首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Data are presented on the segregation of resistance to five British races and two Dutch races of Bremia lactucae in the F2 progenies of crosses involving seven resistant and several susceptible lettuce cultivars. These data and also those previously published by other workers are considered in relation to the systematic model proposed by Crute & Johnson (1976) to explain the genetics of race specific resistance to B. lactucae in lettuce. It is shown that, with minor modifications, the model accommodates almost all of the previously published data and correctly predicts the new data, except for one set which cannot at present be interpreted. It is concluded that genetic evidence exists for the presence, among various cultivars of lettuce, of at least four and possibly five different dominant resistance genes of major effect designated Dm2, Dm3, Dm4, Dm6 and Dm8; and of a pair of dominant genes with complementary effect designated Dm7/1 and Dm7/2. The resistance conferred by these genes is specified in relation to five British races, five Dutch, three Israeli and one United States race of the fungus. Resistance genotypes are proposed for cultivars Avoncrisp, Avondefiance, Calmar, Great Lakes 659, Kares, Meikoningen, Mildura, Proeftuins Blackpool, Solito, Valverde, Ventura and the USDA line PI 164937.  相似文献   

2.
The Saccharomyces cerevisiae poly(A) polymerases Trf4 and Trf5 are involved in an RNA quality control mechanism, where polyadenylated RNAs are degraded by the nuclear exosome. Although Trf4/5 homologue genes are distributed throughout multicellular organisms, their biological roles remain to be elucidated. We isolated here the two homologues of Trf4/5 in Drosophila melanogaster, named DmTRF4-1 and DmTRF4-2, and investigated their biological function. DmTRF4-1 displayed poly(A) polymerase activity in vitro, whereas DmTRF4-2 did not. Gene knockdown of DmTRF4-1 by RNA interference is lethal in flies, as is the case for the trf4 trf5 double mutants. In contrast, disruption of DmTRF4-2 results in viable flies. Cellular localization analysis suggested that DmTRF4-1 localizes in the nucleolus. Abnormal polyadenylation of snRNAs was observed in transgenic flies overexpressing DmTRF4-1 and was slightly increased by the suppression of DmRrp6, the 3′-5′ exonuclease of the nuclear exosome. These results suggest that DmTRF4-1 and DmRrp6 are involved in the polyadenylation-mediated degradation of snRNAs in vivo.  相似文献   

3.
Thecdc2 + gene product (p34cdc2) is a protein kinase that regulates entry into mitosis in all eukaryotic cells. The role that p34cdc2 plays in the cell cycle has been extensively investigated in a number of organisms, including the fission yeastSchizosaccharomyces pombe. To study the degree of functional conservation among evolutionarily distant p34cdc2 proteins, we have constructed aS. pombe strain in which the yeastcdc2 + gene has been replaced by itsDrosophila homologue CDC2Dm (theCDC2Dm strain). ThisCDC2Dm S. pombe strain is viable, capable of mating and producing four viable meiotic products, indicating that the fly p34CDC2Dm recognizes all the essentialS. pombe cdc2 + substrates, and that it is recognized by cyclin partners and other elements required for its activity. The p34CDC2Dm protein yields a lethal phenotype in combination with the mutant B-type cyclin p56cdc13-117, suggesting that thisS. pombe cyclin might interact less efficiently with theDrosophila protein than with its native p34cdc2 counterpart. ThisCDC2Dm strain also responds to nutritional starvation and to incomplete DNA synthesis, indicating that proteins involved in these signal transduction pathways, interact properly with p34CDC2Dm (and/or that p34cdc2-independent pathways are used). TheCDC2Dm gene produces a ‘wee’ phenotype, and it is largely insensitive to the action of theS. pombe weel + mitotic inhibitor, suggesting thatDrosophila weel + homologue might not be functionally conserved. ThisCDC2Dm strain is hypersensitive to UV irradiation, to the same degree asweel-deficient mutants. A strain which co-expresses theDrosophila and yeastcdc2+ genes shows a dominantwee phenotype, but displays a wild-type sensitivity to UV irradiation, suggesting that p34cdc2 triggers mitosis and influences the UV sensitivity by independent mechanisms. Communicated by B. J. Kilbey  相似文献   

