首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
? Premise of the study: An overarching but vigorously debated plant model proposed by the West, Brown, Enquist (WBE) theory predicts the scaling relationships for numerous botanical phenomena. However, few studies have evaluated this model's basic assumptions, one of which is that natural selection has resulted in hierarchal networks that minimize the energy required to distribute nutrients internally and have thus produced highly efficient organisms. ? Methods: If these core assumptions are correct, an \"idealized\" plant complying with all of the scaling relationships emerging from the WBE plant model should rapidly outcompete other plants, even those that differ slightly from it. To test this reasoning, a computer model was used to simulate competition between an idealized WBE plant, a generic \"average\" angiosperm (GA), and one of seven variants of the idealized WBE plant, each being similar to the GA in one of the GA's scaling parameters. ? Key results: Replicate simulations show that the idealized WBE plant rapidly outcompetes all other plants under light-shade and open-field conditions. However, changing only one of the WBE's scaling parameters results in death or in the coexistence of WBE and GA plants. ? Conclusions: These simulations support a core assumption of the WBE plant model and suggest why this idealized plant has not evolved.  相似文献   

2.
  总被引:2,自引:0,他引:2  
Tropical forests vary substantially in the densities of trees of different sizes and thus in above-ground biomass and carbon stores. However, these tree size distributions show fundamental similarities suggestive of underlying general principles. The theory of metabolic ecology predicts that tree abundances will scale as the −2 power of diameter. Demographic equilibrium theory explains tree abundances in terms of the scaling of growth and mortality. We use demographic equilibrium theory to derive analytic predictions for tree size distributions corresponding to different growth and mortality functions. We test both sets of predictions using data from 14 large-scale tropical forest plots encompassing censuses of 473 ha and > 2 million trees. The data are uniformly inconsistent with the predictions of metabolic ecology. In most forests, size distributions are much closer to the predictions of demographic equilibrium, and thus, intersite variation in size distributions is explained partly by intersite variation in growth and mortality.  相似文献   

3.
Gestation duration and lactation duration are usually treated as independently evolving traits in primates, but the metabolic theory of ecology (MTE) suggests both durations should be determined by metabolic rate. We used phylogenetic generalized least-squares linear regression to test these different perspectives. We found that the allometries of the durations are divergent from each other and different from the scaling exponent predicted by the MTE (0.25). Gestation duration increases much more slowly (0.06 < m < 0.12), and lactation duration much more quickly (0.36 < m < 0.52) with body mass than the MTE predicts. By contrast, we found that the combined duration of gestation and lactation is consistent with the MTE''s predictions (0.22 < m < 0.35). These results suggest that gestation duration and lactation duration might best be viewed as distinct but coupled adaptations. When transferring energy to their offspring, primate mothers must meet metabolically dictated physiological requirements while optimizing the timing of the switch from gestation to lactation in relation to some as-yet-unidentified body-size-related factor.  相似文献   

4.
Scaling relationship between tree respiration rates and biomass   总被引:1,自引:0,他引:1  
The WBE theory proposed by West, Brown and Enquist predicts that larger plant respiration rate, R, scales to the three-quarters power of body size, M. However, studies on the R versus M relationship for larger plants (i.e. trees larger than saplings) have not been reported. Published respiration rates of field-grown trees (saplings and larger trees) were examined to test this relationship. Our results showed that for larger trees, aboveground respiration rates RA scaled as the 0.82-power of aboveground biomass MA, and that total respiration rates RT scaled as the 0.85-power of total biomass MT, both of which significantly deviated from the three-quarters scaling law predicted by the WBE theory, and which agreed with 0.81–0.84-power scaling of biomass to respiration across the full range of measured tree sizes for an independent dataset reported by Reich et al. (Reich et al. 2006 Nature 439, 457–461). By contrast, R scaled nearly isometrically with M in saplings. We contend that the scaling exponent of plant metabolism is close to unity for saplings and decreases (but is significantly larger than three-quarters) as trees grow, implying that there is no universal metabolic scaling in plants.  相似文献   

