共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Garry Sunter William E. Gardiner Ann E. Rushing Stephen G. Rogers David M. Bisaro 《Plant molecular biology》1987,8(6):477-484
Tomato golden mosaic virus (TGMV), a member of the geminivirus group, has a genome consisting of two DNA molecules designated the A and B components. Both are required for infectivity in healthy plants, although the former has been shown to replicate independently in transgenic plants containing tandem direct repeats of the A genome component. In the studies presented here, petunia plants transgenic for either both components (A×B hybrids) or the A component alone were examined for the presence of virus particles and encapsidated, single stranded viral DNA. The results of DNase protection experiments and direct observation of extracts from transgenic plants by electron microscopy indicate that single stranded TGMV DNA is in both cases packaged into paired particles identical to those obtained from virus-infected plants. DNase-treated virions isolated from A×B hybrid petunia are infectious when inoculated onto healthy Nicotiana benthamiana. Likewise, virions obtained from transgenic A petunia are infectious for plants transgenic for the B component.Our observations of TGMV replication in transgenic plants indicate that TGMV A DNA encodes all viral functions necessary for the replication and encapsidation of viral DNA. The possible role of the B component in TGMV replication is discussed. 相似文献
3.
4.
Molecular characterisation of subgenomic single-stranded and double-stranded DNA forms isolated from plants infected with tomato golden mosaic virus. 总被引:7,自引:3,他引:7
下载免费PDF全文

A subgenomic single-stranded DNA present in particles of the geminivirus, tomato golden mosaic virus, has been shown by electron microscope heteroduplex mapping and Southern hybridisation analysis to consist of circular molecules, ca. 1.2 kb in size, derived from the smaller of the two genomic DNA components, DNA B, by deletion of open reading frame (ORF) BR1 and the C-terminal portion of ORF BL1. A covalently closed circular, supercoiled, double-stranded form of the subgenomic DNA has been isolated from virus-infected plants and cloned into pEMBL9. Analysis of the sequence of 22 clones across the deletion boundaries revealed only four different deletion boundaries, derived from four different left hand borders and three different right hand borders. Each border was within a region of 11 nucleotides and gave rise to a narrow size range (1248-1261 nucleotides) for the population of 22 subgenomic DNAs. However apparently smaller subgenomic DNAs were sometimes formed when plants were inoculated with cloned subgenomic DNA, or a construct derived from a subgenomic DNA in which a neomycin phosphotransferase gene had been inserted, together with the genomic DNA components. Mechanisms to account for the size, specificity and formation of the subgenomic DNA are discussed. 相似文献
5.
DNA sequences essential for replication of the B genome component of tomato golden mosaic virus. 总被引:10,自引:5,他引:10
下载免费PDF全文

The genome of the geminivirus tomato golden mosaic virus (TGMV) is divided between two DNA components, designated A and B, which differ in sequence except for a 230-nucleotide common region. The A genome component is known to encode viral functions necessary for viral DNA replication, while the B genome component specifies functions necessary for spread of the virus through the infected plant. To identify cis-acting sequences required for viral DNA replication, several mutants were constructed by the introduction of small insertions into TGMV B at selected sites within and just outside the common region. Other mutants had the common region inverted or deleted. All of the mutants were tested for their effects on infectivity and DNA replication in whole plants and leaf discs. Our results indicate that the common region in its correct orientation is required for infectivity and for replication of TGMV B. Furthermore, the conserved hairpin loop sequence located within the TGMV common region and found in all geminiviruses is necessary for DNA replication, and may be part of the viral replication origin. 相似文献
6.
Jacquemond Mireille Teycheney Pierre-Yves Carrère Isabelle Navas-Castillo Jesus Tepfer Mark 《Molecular breeding : new strategies in plant improvement》2001,8(1):85-94
Tobacco plants expressing a transgene encoding the coat protein (CP) of a subgroup I strain of cucumber mosaic cucumovirus (CMV), I17F, were not resistant to strains of either subgroup I or II. In contrast, the expression of the CP of a subgroup II strain, R, conferred substantial resistance, but only towards strains of the same subgroup. When protection was observed, the levels of resistance were similar when plants were inoculated with either virions or viral RNA, but resistance was more effective when plants were inoculated with viruliferous aphids. Resistance was not dependent on inoculum strength and was expressed as a recovery phenotype not yet described for plants expressing a CMV CP gene. Recovery could be observed either early in infection (less than one week after inoculation) or later (4 to 5 weeks after inoculation). In plants showing early recovery, mild symptoms were observed on the inoculated leaves, and in some cases symptoms developed on certain lower systemically infected leaves, but the upper leaves were symptomless and virus-free. Late recovery corresponded to the absence of both symptoms and virus in the upper leaves of plants that were previously fully infected. Northern blot analyses of resistant plants suggested that a gene silencing mechanism was not involved in the resistance observed. 相似文献
7.
Molecular cloning and characterisation of the two DNA components of tomato golden mosaic virus. 总被引:6,自引:8,他引:6
下载免费PDF全文