4.
Four German isolates (FS1, SR2, SAW1 and DEG2) of Bremia lactucae originating from lettuce cultivars with R‐factors R18 and Dm6 + R36 were used for detailed characterization of virulence factors (v‐factors) and for the study of the resistance efficiency in wild Lactuca spp. germplasm. The highest complexity of v‐phenotype was recognized in isolate DEG2, which overcomes resistance in cv. Mariska (R18) and line CS‐RL (L. serriola × L. sativa, R18 + ?), until now known as resistant to all known races of B. lactucae in Europe. However, some sparse sporulation also occurred on cv. Titan (Dm6 + R36). The isolates SR2 and SAW1 overcome the resistance based on the gene R36, but are avirulent to R18. The v‐phenotype of SR2 is highly complex with the most important v‐factors being present except for v14 and v18. The isolate FS1 is the first in Germany originating from a cultivar with R18 (cv. Samourai). The search for efficient sources of resistance in 64 accessions of 11 wild Lactuca spp. and primitive forms of L. sativa showed broad variation in accession–isolate interactions. Expression of race‐specific resistance in wild Lactuca spp. (L. serriola, L. viminea, L. virosa) was recorded frequently. Lactuca indica and L. saligna could be considered as the most efficient sources of resistance against isolates FS1, SR2 and SAW1. The isolate DEG2 showed the highest level of virulence. On seedlings of L. saligna, which is considered as a most important source of resistance against B. lactucae, there was frequently recorded limited sporulation, however this response cannot be considered as a susceptible. Except for some L. saligna accessions (CGN 05310 and CGN 05315), the resistance to all studied isolates was only observed in one accession of L. serriola (PI 253467).  相似文献   

5.
ABSTRACT

We have previously found that Drosophila melanogaster only has one deoxyribonucleoside kinase, Dm-dNK, however, capable to phosphorylate all four natural deoxyribonucleosides. Dm-dNK was originally isolated from an embryonic cell line. We wanted to study the expression of Dm-dNK during development from embryonic cells to adult flies and found declining Dm-dNK activity during development and no activity in adult flies. Surprisingly, the extract from adult flies exhibited a strong inhibitory effect on deoxyribonucloside kinase activity. The dNK-inhibitor was precipitable with ammonium sulfate, and was purified to a high degree by gel-filtration as indicated by LC-MS/MS analysis. Since the inhibitor eluted from G-200 gel-filtration with a size of 10–13 kDa, we named it P12. We tested the purified fraction for specificity towards various enzymes and found that both mammalian and bacterial dNKs were inhibited, whereas there was no effect on hexokinase and pyruvate kinases and acidic phosphatase. However, when tested against cyclin B-dependent kinase, we found a strong inhibitory effect. Both with human Cdk1/CycB and S. pombe Cdc2/B-type cyclin the purified fraction from Superdex 200 that inhibited Dm-dNK, also inhibited the two protein kinases to the same degree. Furthermore, testing P12 in a DNA polymerase based assay we found that the 3′-5′-exonuclease part of the DNA polymerase (Klenow polymerase) was activated.  相似文献   