5.
  总被引:1,自引:0,他引:1  
Forest biophysical structure – the arrangement and frequency of leaves and stems – emerges from growth, mortality and space filling dynamics, and may also influence those dynamics by structuring light environments. To investigate this interaction, we developed models that could use LiDAR remote sensing to link leaf area profiles with tree size distributions, comparing models which did not (metabolic scaling theory) and did allow light to influence this link. We found that a light environment‐to‐structure link was necessary to accurately simulate tree size distributions and canopy structure in two contrasting Amazon forests. Partitioning leaf area profiles into size‐class components, we found that demographic rates were related to variation in light absorption, with mortality increasing relative to growth in higher light, consistent with a light environment feedback to size distributions. Combining LiDAR with models linking forest structure and demography offers a high‐throughput approach to advance theory and investigate climate‐relevant tropical forest change.  相似文献   

6.
7.
植物代谢速率与个体生物量关系研究进展   总被引:3,自引:0,他引:3       下载免费PDF全文
植物的各项生理生态功能(例如,呼吸、生长和繁殖)都与个体生物量成异速生长关系。West, Brown及Enquist基于分形网络结构理论所提出的WBE模型认为:植物的代谢(呼吸)速率正比于个体生物量的3/4次幂。然而,恒定的“3/4异速生长指数”与实测数据、植物生理生态学等研究之间存在矛盾,引发激烈的争论。论文分析了不同回归方法对代谢指数的影响,重点对植物代谢速率与个体生物量异速生长关系研究进展进行了综述,分析并得出了植物代谢指数在小个体时接近1.0,并随着生物量的增加而系统减小,且其密切依赖于氮含量的调控的结论。据此,提出了进一步深入研究植物代谢速率个体生物量关系需要解决的一些科学问题。  相似文献   

8.
Debate on the mechanism(s) responsible for the scaling of metabolic rate with body size in mammals has focused on why the maximum metabolic rate (VO2max ) appears to scale more steeply with body size than the basal metabolic rate (BMR). Consequently, metabolic scope, defined as VO2max/BMR, systematically increases with body size. These observations have led some to suggest that VO2max, and BMR are controlled by fundamentally different processes, and to discount the generality of models that predict a single power-law scaling exponent for the size dependence of the metabolic rate. We present a model that predicts a steeper size dependence for VO2max than BMR based on the observation that changes in muscle temperature from rest to maximal activity are greater in larger mammals. Empirical data support the model's prediction. This model thus provides a potential theoretical and mechanistic link between BMR and VO2 max.  相似文献   

9.
    
Herbivory rates have classically been hypothesized to decrease from the tropics towards higher latitudes because the more benign abiotic conditions in tropical systems foster greater ecosystem complexity including greater intensity of biotic interactions. However, attempts to quantify latitudinal patterns of herbivory often fail to support this hypothesis. While biases have been offered as explanations for null results, here, we argue that framing the question of latitudinal variation in herbivory around nutrient and energetic constraints of insect herbivores and plants may provide mechanistic explanations of latitudinal herbivory patterns. As a case study, we focused on sodium as an uncoupled nutrient between herbivore and plant communities: sodium is a key limiting micronutrient for herbivore neural and muscular development while present at orders of magnitude lower concentrations in plants. We compared sodium deposition with latitude, mean annual temperature (MAT) and actual evapotranspiration (measure of primary productivity, AET) in their ability to predict consumed percentage leaf area from published datasets. Leaf percent herbivory increased with sodium deposition and MAT and decreased with latitude but was unrelated to AET. Sodium had comparable effect size and predictive ability to either MAT or latitude. Additionally, herbivory was highest in locales with both high sodium deposition and high MAT. Our hypothesis that geographic variation in herbivory is driven by an interaction of unrestrictive temperature environments (high MAT) and limiting nutrient supply to herbivores (high sodium deposition) was strongly supported. We propose that greater generality, predictability and theoretical development on geographic variation in herbivory will arise from a refocus on the biophysical constraints (e.g. productivity, micronutrient availability, leaf mass consumed) that ultimately control consumer interactions rather than latitude per se. This refocus is likely to open new hypotheses for the evolution of defense syndromes across plant populations and communities based on the specific geography of limiting nutrients.  相似文献   