We report the molecular cloning of the tomato golden mosaic virus (TGMV) genome in the E. coli plasmid pAT 153. The results of this work conclusively show that TGMV DNA consists of two components (designated A and B) of almost, but not exactly, the same size. Four different recombinant plasmids are described, two containing component A in opposite orientation and two containing component B in opposite orientation. Southern blot analysis revealed little sequence homology between A and B and showed both components to be equally represented in viral and intracellular DNA forms. Detailed restriction maps of the cloned DNAs are presented, and a comparison of these with digests of intracellular viral dsDNA indicates that the former are full-length faithful copies of TGMV DNA. This is the first report of the cloning of a geminivirus genome. 相似文献
8.
Extreme resistance to cucumber mosaic virus (CMV) in transgenic tomato expressing one or two viral coat proteins 总被引:2,自引:0,他引:2
Kaniewski Wojciech Ilardi Vincenza Tomassoli Laura Mitsky T. Layton J. Barba Marina 《Molecular breeding : new strategies in plant improvement》1999,5(2):111-119
For the production of broad commercial resistance to cucumber mosaic virus (CMV) infection, tomato plants were transformed with a combination of two coat protein (CP) genes, representing both subgroups of CMV. The CP genes were cloned from the CMV-D strain and Italian CMV isolates (CMV-22 of subgroup I and CMV-PG of subgroup II) which have been shown to produce severe disease symptoms. Four plant transformation vectors were constructed: pMON18774 and pMON18775 (CMV-D CP), pMON18831 (CMV-PG CP) and pMON18833 (CMV-22 CP and CMV-PG CP). Transformed R0 plants were produced and lines were selected based on the combination of three traits: CMV CP expression at the R0 stage, resistance to CMV (subgroup I and/or II) infection in growth chamber tests in R1 expressing plants, and single transgene copy, based on R1 segregation. The results indicate that all four vector constructs generated plants with extremely high resistant to CMV infection. The single and double gene vector construct produced plants with broad resistance against strains of CMV from both subgroups I and II at high frequency. The engineered resistance is of practical value and will be applied for major Italian tomato varieties. This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
9.
Overlapping open reading frames revealed by complete nucleotide sequencing of turnip yellow mosaic virus genomic RNA. 总被引:10,自引:5,他引:10
下载免费PDF全文

The complete nucleotide sequence of turnip yellow mosaic virus (TYMV) genomic RNA has been determined on a set of overlapping cDNA clones using a sequential sequencing strategy. The RNA is 6318 nucleotides long, excluding the cap structure. The genome organization deduced from the sequence confirms previous results of in vitro translation. A novel open reading frame (ORF) putatively encoding a Pro-rich and very basic 69K (K = kilodalton) protein is detected at the 5' end of the genome. It is initiated at the first AUG codon on the RNA and overlaps the major ORF that encodes the non structural 206K (previously referred to as 195K) protein of TYMV; its function is unknown. Several amino acid consensus sequences already described among plant and animal viruses are also found in the TYMV-encoded polypeptides. A comparison with other viruses whose RNA sequence is known leads to the conclusion that TYMV belongs to the "Sindbis-like" supergroup of viruses and could be related to Semliki forest virus. 相似文献
10.
11.
Phosphorylation of varicella-zoster virus open reading frame (ORF) 62 regulatory product by viral ORF 47-associated protein kinase.
下载免费PDF全文

