the absence of cells of human dermal origin.  相似文献   

12.
A rat epidermal keratinocyte (REK) line which exhibits histodifferentiation nearly identical to the native epidermis when cultured at an air-liquid interface was used to study the metabolism of hyaluronan, the major intercellular macromolecule present in basal and spinous cell layers. Two different support matrices were used: reconstituted collagen fibrils with and without a covering basal lamina previously deposited by canine kidney cells. REKs formed a stratified squamous, keratinized epithelium on both support matrices. Hyaluronan and its receptor, CD44, colocalized in the basal and spinous layers similar to their distribution in the native epidermis. Most (approximately 75%) of the hyaluronan was retained in the epithelium when a basal lamina was present while most (approximately 80%) diffused out of the epithelium in its absence. While REKs on the two matrices synthesized hyaluronan at essentially the same rate, catabolism of this macromolecule was much higher in the epithelium on the basal lamina (half-life approximately 1 day, similar to its half-life in native human epidermis). The formation of a true epidermal compartment in culture bounded by the cornified layer on the surface and the basal lamina subjacent to the basal cells provides a good model within which to study epidermal metabolism.  相似文献   

13.
The primary stroma of the cornea of the chick embryo contains a cell-free orthogonal ply of collagen fibrils which is delineated clearly by Gomori's silver stain for reticulin and has, in miniature, the same fibrous architecture as the mature stroma. The collagen of this matrix is synthesized by the basal cells of the corneal epithelium and deposited beneath them a layer at a time.  相似文献   

14.
Mandibular first molars in mice ranging in age from 18 days prenatal to 5 days postnatal were used for light and electron microscopic examinations of the enamel-free area (EFA) during development of the occlusal cusp (mesiobuccal cusp). Notable morphological changes in the inner enamel epithelium and the cells of the stratum intermedium were observed. At prenatal age of 18 days, the inner enamel epithelium of the EFA (EFA epithelium) was composed of a layer of columnar cells and covered by the cells of the stratum intermedium. Two days after birth, the EFA epithelium was made up largely of preameloblasts, with mitochondria located in the proximal side of the cells toward the stratum intermedium. The cells of the stratum intermedium were irregularly shaped, with wide intercellular spaces between them. At a postnatal age of 3 days, most of the EFA epithelial cells resembled maturation-stage ameloblasts, being short and columnar in shape and having nuclei located in their proximal side. Distal cell membranes were folded, and mitochondria were scattered throughout the cytoplasm. In 4-day-old mice, the EFA epithelium was found to be formed of short columnar or cuboidal cells with distinct intercellular spaces. The cells of the stratum intermedium could no longer be detected, and cells of the EFA epithelium could not be distinguished from those of the stellate reticulum. Odontoblasts of the EFA were arranged and polarized parallel to the basal lamina, and odontoblastic processes extended toward the cusp tip. The orientation of thin and thick collagen fibers within predentin and dentin was also parallel to the basal lamina. Even after dentin mineralization, disrupted basal lamina and long, aperiodic, fine fibrils were found between the epithelium and the dentin. Following the disappearance of the basal lamina and fine fibrils, stippled material and crystals appeared on the dentin surface. The mineralized matrix, which x-ray microanalytical energy peaks identified as containing calcium and phosphorus, was continuous with enamel in the distal slope of the cusp at the cusp tip. Thus, the inner enamel epithelium of the EFA differentiated into secretory cells capable of enamel-like matrix formation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The morphology of extracellular matrix (ECM) components and of the cell organelles, particularly the Golgi complex and its derived structures, implicated in the production of ECM in the chick embryonic notochord have been studied by transmission electron microscopy. Isolated notochordal fragments were cultured in suspension in liquid medium. Native striated collagen fibrils with a period of 540 A were observed in the perinotochordal sheath. Fine granular and filamentous materials suggestive of proteoglycans have been observed in intercellular spaces and under the basal lamina of the notochordal sheath. Golgi mature vesicles with structures resembling the previously described segment-long-spacing (SLS)-like aggregates and secretory vesicles probably containing proteoglycans or condensed collagen precursors have also been observed.  相似文献   

16.
花背蟾蜍角膜早期形态发生中胶原合成的放射自显影研究   总被引:2,自引:1,他引:2  
冯伯森  孙颖 《动物学报》1990,36(1):52-57
本实验以~3H-脯氨酸为标记物,用放射自显影方法研究了花背蟾蜍眼的早期发育中胶原的合成、分布以及对角膜早期形态发生的作用。结果表明,角膜上皮从开始形成即合成胶原,并在角膜上皮基底面聚积。在角膜开始透明时,角膜上皮、内角膜和晶状体的胶原合成速率都明显增加,提示与角膜分化密切相关。  相似文献   

