首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Colicins translocate across the Escherichia coli outer membrane and periplasm by interacting with several receptors. After first binding to outer membrane surface receptors via their central region, they interact with TolA or TonB proteins via their N-terminal regions. Finally, the toxic C-terminal region is inserted into or across the cytoplasmic membrane. We have measured the binding of colicin N to TolA by isothermal titration microcalorimetry (ITC) and tryptophan fluorescence. The isolated N-terminal domain exhibits a higher affinity for TolA ( K d = 1 μM) than does the whole colicin (18 μM), and similar behaviour has been observed when the N-terminal domain of the g3p protein of the bacteriophage fd, which also binds TolA, is examined in isolation and in situ . This may indicate a similar mechanism in which a cryptic TolA binding site is revealed after primary receptor binding. The isolated colicin N N-terminal domain appears to be unstructured in circular dichroism and fluorescence studies. We have used mutagenesis and ITC to characterize the TolA binding site and have shown it to be of a different sequence and much further from the N-terminus than previously thought.  相似文献   

2.
The 315-residue N-terminal T domain of colicin E3 functions in translocation of the colicin across the outer membrane through its interaction with outer membrane proteins including the OmpF porin. The first 83 residues of the T domain are known from structure studies to be disordered. This flexible translocation subdomain contains the TolB box (residues 34 to 46) that must cross the outer membrane in an early translocation event, allowing the colicin to bind to the TolB protein in the periplasm. In the present study, it was found that cytotoxicity of the colicin requires a minimum length of 19 to 23 residues between the C terminus (residue 46) of the TolB box and the end of the flexible subdomain (residue 83). Colicin E3 molecules of sufficient length display normal binding to TolB and occlusion of OmpF channels in vitro. The length of the N-terminal subdomain is critical because it allows the TolB box to cross the outer membrane and interact with TolB. It is proposed that the length constraint is a consequence of ordered structure in the downstream segment of the T domain (residues 84 to 315) that prevents its insertion through the outer membrane via a translocation pore that includes OmpF.  相似文献   

3.
Several proteins of the Tol/Pal system are required for group A colicin import into Escherichia coli. Colicin A interacts with TolA and TolB via distinct regions of its N-terminal domain. Both interactions are required for colicin translocation. Using in vivo and in vitro approaches, we show in this study that colicin A also interacts with a third component of the Tol/Pal system required for colicin import, TolR. This interaction is specific to colicins dependent on TolR for their translocation, strongly suggesting a direct involvement of the interaction in the colicin translocation step. TolR is anchored to the inner membrane by a single transmembrane segment and protrudes into the periplasm. The interaction involves part of the periplasmic domain of TolR and a small region of the colicin A N-terminal domain. This region and the other regions responsible for the interaction with TolA and TolB have been mapped precisely within the colicin A N-terminal domain and appear to be arranged linearly in the colicin sequence. Multiple contacts with periplasmic-exposed Tol proteins are therefore a general principle required for group A colicin translocation.  相似文献   

4.
The Tol/Pal system of Escherichia coli is composed of the YbgC, TolQ, TolA, TolR, TolB, Pal and YbgF proteins. It is involved in maintaining the integrity of the outer membrane, and is required for the uptake of group A colicins and DNA of filamentous bacteriophages. To identify new interactions between the components of the Tol/Pal system and gain insight into the mechanism of colicin import, we performed a yeast two-hybrid screen using the different components of the Tol/Pal system and colicin A. Using this system, we confirmed the already known interactions and identified several new interactions. TolB dimerizes and the periplasmic domain of TolA interacts with YbgF and TolB. Our results indicate that the central domain of TolA (TolAII) is sufficient to interact with YbgF, that the C-terminal domain of TolA (TolAIII) is sufficient to interact with TolB, and that the amino terminal domain of TolB (D1) is sufficient to bind TolAIII. The TolA/TolB interaction was confirmed by cross-linking experiments on purified proteins. Moreover, we show that the interaction between TolA and TolB is required for the uptake of colicin A and for the membrane integrity. These results demonstrate that the TolA/TolB interaction allows the formation of a trans-envelope complex that brings the inner and outer membranes in close proximity.  相似文献   