6.
Resistance to nine races of the pathogenic fungus Colletotrichum lindemuthianum, causal agent of anthracnose, was evaluated in F3 families derived from the cross between the anthracnose differential bean cultivars TU (resistant to races, 3, 6, 7, 31, 38, 39, 102, and 449) and MDRK (resistant to races, 449, and 1545). Molecular marker analyses were carried out in the F2 individuals in order to map and characterize the anthracnose resistance genes or gene clusters present in these two differential cultivars. The results of the combined segregation indicate that at least three independent loci conferring resistance to anthracnose are present in TU. One of them, corresponding to the previously described anthracnose resistance locus Co-5, is located in linkage group B7, and is formed by a cluster of different genes conferring specific resistance to races, 3, 6, 7, 31, 38, 39, 102, and 449. Evidence of intra-cluster recombination between these specific resistance genes was found. The second locus present in TU confers specific resistance to races 31 and 102, and the third locus confers specific resistance to race 102, the location of these two loci remains unknown. The resistance to race 1545 present in MDRK is due to two independent dominant genes. The results of the combined segregation of two F4 families showing monogenic segregation for resistance to race 1545 indicates that one of these two genes is linked to marker OF10530, located in linkage group B1, and corresponds to the previously described anthracnose resistance locus Co-1. The second gene conferring resistance to race 1545 in MDRK is linked to marker Pv-ctt001, located in linkage group B4, and corresponds to the Co-3/Co-9 cluster. The resistance to race 449 present in MDRK is conferred by a single gene, located in linkage group B4, probably included in the same Co-3/Co-9 cluster. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
 These studies were undertaken to determine whether downy mildew resistance genes in sunflower were independent as first reported, or linked as suggested by more recent hypotheses. The segregations for downy mildew reaction of 111 F3 progenies from a cross between a susceptible line and a line with Pl2 were used to locate this gene on the sunflower consensus RFLP linkage map. It was shown that Pl2 was linked to the same RFLP markers on linkage group 1 as Pl1 and Pl6, mapped earlier, and at a very similar distance. The F3 progenies showed exactly the same segregation patterns when tested with race 1 and race D. One hundred and fifty four progenies from a cross between a susceptible line and HA335, containing Pl6 (considered as giving resistance to all Plasmopara halstedii races), were tested with the five French downy mildew races, 1, A, B, C and D. Two progenies were observed to show segregation for races 1 and D, while appearing homozygous-resistant to races A , B and C. Tests on F4 progenies confirmed this separation of resistances with fixation of susceptibility to races 1 and D and resistance to races A, B and C. It is concluded that the Pl6 gene is not a “strong” gene, giving resistance to all downy mildew races, but rather a cluster of genes, each providing resistance to one, or a few, downy mildew races. The genes giving resistance to races 1 and D, on one hand, and to races A, B and C, on the other hand, must be very closely linked, with about 0.6 cM between the two groups. Received: 23 December 1996 / Accepted: 18 April 1997  相似文献   

8.
During 1945-8, 223 British collections of yellow rust were determined on Gassner & Straib's differential hosts, with the addition of the wheat variety Wilma. Physiologic races 2, 3, 5, 6, 7, 8 and 17 were obtained from wheat, race 46 from barley, race 33 from Hordeum murinum and race 28 from Agropyron repens. Three new races, 6x from wheat, M from H. marinum and G from Dactylis glomerata were also isolated. High temperatures increase the susceptibility of some differential hosts to certain wheat races, but decrease that of others. Biotypes of races 2, 6 and 8, differing from the 'type' cultures of those races, were isolated.
Of the commoner wheat races, nos. 6 and 8, occurring on many wheats, were widespread, but races 5 and 7, on fewer varieties, were confined to the north of Britain, and races 2 and 3, on very few varieties, to the south. Certain grasses are partially susceptible to some of the cereal races. The uredospores of race 2 germinate less well than those of races 5 or 8, other wheat races being intermediate. The optimum temperature for spore germination of race G is 22-5 C, that of all other races 10–13oC.
Twelve wheat varieties were inoculated in the field with each of the eight wheat races, and some varieties developed field resistance to certain races. The races attacking a variety the most severely in the field inoculations were usually the races isolated from that variety in collections received.  相似文献   

9.
A genetic map of common bean was constructed using 197 markers including 152 RAPDs, 32 RFLPs, 12 SCARs, and 1 morphological marker. The map was established by using a F2 population of 85 individuals from the cross between a line derived from the Spanish landrace Andecha (Andean origin) and the Mesoamerican genotype A252. The resulting map covers about 1,401.9 cM, with an average marker distance of 7.1 cM and includes molecular markers linked to disease resistance genes for anthracnose, bean common mosaic virus, bean golden yellow mosaic virus, common bacterial blight, and rust. Resistance to races 6, 31, 38, 39, 65, and 357 of the pathogenic fungus Colletotrichum lindemuthianum (anthracnose) was evaluated in F3 families derived from the corresponding F2 individuals. The intermediate resistance to race 65 proceeding from Andecha can be explained by a single dominant gene located on linkage group B1, corresponding to the Co-1 gene. The recombination between the resistance specificities proceeding from A252 agrees with the assumption that total resistance to races 6, 31, 38, 39, 65, and 357, is organized in two clusters. One cluster, located on B4 linkage group, includes individual genes for specific resistance to races 6, 38, 39, and 357. The second cluster is located on linkage group B11 and includes individual genes for specific resistance to races 6, 31, 38, 39, and 65. These two clusters correspond to genes Co-3/Co-9 and Co-2, respectively. It is concluded that most anthracnose resistance Co- genes, previously described as single major genes conferring resistance to several races, could be organized as clusters of different genes conferring race-specific resistance. C. Rodríguez-Suárez and B. Méndez-Vigo equally share for authorship.  相似文献   