Varicella-zoster virus (VZV) encodes within its unique long region a gene product with protein kinase motifs. In a previous study, we demonstrated that immunoprecipitated VZV open reading frame (ORF) 47 protein was associated with a functional protein kinase activity, on the basis of its ability to both autophosphorylate and phosphorylate artificial substrates. To further define potential substrates of ORF 47-associated protein kinase, we analyzed individual viral phosphoproteins to determine whether any were modified by the viral protein kinase. These candidates included gene products of VZV ORFs 4, 61, 62, and 63, which are homologs of herpes simplex virus type 1 (HSV-1) immediate-early proteins. Each of the above VZV proteins was coimmunoprecipitated with ORF 47 kinase, and the immune complex was incubated in a protein kinase assay. Under these conditions, only the VZV immediate-early ORF 62 protein was phosphorylated by ORF 47-associated protein kinase. The specificity of this phosphorylation event was analyzed by a competition assay in which a recombinant ORF 47 protein lacking enzymatic activity was able to reduce the amount of phosphorylation of ORF 62 protein by VZV ORF 47-associated kinase. To provide an additional evaluation of specificity, the experiment was repeated with [32P]GTP instead of [32P]ATP, because the VZV ORF 47 kinase has the distinctive property of using GTP as a phosphate donor. Again the ORF 62 substrate was phosphorylated. In summary, the VZV ORF 47-associated protein kinase (the HSV-1 UL13 homolog) catalyzed the in vitro phosphorylation of the VZV ORF 62 protein, the homolog of the HSV-1 ICP4 regulatory protein. 相似文献
12.
Genetic analysis of the tomato golden mosaic virus. II. The product of the AL1 coding sequence is required for replication. 总被引:21,自引:9,他引:21
下载免费PDF全文

J S Elmer L Brand G Sunter W E Gardiner D M Bisaro S G Rogers 《Nucleic acids research》1988,16(14B):7043-7060
Tomato golden mosaic virus (TGMV) belongs to the geminivirus subgroup that is characterized by a split genome consisting of two single-stranded circular DNAs. The TGMV A genome component encodes the virus coat protein as well as all of the functions necessary for viral DNA replication. Analysis of the nucleotide sequence indicates that the TGMV A component has, in addition to the coat protein encoding ORF, four overlapping open reading frames (ORFs) with the potential to encode proteins of greater than 10 kD. We have investigated the functions of these putative proteins in both symptom formation and DNA replication by creating mutations in each of the ORFs. Our results show that the AL4 ORF, which is encoded within the N-terminal region of ORF AL1, is not essential for normal virus infection. In contrast, we find that disruption of the AL3 ORF results in delay and attenuation of symptom formation. We also report that the products of the AL1 and AL2 ORFs are absolutely required for symptom formation. Studies of DNA replication show that only the AL1 open reading frame is essential for viral DNA synthesis. The significance of these results for the development of vectors from the geminiviruses is discussed. 相似文献
13.
Gillette WK Esposito D Frank PH Zhou M Yu LR Jozwik C Zhang X McGowan B Jacobowitz DM Pollard HB Hao T Hill DE Vidal M Conrads TP Veenstra TD Hartley JL 《Molecular & cellular proteomics : MCP》2005,4(11):1647-1652
We have developed a pooled ORF expression technology, POET, that uses recombinational cloning and proteomic methods (two-dimensional gel electrophoresis and mass spectrometry) to identify ORFs that when expressed are likely to yield high levels of soluble, purified protein. Because the method works on pools of ORFs, the procedures needed to subclone, express, purify, and assay protein expression for hundreds of clones are greatly simplified. Small scale expression and purification of 12 positive clones identified by POET from a pool of 688 Caenorhabditis elegans ORFs expressed in Escherichia coli yielded on average 6 times as much protein as 12 negative clones. Larger scale expression and purification of six of the positive clones yielded 47-374 mg of purified protein/liter. Using POET, pools of ORFs can be constructed, and the pools of the resulting proteins can be analyzed and manipulated to rapidly acquire information about the attributes of hundreds of proteins simultaneously. 相似文献
14.
15.
Identification of novel DNA forms in tomato golden mosaic virus infected tissue. Evidence for a two component viral genome. 总被引:8,自引:10,他引:8
下载免费PDF全文