5.
Colicin N kills sensitive Escherichia coli cells by first binding to its trimeric receptor (OmpF) via its receptor binding domain. It then uses OmpF to translocate across the outer membrane and in the process it also needs domains II and III of the protein TolA. Recent studies have demonstrated sodium dodecyl sulfate- (SDS) dependent complex formation between trimeric porins and TolA-II. Here we demonstrate that colicin N forms similar complexes with the same trimeric porins and that this association is unexpectedly solely dependent upon the pore-forming domain (P-domain). No binding was seen with the monomeric porin OmpA. In mixtures of P-domain and TolA with OmpF porin, only binary and no ternary complexes were observed, suggesting that binding of these proteins to the porin is mutually exclusive. Pull-down assays in solution show that porin-P-domain complexes also form in the presence of outer membrane lipopolysaccharide. This indicates that an additional colicin-porin interaction may occur within the outer membrane, one that involves the colicin pore domain rather than the receptor-binding domain. This may help to explain the role of porins and TolA-II in the later stages of colicin translocation.  相似文献   

6.
The Tol-Pal proteins of the cell envelope of Escherichia coli are required for maintaining outer membrane integrity. This system forms protein complexes in which TolA plays a central role by providing a bridge between the inner and outer membranes via its interaction with the Pal lipoprotein. The Tol proteins are parasitized by filamentous bacteriophages and group A colicins. The N-terminal domain of the Ff phage g3p protein and the translocation domains of colicins interact directly with TolA during the processes of import through the cell envelope. Recently, a four-amino-acid sequence in Pal has been shown to be involved in Pal's interaction with TolA. A similar motif is also present in the sequence of two TolA partners, g3p and colicin A. Here, a mutational study was conducted to define the function of these motifs in the binding activity and import process of TolA. The various domains were produced and exported to the bacterial periplasm, and their cellular effects were analyzed. Cells producing the g3p domain were tolerant to colicins and filamentous phages and had destabilized outer membranes, while g3p deleted of three residues in the motif was affected in TolA binding and had no effect on cell integrity or colicin or phage import. A conserved Tyr residue in the colicin A translocation domain was involved in TolA binding and colicin A import. Furthermore, in vivo and in vitro coprecipitation analyses demonstrated that colicin A and g3p N-terminal domains compete for binding to TolA.  相似文献   

7.
Colicins are antibiotic proteins that kill sensitive Escherichia coli cells. Their mode of action involves three steps: binding to specific receptors located in the outer membrane, translocation across this membrane, and action on their targets. A specific colicin domain can be assigned to each of these steps. Colicins have been subdivided into two groups (A and B) depending on the proteins required for them to cross the external membrane. Plasmids were constructed which led to an overproduction of the Tol proteins involved in the import of group A colicins. In vitro binding of overexpressed Tol proteins to either Tol-dependent (group A) or TonB-dependent (group B) colicins was analyzed. The Tol dependent colicins A and E1 were able to interact with TolA but the TonB dependent colicin B was not. The C-terminal region of TolA, which is necessary for colicin uptake, was also found to be necessary for colicin A and E1 binding to occur. Furthermore, only the isolated N-terminal domain of colicin A, which is involved in the translocation step, was found to bind to TolA. These results demonstrate the existence of a correlation between the ability of group A colicins to translocate and their in vitro binding to TolA protein, suggesting that these interactions might be part of the colicin import process.  相似文献   

8.
The Tol–Pal proteins of Escherichia coli are involved in maintaining outer membrane integrity. Transmembrane domains of TolQ, TolR and TolA interact in the cytoplasmic membrane, while TolB and Pal form a complex near the outer membrane. TolB and the central domain of TolA interact in vitro with the outer membrane porins. In this study, both genetic and biochemical analyses were carried out to analyse the links between TolB, Pal and other components of the cell envelope. It was shown that TolB could be cross-linked in vivo with Pal, OmpA and Lpp, while Pal was associated with TolB and OmpA. The isolation of pal and tolB mutants disrupting some interactions between these proteins represents a first approach to characterizing the residues contributing to the interactions. We propose that TolB and Pal are part of a multiprotein complex that links the peptidoglycan to the outer membrane. The Tol–Pal proteins might form transenvelope complexes that bring the two membranes into close proximity and help some outer membrane components to reach their final destination.  相似文献   