17.
Summary Chick embryos at developmental stages up to primitive streak formation were fixed in a mixture of tannic acid and glutaraldehyde. A basal lamina was present in the unincubated embryo and consisted of a lucent lamina interna and a lamina densa. At the primitive streak stage the lamina densa showed a periodicity of stained elements. Densely stained materials were present on the cell surfaces lining the cavity between the epiblast and endoblast, and on the mesoderm cells within this cavity. Considerable amounts of extracellular material were observed in the cavity. Hyaluronidase treatment removed the cell surface and extracellular material, indicating that hyaluronic acid is a major component. This enzyme disrupted the basal lamina, leaving a fibrillar remnant with no periodic structure. It is therefore suggested that the dense periodicities consist of glycosaminoglycan built on an enzyme-resistant framework which is probably collagen. Enzyme-resistant fibrils, presumably collagen precursors, are present elsewhere within the tissue spaces.  相似文献   

18.
The development of the lens capsule (LC) of mouse embryos was investigated between days 12 and 19 of gestation using immunomorphological (collagen type I, II, III or IV, laminin, BL-heparan sulfate, fibronection) and electron microscopic techniques. The lens capsule contains the typical components (collagen type IV, laminin and BL-heparan sulfate) of the basal lamina (BL) and can therefore be considered as thickened BL. Tannic acid fixation is especially suited for an electron microscopic demonstration of the lens capsule. The development of the lens capsule starts on day 12 of gestation. Its thickening is due to BL accumulation from the outside. This mode of thickening can be explained by the tendency to two-dimensional self assembly of collagen type IV. Electron-dense granules occur in the basal cytoplasm of lens epithelial cells. These granules can be considered as secretion granules. Their increased occurrence towards the end of gestation is attributed to a delayed secretion rather than to an increased synthesis.  相似文献   

19.
Early development of the hind limb of Xenopus (stages 44–48) has been analyzed at the level of ultrastructure with emphasis on differentiation of extracellular matrix components and intercellular contacts. By stages 44–45, mesenchyme is separated from prospective bud epithelium by numerous adepidermal granules in a subepithelial compartment (the lamina lucida), a continuous basal lamina and several layers of collagen (the basement lamella). Tricomplex stabilization of amphoteric phospholipid demonstrates that each adepidermal granule consists of several membranelike layers (electron-lucent band 25–30 Å; electron-dense band 20–40 Å), which are usually parallel to the basal surface of adjacent epithelial cells. Collagen fibrils are interconnected by filaments (35 Å in diameter) which stain with ruthenium red. Epithelial cells possess junctional complexes at their superficial borders, numerous desmosomes at apposing cell membranes and hemidesmosomes at their basal surface. Mesenchymal cells predominantly exhibit close contacts (100–150 Å separation) with few focal tight junctions at various areas of their surface. By stages 47–48, adepidermal granules are absent beneath bud epithelium and layers of collagen in the basement lamella lose filamentous cross-linking elements. Filopodia of mesenchymal cells penetrate the disorganized matrix and abut the basal lamina. Hemidesmosomes disappear at the basal surface of the epidermis and mesenchymal cells immediately subjacent to epithelium exhibit focal tight junctions and gap junctions at their lateral borders. These structural changes may be instrumental in the epitheliomesenchymal interactions of early limb development. Degradation of oriented collagenous lamellae permits direct association of mesenchymal cell surfaces (filopodia) with surface-associated products of epithelial cells (organized into the basal lamina). Development of structural pathways for intercellular ion and metabolite transport in mesenchyme may coordinate events specific to limb morphogenesis.  相似文献   

20.
The present study was undertaken to determine whether or not physical contact with the substratum is essential for the stimulatory effect of extracellular matrix (ECM) on corneal epithelial collagen synthesis. Previous studies showed that collagenous substrata stimulate isolated epithelia to produce three times as much collagen as they produce on noncollagenous substrate; killed collagenous substrata (e.g., lens capsule) are just as effective as living substrata (e.g., living lens) in promoting the production of new corneal stroma in vitro. In the experiments to be reported here, corneal epithelia were placed on one side of Nucleopore filters of different pore sizes and killed lens capsule on the other, with the expectation that contact of the reacting cells with the lens ECM should be limited by the number and size of the cell processes that can tranverse the pores. Transfilter cultures were grown for 24 h in [3H]proline-containing median and incorporation of isotope into hot trichloroacetic acid-soluble protein was used to measure corneal epithelial collagen production. Epithelial collagen synthesis increases directly as the size of the pores in the interposed filter increases and decreases as the thickness of the filter layer increases. Cell processes within Nucleopore filters were identified with the transmission electron microscope with difficulty; with the scanning electron microscope, however, the processes could easily be seen emerging from the undersurface of even 0.1-mum pore size filters. Morphometric techniques were used to show that cell surface area thus exposed to the underlying ECM is linearly correlated with enhancement of collagen synthesis. Epithelial cell processes did not pass through ultrathin (25-mum thick) 0.45-mum pore size Millipore filters nor did "induction" occur across them. The results are discussed in relation to current theories of embryonic tissue interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号