Extracts obtained from cells infected with the geminivirus tomato golden mosaic (TGMV) are shown to contain, in addition to viral single-stranded DNA, several novel species of virus-specific single- and double- stranded DNA (ss and ds DNA). The results of nuclease studies and electron microscopy suggest that three of the intracellular DNAs are unit-genome length duplexes of closed circular, relaxed circular, and linear form. The remaining ds DNA species are of high molecular weight and appear to be concatamers consisting of two or more unit-length circular ds TGMV DNA resulted in fragments whose combined size is twice the unit-genome length. Thus ds TGMV is composed of two components of nearly identical size but different nucleotide sequence. 相似文献
16.
A 100-kilodalton polypeptide encoded by open reading frame (ORF) 1b of the coronavirus infectious bronchitis virus is processed by ORF 1a products.
下载免费PDF全文

The genome-length mRNA (mRNA 1) of the coronavirus infectious bronchitis virus (IBV) contains two large open reading frames (ORFs), 1a and 1b, with the potential to encode polypeptides of 441 and 300 kDa, respectively. The downstream ORF, ORF 1b, is expressed by a ribosomal frameshifting mechanism. In an effort to detect viral polypeptides encoded by ORF 1b in virus-infected cells, immunoprecipitations were carried out with a panel of region-specific antisera. A polypeptide of approximately 100 kDa was precipitated from IBV-infected, but not mock-infected, Vero cells by one of these antisera (V58). Antiserum V58 was raised against a bacterially expressed fusion protein containing polypeptide sequences encoded by ORF 1b nucleotides 14492 to 15520; it recognizes specifically the corresponding in vitro-synthesized target protein. A polypeptide comigrating with the 100,000-molecular-weight protein (100K protein) identified in infected cells was also detected when the IBV sequence from nucleotides 8693 to 16980 was expressed in Vero cells by using a vaccinia virus-T7 expression system. Deletion analysis revealed that the sequence encoding the C terminus of the 100K polypeptide lies close to nucleotide 15120; it may therefore be generated by proteolysis at a potential QS cleavage site encoded by nucleotides 15129 to 15135. In contrast, expression of IBV sequences from nucleotides 10752 to 16980 generated two polypeptides of approximately 62 and 235 kDa, which represent the ORF 1a stop product and the 1a-1b fused product generated by a frameshifting mechanism, respectively, but no processed products were observed. Since the putative picornavirus 3C-like proteinase domain is located in ORF 1a between nucleotides 8937 and 9357, this observation suggests that deletion of the picornavirus 3C-like proteinase domain and surrounding regions abolishes processing of the 1b polyprotein. In addition, the in vitro translation and in vivo transfection studies also indicate that the ORF 1a region between nucleotides 8763 and 10720 contains elements that down-regulate the expression of ORF 1b. 相似文献
17.
H. Czosnek A. Kheyr-Pour B. Gronenborn E. Remetz M. Zeidan A. Altman H. D. Rabinowitch S. Vidavsky N. Kedar Y. Gafni D. Zamir 《Plant molecular biology》1993,22(6):995-1005
The leaf disc agroinoculation system was applied to study tomato yellow leaf curl virus (TYLCV) replication in explants from susceptible and resistant tomato genotypes. This system was also evaluated as a potential selection tool in breeding programmes for TYLCV resistance. Leaf discs were incubated with a head-to-tail dimer of the TYLCV genome cloned into the Ti plasmid ofAgrobacterium tumefaciens. In leaf discs from susceptible cultivars (Lycopersicon esculentum) TYLCV single-stranded genomic DNA and its double-stranded DNA forms appeared within 2–5 days after inoculation. Whiteflies (Bemisia tabaci) efficiently transmitted the TYLCV disease to tomato test plants following acquisition feeding on agroinoculated tomato leaf discs. This indicates that infective viral particles have been produced and have reached the phloem cells of the explant where they can be acquired by the insects. Plants regenerated from agroinfected leaf discs of sensitive tomato cultivars exhibited disease symptoms and contained TYLCV DNA concentrations similar to those present in field-infected tomato plants, indicating that TYLCV can move out from the leaf disc into the regenerating plant. Leaf discs from accessions of the wild tomato species immune to whitefly-mediated inoculation,L. chilense LA1969 andL. hirsutum LA1777, did not support TYLCV DNA replication. Leaf discs from plants tolerant to TYLCV issued from breeding programmes behaved like leaf discs from susceptible cultivars.The Hebrew University of Jerusalem, Faculty of Agriculture, Department of Field and Vegetable Crops 相似文献
18.
19.
Single-amino-acid substitutions in open reading frame (ORF) 1b-nsp14 and ORF 2a proteins of the coronavirus mouse hepatitis virus are attenuating in mice
下载免费PDF全文