9.
Group A colicins need proteins of the Escherichia coli envelope Tol complex (TolA, TolB, TolQ and TolR) to reach their cellular target. The N-terminal domain of colicins is involved in the import process. The N-terminal domains of colicins A and E1 have been shown to interact with TolA, and the N-terminal domain of colicin E3 has been shown to interact with TolB. We found that a pentapeptide conserved in the N-terminal domain of all group A colicins, the 'TolA box', was important for colicin A import but was not involved in the colicin A–TolA interaction. It was, however, involved in the colicin A–TolB interaction. The interactions of colicin A N-terminal domain deletion mutants with TolA and TolB were investigated. Random mutagenesis was performed on a construct allowing the colicin A N-terminal domain to be exported in the bacteria periplasm. This enabled us to select mutant protein domains unable to compete with the wild-type domain of the entire colicin A for import into the cells. Our results demonstrate that different regions of the colicin A N-terminal domain interact with TolA and TolB. The colicin A N-terminal domain was also shown to form a trimeric complex with TolA and TolB.  相似文献   

10.
The Tol system is a five‐protein assembly parasitized by colicins and bacteriophages that helps stabilize the Gram‐negative outer membrane (OM). We show that allosteric signalling through the six‐bladed β‐propeller protein TolB is central to Tol function in Escherichia coli and that this is subverted by colicins such as ColE9 to initiate their OM translocation. Protein–protein interactions with the TolB β‐propeller govern two conformational states that are adopted by the distal N‐terminal 12 residues of TolB that bind TolA in the inner membrane. ColE9 promotes disorder of this ‘TolA box’ and recruitment of TolA. In contrast to ColE9, binding of the OM lipoprotein Pal to the same site induces conformational changes that sequester the TolA box to the TolB surface in which it exhibits little or no TolA binding. Our data suggest that Pal is an OFF switch for the Tol assembly, whereas colicins promote an ON state even though mimicking Pal. Comparison of the TolB mechanism to that of vertebrate guanine nucleotide exchange factor RCC1 suggests that allosteric signalling may be more prevalent in β‐propeller proteins than currently realized.  相似文献   

11.
In order for the 61 kDa colicin E9 protein toxin to enter the cytoplasm of susceptible cells and kill them by hydrolysing their DNA, the colicin must interact with the outer membrane BtuB receptor and Tol translocation pathway of target cells. The translocation function is located in the N-terminal domain of the colicin molecule. (1)H, (1)H-(1)H-(15)N and (1)H-(13)C-(15)N NMR studies of intact colicin E9, its DNase domain, minimal receptor-binding domain and two N-terminal constructs containing the translocation domain showed that the region of the translocation domain that governs the interaction of colicin E9 with TolB is largely unstructured and highly flexible. Of the expected 80 backbone NH resonances of the first 83 residues of intact colicin E9, 61 were identified, with 43 of them being assigned specifically. The absence of secondary structure for these was shown through chemical shift analyses and the lack of long-range NOEs in (1)H-(1)H-(15)N NOESY spectra (tau(m)=200 ms). The enhanced flexibility of the region of the translocation domain containing the TolB box compared to the overall tumbling rate of the protein was identified from the relatively large values of backbone and tryptophan indole (15)N spin-spin relaxation times, and from the negative (1)H-(15)N NOEs of the backbone NH resonances. Variable flexibility of the N-terminal region was revealed by the (15)N T(1)/T(2) ratios, which showed that the C-terminal end of the TolB box and the region immediately following it was motionally constrained compared to other parts of the N terminus. This, together with the observation of inter-residue NOEs involving Ile54, indicated that there was some structural ordering, resulting most probably from the interactions of side-chains. Conformational heterogeneity of parts of the translocation domain was evident from a multiplicity of signals for some of the residues. Im9 binding to colicin E9 had no effect on the chemical shifts or other NMR characteristics of the region of colicin E9 containing the TolB recognition sequence, though the interaction of TolB with intact colicin E9 bound to Im9 did affect resonances from this region. The flexibility of the translocation domain of colicin E9 may be connected with its need to recognise protein partners that assist it in crossing the outer membrane and in the translocation event itself.  相似文献   