10.
The contemporary races of Puccinia striiformis f. sp. tritici (Pst) in Egypt during 2016–2018 were differentiated based on virulence and molecular patterns. Virulence patterns based on the reaction of the 17 World/European differential sets carrying stripe rust resistance genes (Yr genes) resulted in ten races including four new (first recorded in Egypt) and six old (previously recorded in Egypt). The new races were identified as 64E0 (virulence [V] Yr4, Su), 0E16 (V Yr8, 19), 66E0 (V Yr4, 7, 22, 23, Su) and 4E130 (V Yr2, 6, 7, 25, HVII), while the old were 0E0 (avirulence), 2E0 (V Yr7, 22, 23), 2E16 (V Yr7, 8, 19, 22, 23), 4E0 (V Yr2, 6), 6E4 (V Yr2, 6, 7, 22, 23, 25) and 70E4 (V Yr2, 4, 6, 7, 22, 23, 25, Su). Cluster analysis differentiated Pst races based on virulence frequency to Yr genes. Simple sequence repeat (SSR) markers were used to detect the molecular polymorphism of the Pst races. Clustering separated the old and new races into two groups, indicating their common ancestry since the new races were very distinct from the old races. Although clustering based on virulence revealed some evolutionary patterns, where the new races 64E0 and 66E0 may have probably evolved from the old races (2E16, 2E0, 6E4, 70E4) and the new race 4E130 may be evolved from the joint race 4E0. However, clustering based on molecular patterns indicated that the new races appear to be genetically distinct and may represent an exotic introduction rather than a mutation in isolates of the old races. A weak association between virulence and molecular patterns revealed that they are independent of each other. The SSR markers did not correspond to the virulences in the pathogen. Further studies on the potential virulence genes of the detected Pst virulences are needed.  相似文献   

11.
The red alga Laurencia nipponica comprises various chemical races distributed relative to the ocean current in Japanese coastal areas. We investigated the chemical compositions and chemical races of L. nipponica distributed from the Kunashiri and Etorofu Islands, the confluence of the Soya warm current and Oya-shio cold current. Two new halogenated secondary metabolites, deacetylneonipponallene ( 1 ) and neopacifenol ( 2 ), along with four known compounds, deoxyprepacifenol ( 3 ), pacifenol ( 4 ), halo-chamigrene diether ( 5 ), and isolaurallene ( 6 ) were isolated from L. nipponica collected at Chikappunai, Kunashiri Island, while Zaimokuiwa (Kunashiri Island) and Sana (Etorofu Island) populations contained 3 , 7-hydroxylaurene ( 7 ), 2,10-dibromo-3-chloro-9-hydroxy-α-chamigrene ( 8 ), and (3Z)-laurefucin ( 9 ). The structures of 1 and 2 were established using spectroscopic methods. The chemical races of L. nipponica distributed in this area were divided into 6 - and 9 -producing races. Interestingly, both races contained 4 as an additional race-index, as well as its derivatives, 2 and 5 . To the best of our knowledge, this is the first example of a race comprising a mixture of two race-index compounds, suggesting that the convergence of two currents causes the production of new and diverse chemical races in this species.  相似文献   

12.
The reactions of lettuce cultivars to physiologic races of Bremia lactucae are interpreted in terms of a gene-for-gene relationship between pathogen and host. The hypothesis takes into account the parentage of cultivars and the origins of their resistance, the characteristics of the resistance reactions and data available from detailed genetical analysis of various race/cultivar combinations. Cultivars are classified with respect to ten postulated resistance genes and B. lactucae races are defined by the virulence genes present. The practical significance of these studies is discussed in relation to both future lettuce breeding programmes and to the choice of cultivars available to counteract any given local race situation.  相似文献   