10.
11.
Allometric scaling relationships enable exploration of animal space-use patterns, yet interspecific studies cannot address many of the underlying mechanisms. We present the first intraspecific study of home range (HR) allometry relative to energetic requirements over several orders of magnitude of body mass, using as a model the predatory fish, pike Esox lucius. Analogous with interspecific studies, we show that space use increases more rapidly with mass (exponent = 1.08) than metabolic scaling theories predict. Our results support a theory that suggests increasing HR overlap with body mass explains many of these differences in allometric scaling of HR size. We conclude that, on a population scale, HR size and energetic requirement scale allometrically, but with different exponents.  相似文献   

12.
    
Abstract A recent article by Midgley and colleagues suggests that large trees give rise to inordinately high stand basal areas because they pack canopy space more efficiently than smaller trees. We argue that this phenomenon bears more relation to the fact that diameter increment is not necessarily accompanied by significant crown expansion during all stages of a tree's life. Using data from a canopy tree population in an old‐growth temperate forest, we found that crown area scaled as roughly the 3/5 power of trunk basal area. Rather than reflecting fixed scaling laws, we suggest that this pattern arises because of limited opportunities for crown expansion in dense stands. Old canopy trees in dense stands can thus accumulate large basal areas without occupying a commensurately large canopy area.  相似文献   

13.
    
Empirical studies indicate that the exponents governing the scaling of plant respiration rates (R) with respect to biomass (M) numerically vary between three‐fourth for adult plants and 1.0 for seedlings and saplings and are affected by nitrogen (N) and phosphorus (P) content. However, whether the scaling of R with respect to M (or N and P) varies among different phylogenetic groups (e.g., gymnosperms vs. angiosperms) or during the growing and dormant seasons remains unclear. We measured the whole‐plant R and M, and N and P content of the seedlings of four woody species during the growing season (early October) and the dormant season (January). The data show that (i) the scaling exponents of R versus M, R versus N, and R versus P differed significantly among the four species, but (ii), not between the growing and dormant seasons for each of the four species, although (iii) the normalization constants governing the scaling relationships were numerically greater for the growing season compared to the dormant season. In addition, (iv) the scaling exponents of R versus M, R versus N, and R versus P were numerically larger for the two angiosperm species compared to those of the two gymnosperm species, (v) the interspecific scaling exponents for the four species were greater during the growing season than in the dormant season, and (vi), interspecifically, P scaled nearly isometric with N content. Those findings indicate that the metabolic scaling relationships among R, M, N, and P manifest seasonal variation and differ between angiosperm and gymnosperm species, that is, there is no single, canonical scaling exponent for the seedlings of woody species.  相似文献   

14.
    
Major shifts in many ecosystem-level properties of tropical forests have been observed, but the processes driving these changes are poorly understood. The forest on Barro Colorado Island (BCI) exhibited a 20% decrease in the number of trees and a 10% increase in average diameter. Using a metabolism-based zero-sum framework, we show that increases in per capita resource use at BCI, caused by increased tree size and increased temperature, compensated for the observed declines in abundance. This trade-off between abundance and average resource use resulted in no net change in the rate resources are fluxed by the forest. Observed changes in the forest are not consistent with other hypotheses, including changes in overall resource availability and existing self-thinning models. The framework successfully predicts interrelated changes in size, abundance and temperature, indicating its utility for understanding changes in the structure and dynamics of ecosystems.  相似文献   

15.
16.
    