12.
BACKGROUND: E colicin proteins have three functional domains, each of which is implicated in one of the stages of killing Escherichia coli cells: receptor binding, translocation and cytotoxicity. The central (R) domain is responsible for receptor-binding activity whereas the N-terminal (T) domain mediates translocation, the process by which the C-terminal cytotoxic domain is transported from the receptor to the site of its cytotoxicity. The translocation of enzymatic E colicins like colicin E9 is dependent upon TolB but the details of the process are not known. RESULTS: We have demonstrated a protein-protein interaction between the T domain of colicin E9 and TolB, an essential component of the tol-dependent translocation system in E. coli, using the yeast two-hybrid system. The crystal structure of TolB, a procaryotic tryptophan-aspartate (WD) repeat protein, reveals an N-terminal alpha + beta domain based on a five-stranded mixed beta sheet and a C-terminal six-bladed beta-propeller domain. CONCLUSIONS: The results suggest that the TolB-box residues of the T domain of colicin E9 interact with the beta-propeller domain of TolB. The protein-protein interactions of other beta-propeller-containing proteins, the yeast yPrp4 protein and G proteins, are mediated by the loops or outer sheets of the propeller blades. The determination of the three-dimensional structure of the T domain-TolB complex and the isolation of mutations in TolB that abolish the interaction with the T domain will reveal fine details of the protein-protein interaction of TolB and the T domain of E colicins.  相似文献   

13.
Colicin A enters Escherichia coli cells through interaction with endogenous TolA and TolB proteins. In vitro, binding of the colicin A translocation domain to TolA leads to unfolding of TolA. Through NMR studies of the colicin A translocation domain and polypeptides representing the individual TolA and TolB binding epitopes of colicin A we question if the unfolding of TolA induced by colicin A is likely to be physiologically relevant. The NMR data further reveals that the colicin A binding site on TolA is different from that for colicin N which explains why there is a difference in colicin toxicity for E. coli carrying a TolA-III homologue from Yersina enterocolitica in place of its own TolA-III.

Structured summary

MINT-7888512: TolA (uniprotkb:P19934) and Col-A (uniprotkb:P04480) bind (MI:0407) by nuclear magnetic resonance (MI:0077)MINT-7888526: TolA (uniprotkb:P19934) and TolB (uniprotkb:P0A857) bind (MI:0407) by nuclear magnetic resonance (MI:0077)MINT-7888999: TolA (uniprotkb:P19934), TolB (uniprotkb:P0A855) and Col-A (uniprotkb:P04480) physically interact (MI:0915) by molecular sieving (MI:0071)MINT-7888982: TolA (uniprotkb:P19934), TolB (uniprotkb:P0A855) and Col-A (uniprotkb:P04480) physically interact (MI:0915) by nuclear magnetic resonance (MI:0077)  相似文献   