13.
A strategy to reverse the symptoms of thymidine kinase 2 (TK2) deficiency in a mouse model was investigated. The nucleoside kinase from Drosophila melanogaster (Dm-dNK) was expressed in TK2-deficient mice that have been shown to present with a severe phenotype caused by mitochondrial DNA depletion. The Dm-dNK+/− transgenic mice were shown to be able to rescue the TK2-deficient mice. The Dm-dNK+/−TK2−/− mice were normal as judged by growth and behavior during the observation time of 6 months. The Dm-dNK-expressing mice showed a substantial increase in thymidine-phosphorylating activity in investigated tissues. The Dm-dNK expression also resulted in highly elevated dTTP pools. The dTTP pool alterations did not cause specific mitochondrial DNA mutations or deletions when 6-month-old mice were analyzed. The mitochondrial DNA was also detected at normal levels. In conclusion, the Dm-dNK+/−TK2−/− mouse model illustrates how dTMP synthesized in the cell nucleus can compensate for loss of intramitochondrial dTMP synthesis in differentiated tissue. The data presented open new possibilities to treat the severe symptoms of TK2 deficiency.  相似文献   

14.
To improve the expression level of recombinant Drosophila melanogaster AChE (R-DmAChE) in Pichia pastoris, the cDNA of DmAChE was first optimized and synthesized based on the preferred codon usage of P. pastoris. The synthesized AChE cDNA without glycosylphosphatidylinositol (GPI) signal peptide sequence was then ligated to the P. pastoris expression vector, generating the plasmid pPIC9K/DmAChE. The linearized plasmid was homologously integrated into the genome of P. pastoris GS115 via electrotransformation. Finally seven transformants with high expression level of R-DmAChE activity were obtained. The highest production of R-DmAChE in shake-flask culture after 5-day induction by methanol was 718.50 units/mL, which was about three times higher than our previous expression level of native DmAChE gene in P. pastoris. Thus, these new strains with the ability to secret R-DmAChE in the medium could be used for production of R-DmAChE to decrease the cost of the enzyme expense for rapid detection of organophosphate and carbamate insecticide residues.  相似文献   

15.
Following determination of trypsin inhibitory activity, a serine protease inhibitor was purified and characterized from frog Duttaphrynus melanostictus serum. It was identified as serum albumin, with molecular weight of 67 kDa (DmA-serum). Different from bovine serum albumin, DmA-serum potently inhibited trypsin with similar K i values around 1.6 × 10−7 M. No inhibitory effect on thrombin, chymotrypsin, elastase and subtilisin was observed under the assay conditions. The N-terminal amino acid is EAEPHSRI. Subsequently, a protein with same N-terminal amino acid was purified from skin, termed as DmA-skin. However, DmA-skin is distinct from DmA-serum by binding of a haem b (0.5 mol/mol protein), and with low trypsin inhibitory activity. Frog albumin is distributed in frog skin and exhibited trypsin inhibitory activity, suggesting that it plays important roles in skin physiological functions, like water economy, metabolite exchange and osmoregulation, etc.  相似文献   

16.
The wheat stripe (yellow) rust is one of the most important diseases in Iran. In this study, 41 races out of 104 isolates in greenhouse were determined from 2008 to 2010. Races 6E6A+, 6E10A+ and 6E0A+ were more common. Races 0E0A+ was less aggressive than races 166E158A+ and 134E158A+ with virulence on 11 known genes. Virulence on plant/s with gene/s Yr1, Yr2, Yr4, Yr6, Yr7, Yr8, Yr9, Yr10, Yr25, Yr27, YrSU, YrSD, YrND, Yr3, Yr2+, Yr6+, Yr9+, Yr7+, YrCV and YrA was detected. The majority of isolates with high frequency (more than 70%) showed virulence on plant/s with Yr2, Yr7, Yr9 and YrA genes. No virulence was detected on plant/s with Yr3, Yr5 and YrSP. In greenhouse test, frequency of virulence to wheat genotypes with Yr1, Yr4, Yr10, YrCV (32+) and YrSD gene was less than 7%. Frequency of virulence to other wheat genotypes was between 8 and 100%.  相似文献   

17.