A reverse genetic system was recently established for the coronavirus mouse hepatitis virus strain A59 (MHV-A59), in which cDNA fragments of the RNA genome are assembled in vitro into a full-length genome cDNA, followed by electroporation of in vitro-transcribed genome RNA into cells with recovery of viable virus. The "in vitro-assembled" wild-type MHV-A59 virus (icMHV-A59) demonstrated replication identical to laboratory strains of MHV-A59 in tissue culture; however, icMHV-A59 was avirulent following intracranial inoculation of C57BL/6 mice. Sequencing of the cloned genome cDNA fragments identified two single-nucleotide mutations in cloned genome fragment F, encoding a Tyr6398His substitution in open reading frame (ORF) 1b p59-nsp14 and a Leu94Pro substitution in the ORF 2a 30-kDa protein. The mutations were repaired individually and together in recombinant viruses, all of which demonstrated wild-type replication in tissue culture. Following intracranial inoculation of mice, the viruses encoding Tyr6398His/Leu94Pro substitutions and the Tyr6398His substitution alone demonstrated log10 50% lethal dose (LD50) values too great to be measured. The Leu94Pro mutant virus had reduced but measurable log10 LD5), and the "corrected" Tyr6398/Leu94 virus had a log10 LD50 identical to wild-type MHV-A59. The experiments have defined residues in ORF 1b and ORF 2a that attenuate virus replication and virulence in mice but do not affect in vitro replication. The results suggest that these proteins serve roles in pathogenesis or virus survival in vivo distinct from functions in virus replication. The study also demonstrates the usefulness of the reverse genetic system to confirm the role of residues or proteins in coronavirus replication and pathogenesis. 相似文献
20.
Replication protein A (RPA) is a heterotrimeric protein composed of 70-, 34-, and 14-kDa subunits that has been shown to be required for DNA replication, repair, and homologous recombination. We have previously shown preferential binding of recombinant human RPA (rhRPA) to duplex cisplatin-damaged DNA compared with the control undamaged DNA (Patrick, S. M., and Turchi, J. J. (1998) Biochemistry 37, 8808-8815). Here we assess the binding of rhRPA to DNA containing site-specific cisplatin-DNA adducts. rhRPA is shown to bind 1.5-2-fold better to a duplex 30-base pair substrate containing a single 1,3d(GpXpG) compared with a 1,2d(GpG) cisplatin-DNA intrastrand adduct, consistent with the difference in thermal stability of DNA containing each adduct. Consistent with these data, a 21-base pair DNA substrate containing a centrally located single interstrand cisplatin cross-link resulted in less binding than to the undamaged control DNA. A series of experiments measuring rhRPA binding and concurrent DNA denaturation revealed that rhRPA binds duplex cisplatin-damaged DNA via the generation of single-stranded DNA. Single-strand DNA binding experiments show that rhRPA binds 3-4-fold better to an undamaged 24-base DNA compared with the same substrate containing a single 1,2d(GpG) cisplatin-DNA adduct. These data are consistent with a low affinity interaction of rhRPA with duplex-damaged DNA followed by the generation of single-stranded DNA and then high affinity binding to the undamaged DNA strand. 相似文献