14.
The 61 kDa colicin E9 protein toxin enters the cytoplasm of susceptible cells by interacting with outer membrane and periplasmic helper proteins, and kills them by hydrolysing their DNA. The membrane translocation function is located in the N-terminal domain of the colicin, with a key signal sequence being a pentapeptide region that governs the interaction with the helper protein TolB (the TolB box). Previous NMR studies (Collins et al., 2002 J. Mol. Biol. 318, 787-804) have shown that the N-terminal 83 residues of colicin E9, which includes the TolB box, is largely unstructured and highly flexible. In order to further define the properties of this region we have studied a fusion protein containing residues 1-61 of colicin E9 connected to the N-terminus of the E9 DNase by an eight-residue linking sequence. 53 of the expected 58 backbone NH resonances for the first 61 residues and all of the expected 7 backbone NH resonances of the linking sequence were assigned with 3D (1)H-(13)C-(15)N NMR experiments, and the backbone dynamics of these regions investigated through measurement of (1)H-(15)N relaxation properties. Reduced spectral density mapping, extended Lipari-Szabo modelling, and fitting backbone R(2) relaxation rates to a polymer dynamics model identifies three clusters of interacting residues, each containing a tryptophan. Each of these clusters is perturbed by TolB binding to the intact colicin, showing that the significant region for TolB binding extends beyond the recognized five amino acids of the TolB box and demonstrating that the binding epitope for TolB involves a considerable degree of order within an otherwise disordered and flexible domain. Abbreviations : Im9, the immunity protein for colicin E9; E9 DNase, the endonuclease domain of colicin E9; HSQC, heteronuclear single quantum coherence; ppm, parts per million; DSS, 2,2-(dimethylsilyl)propanesulfonic acid; TSP, sodium 3-trimethylsilypropionate; T(1 - 61)-DNase fusion protein, residues 1-61 of colicin E9 connected to the N-terminus of the E9 DNase by an eight residue thrombin cleavage sequence.  相似文献   

15.
The Tol-Pal system of the Escherichia coli cell envelope is composed of five proteins. TolQ, TolR and TolA form a complex in the inner membrane, whereas TolB is a periplasmic protein interacting with Pal, the peptidoglycan-associated lipoprotein anchored to the outer membrane. This system is required for outer membrane integrity and has been shown to form a trans-envelope bridge linking inner and outer membranes. The TolA-Pal interaction plays an important role in the function of this system and has been found to depend on the proton motive force and the TolQ and TolR proteins. The Pal lipoprotein interacts with many components, such as TolA, TolB, OmpA, the major lipoprotein and the murein layer. In this study, six pal deletions were constructed. The analyses of the resulting Pal protein functions and interactions defined an N-terminal region of 40 residues, which can be deleted without any cell-damaging effect, and three independent regions required for its interaction with TolA, OmpA and TolB or the peptidoglycan. The analyses of the integrity of the cells producing the various Pal lipoproteins revealed strong outer membrane destabilization only when binding regions were deleted. Furthermore, a conserved polypeptide sequence located downstream of the peptidoglycan binding motif of Pal was required for the TolA-Pal interaction and for the maintenance of outer membrane stability.  相似文献   

16.
The 61-kDa colicin E9 protein toxin enters the cytoplasm of susceptible cells by interacting with outer membrane and periplasmic helper proteins and kills them by hydrolyzing their DNA. The membrane translocation function is located in the N-terminal domain of the colicin, with a key signal sequence being a pentapeptide region that governs the interaction with the helper protein TolB (the TolB box). Previous NMR studies [Collins et al. (2002) J. Mol. Biol. 318, 787-904; MacDonald et al. (2004), J. Biomol. NMR 30, 81-96] have shown that the N-terminal 83 residues of colicin E9, which includes the TolB box, is intrinsically disordered and contains clusters of interacting side chains. To further define the properties of this region of colicin E9, we have investigated the effects on the dynamical and TolB-binding properties of three mutations of colicin E9 that inactivate it as a toxin. The mutations were contained in a fusion protein consisting of residues 1-61 of colicin E9 connected to the N terminus of the E9 DNase by an eight-residue linking sequence. The NMR data reveals that the mutations cause major alterations to the properties of some of the clusters, consistent with some form of association between them and other more distant parts of the amino acid sequence, particularly toward the N terminus of the protein. However, (15)N T(2) measurements indicates that residues 5-13 of the fusion protein bound to the 43-kDa TolB remain as flexible as they are in the free protein. The NMR data point to considerable dynamic ordering within the intrinsically disordered translocation domain of the colicin that is important for creating the TolB-binding site. Furthermore, amino acid sequence considerations suggest that the clusters of amino acids occur because of the size and polarities of the side chains forming them influenced by the propensities of the residues within the clusters and those immediately surrounding them in sequence space to form beta turns.  相似文献   