Background  

Drosophila nasuta nasuta (2n = 8) and Drosophila nasuta albomicans (2n = 6) are a pair of sibling allopatric chromosomal cross-fertile races of the nasuta subgroup of immigrans species group of Drosophila. Interracial hybridization between these two races has given rise to new karyotypic strains called Cytorace 1 and Cytorace 2 (first phase). Further hybridization between Thailand strain of D. n. albomicans and D. n. nasuta of Coorg strain has resulted in the evolution of two more Cytoraces, namely Cytorace 3 and Cytorace 4 (second phase). The third phase Cytoraces (Cytorace 5 to Cytorace 16) have evolved through interracial hybridization among first, second phase Cytoraces along with parental races. Each of these Cytoraces is composed of recombined genomes of the parental races. Here, we have made an attempt to systematically assess the impact of hybridization on karyotypes, morphometric and life history traits in all 16 Cytoraces.  相似文献   

18.
Several new races of the stripe rust pathogen have become frequent throughout the wheat growing regions of the United States since 2000. These new races are virulent to most of the wheat seedling resistance genes limiting the resistance sources that can be used to combat this pathogen. High-temperature adult-plant (HTAP) stripe rust resistance has proven to be more durable than seedling resistance due to its non-race-specific nature, but its use is limited by the lack of mapping information. We report here the identification of a new HTAP resistance gene from Triticum turgidum ssp. dicoccoides (DIC) designated as Yr36. Lines carrying this gene were susceptible to almost all the stripe rust pathogen races tested at the seedling stage but showed adult-plant resistance to the prevalent races in California when tested at high diurnal temperatures. Isogenic lines for this gene were developed by six backcross generations. Field tests in two locations showed increased levels of field resistance to stripe rust and increased yields in isogenic lines carrying the Yr36 gene compared to those without the gene. Recombinant substitution lines of chromosome 6B from DIC in the isogenic background of durum cv. Langdon were used to map the Yr36 gene on the short arm of chromosome 6B completely linked to Xbarc101, and within a 2-cM interval defined by PCR-based markers Xucw71 and Xbarc136. Flanking locus Xucw71 is also closely linked to the grain protein content locus Gpc-B1 (0.3-cM). Marker-assisted selection strategies are presented to improve stripe rust resistance and simultaneously select for high or low Gpc-B1 alleles.  相似文献   

19.
Interracial hybridization between Drosophila nasuta nasuta (2n=8) and D. n. albomicana (2n=6) has resulted in the evolution of two new karyotypic strains, called Cytoraces I and II. Males and females of Cytorace I have 2n=7 and 2n=6 respectively. The reconstituted karyotype is totally new in its composition, the chromosomes being drawn from both the parental races. The individuals of Cytorace II have 2n=6. Even though the chromosomes of the parental races are duly represented in the F1, there is selective retention/elimination of certain chromosomes in the succeeding generations during which repatterning of the karyotype has taken place. Dynamics of each one of the parental chromosomes are presented and its implications re discussed.We dedicate this paper to the memory of the founder of our Department, the late Prof. M.R. Rajasekarasetty on the occasion of the Silver Jubilee of our Department  相似文献   

20.
Soybean (Glycine max L. Merr.) plant introduction (PI) 438489B is a newly found germplasm source that has resistance to multiple soybean cyst nematode (Heterodera glycines Ichinohe, SCN) races. We studied the inheritance of resistance to SCN races 1, 2, 3, 5 and 14 in PI 438489B using F2 and F2:3 families, which were generated by crossing to the susceptible cultivar ’Hamilton.’ The objectives of this study were to investigate the inheritance for resistance to SCN races in PI 438489B, to find molecular markers associated with resistances, and to study the allelic relationships among resistance loci for different SCN races. The results showed that the responses to SCN races were approximately normally distributed with large environmental effects, and were also highly correlated, which implied that genes giving resistance to different races were similar. The narrow-sense heritabilities of resistance to all five SCN races ranged from 0.55 to 0.88. Fifty one restriction fragment length polymorphism (RFLP) markers and 64 simple sequence repeat (SSR) markers were found to be polymorphic in the F2 population. Quantitative trait loci (QTLs) associated with resistance to SCN races were anchored on soybean linkage groups (LGs) A1, A2, B1, B2, C1, C2, D1a, E and G. These QTLs explained 47.3%, 45.8%, 51.5%, 34.5% and 37.2% of the total phenotypic variances, respectively, for each race we investigated. Some QTLs for different races encompassed the same region of flanking markers; therefore, QTLs for multiple races may be linked or pleiotropic effects may be involved. Some loci provided resistance in a race-specific manner. Resistance to SCN race 14 had a different pattern compared to other races. Our results indicated that resistance to race 14 did not include loci on LGs A2 and G. These flanking markers associated with QTLs could be used to select for resistance to multiple SCN races in soybean breeding programs. Received: 25 March 2000 / Accepted: 4 August 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号