Abstract. The possible use of fire for the management of the Ankarafantsika Reserve in the northwest of Madagascar and of its surrounding area is studied. Within this savanna landscape large parts of the remaining dry forests still exist with a unique biotic diversity, both in terms of total number of species and endemism. Unfortunately, mainly man-induced uncontrolled fires threaten these forests. Actual and former fire regimes of the local communities are analysed. The use of fire is an integrated part of land use and is also governed by socio-cultural traditions. The impact of fire on the dynamics of dry forests and grass savannas is studied considering the specifics of different fire regimes. We propose that a deliberate and controlled use of fire respecting the vegetation stage and the defined objectives could be an appropriate management tool. The strategy of a fire management is elaborated considering both the conservation of biodiversity and improvement of the livelihood of the local population depending upon the Reserve's resources. Obviously, a sustainable management of the natural resources requires a substantial participation of the community.  相似文献   

17.
The response of tropical forests to global climate variability and change remains poorly understood. Results from long-term studies of permanent forest plots have reported different, and in some cases opposing trends in tropical forest dynamics. In this study, we examined changes in tree growth rates at four long-term permanent tropical forest research plots in relation to variation in solar radiation, temperature and precipitation. Temporal variation in the stand-level growth rates measured at five-year intervals was found to be positively correlated with variation in incoming solar radiation and negatively related to temporal variation in night-time temperatures. Taken alone, neither solar radiation variability nor the effects of night-time temperatures can account for the observed temporal variation in tree growth rates across sites, but when considered together, these two climate variables account for most of the observed temporal variability in tree growth rates. Further analysis indicates that the stand-level response is primarily driven by the responses of smaller-sized trees (less than 20 cm in diameter). The combined temperature and radiation responses identified in this study provide a potential explanation for the conflicting patterns in tree growth rates found in previous studies.  相似文献   

18.
1. Food resources for rearing young may influence insect populations. This is particularly true for insects that breed obligately on rare, ephemeral resources such as dung, fungi, or carrion. 2. Beetles in the genus Nicrophorus bury small vertebrate carcasses for rearing their young. Studies reviewed by Scott (1998) have found a positive relationship between carcass mass and total brood size. It is likely that access to carcasses suitable for breeding, and not food or mates, limits reproduction in both male and female Nicrophorus. Thus, small mammal densities could determine Nicrophorus population sizes. 3. The work reported here examined the relationship between Nicrophorus investigator (Coleoptera: Silphidae) population size and small mammal abundance at two sites over a 4‐year period. 4. Nicrophorus investigator buried and reared young on all the native small rodent species trapped at two sites in south‐western Colorado, U.S.A. (Peromyscus maniculatus, Microtus montanus, Zapus princeps, Tamias minimus, Thomomys talpoides). They preferred to bury and reproduce on rodent carcasses weighing between 16 and 48 g; rodents of this size represented 82% of captures. 5. Population sizes of N. investigator and small rodents were estimated simultaneously using mark‐recapture censuses over a 4‐year period. Considering only rodents within the size range used by N. investigator, the estimated small mammal biomass per hectare in one year and the beetle population size in the following year were correlated significantly.  相似文献   

19.
20.
    
The metabolic theory of ecology (MTE) endeavours to explain ecosystem structure and function in terms of the effects of temperature and body size on metabolic rate. In a recent paper (Wang et al., 2009, Proceedings of the National Academy of Sciences USA, 106 , 13388), we tested the MTE predictions of species richness using tree distributions in eastern Asia and North America. Our results supported the linear relationship between log‐transformed species richness and the inverse of absolute temperature predicted by the MTE, but the slope strongly depends on spatial scale. The results also indicate that there are more tree species in cold climate at high latitudes in North America than in eastern Asia, but the reverse is true in warm climate at low latitudes. Qian & Ricklefs (2011, Global Ecology and Biogeography, 20 , 362–365) recently questioned our data and some of the analyses. Here we reply to them, and provide further analyses to show that their critiques are primarily based on unsuitable data and subjective conjecture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号