17.
The Tol assembly of proteins is an interacting network of proteins located in the Escherichia coli cell envelope that transduces energy and contributes to cell integrity. TolA is central to this network linking the inner and outer membranes by interactions with TolQ, TolR, TolB, and Pal. Group A colicins, such as ColA, parasitize the Tol network through interactions with TolA and/or TolB to facilitate translocation through the cell envelope to reach their cytotoxic site of action. We have determined the first structure of the C-terminal domain of TolA (TolAIII) bound to an N-terminal ColA polypeptide (TA(53-107)). The interface region of the TA(53-107)-TolAIII complex consists of polar contacts linking residues Arg-92 to Arg-96 of ColA with residues Leu-375-Pro-380 of TolA, which constitutes a β-strand addition commonly seen in more promiscuous protein-protein contacts. The interface region also includes three cation-π interactions (Tyr-58-Lys-368, Tyr-90-Lys-379, Phe-94-Lys-396), which have not been observed in any other colicin-Tol protein complex. Mutagenesis of the interface residues of ColA or TolA revealed that the effect on the interaction was cumulative; single mutations of either partner had no effect on ColA activity, whereas mutations of three or more residues significantly reduced ColA activity. Mutagenesis of the aromatic ring component of the cation-π interacting residues showed Tyr-58 of ColA to be essential for the stability of complex formation. TA(53-107) binds on the opposite side of TolAIII to that used by g3p, ColN, or TolB, illustrating the flexible nature of TolA as a periplasmic hub protein.  相似文献   

18.
Colicins kill Escherichia coli after translocation across the outer membrane. Colicin N displays an unusually simple translocation pathway, using the outer membrane protein F (OmpF) as both receptor and translocator. Studies of this binary complex may therefore reveal a significant component of the translocation pathway. Here we show that, in 2D crystals, colicin is found outside the porin trimer, suggesting that translocation may occur at the protein-lipid interface. The major lipid of the outer leaflet interface is lipopolysaccharide (LPS). It is further shown that colicin N binding displaces OmpF-bound LPS. The N-terminal helix of the pore-forming domain, which is not required for pore formation, rearranges and binds to OmpF. Colicin N also binds artificial OmpF dimers, indicating that trimeric symmetry plays no part in the interaction. The data indicate that colicin is closely associated with the OmpF-lipid interface, providing evidence that this peripheral pathway may play a role in colicin transmembrane transport.  相似文献   

19.
Colicins use two envelope multiprotein systems to reach their cellular target in susceptible cells of Escherichia coli : the Tol system for group A colicins and the TonB system for group B colicins. The N-terminal domain of colicins is involved in the translocation step. To determine whether it interacts in vivo with proteins of the translocation system, constructs were designed to produce and export to the cell periplasm the N-terminal domains of colicin E3 (group A) and colicin B (group B). Producing cells became specifically tolerant to entire extracellular colicins of the same group. The periplasmic N-terminal domains therefore compete with entire colicins for proteins of the translocation system and thus interact in situ with these proteins on the inner side of the outer membrane. In vivo cross-linking and co-immunoprecipitation experiments in cells producing the colicin E3 N-terminal domain demonstrated the existence of a 120 kDa complex containing the colicin domain and TolB. After in vitro cross-linking experiments with these two purified proteins, a 120 kDa complex was also obtained. This suggests that the complex obtained in vivo contains exclusively TolB and the colicin E3 domain. The N-terminal domain of a translocation-defective colicin E3 mutant was found to no longer interact with TolB. Hence, this interaction must play an important role in colicin E3 translocation.  相似文献   

20.
Colicin N is a bacteriocin that kills sensitive Escherichia coli cells. After binding to the cell surface-exposed receptor, a short period exists when a significant number of the cell-associated colicin N molecules are sensitive to external enzymes. Two colicin N populations are discriminated by proteases: the susceptible pool bound to OmpF porin on the cell surface and another population corresponding to protease-inaccessible colicin N. During translocation, colicin N reaches the periplasmic space and proteolytic cleavage of the colicin occurs only when the outer membrane barrier is permeabilized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号