首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A purification scheme for satellite DNA containing chromatin from mouse liver has been developed. It is based on the highly condensed state of the satellite chromatin and also takes advantage of its resistance to digestion by certain restriction nucleases. Nuclei are first treated with micrococcal nuclease and the satellite chromatin enriched 3-5 fold by extraction of the digested nuclei under appropriate conditions. Further purification is achieved by digestion of the chromatin with a restriction nuclease that leaves satellite DNA largely intact but degrades non-satellite DNA extensively. In subsequent sucrose gradient centrifugation the rapidly sedimenting chromatin contains more than 70% satellite DNA. This material has the same histone composition as bulk chromatin. No significant differences were detected in an analysis of minor histone variants. Nonhistone proteins are present only in very low amounts in the satellite chromatin fraction, notably the HMG proteins are strongly depleted.  相似文献   

3.
We have investigated the micrococcal nuclease digestion of chromatin from the spermatozoa of the sea cucumber Holothuria tubulosa. This chromatin contains minor protein variants related to histone H1 with a high proportion of basic amino acids. One of these variants, protein phi 0, represents about 4% of the total histones. It is 78 amino acids long and its amino acid composition and sequence are related to the very basic C-terminal region of histone H1. The presence of these proteins induces an unusual digestion pattern. Oligonucleosomal particles which are soluble at 150 mM NaCl are depleted of protein phi 0 and they are also defective in histone H1. A low percentage of the insoluble material can be solubilized at lower NaCl concentrations (50 mM). These oligonucleosomal particles show a very peculiar protein content, since at early digestion times, they contain histone H1 and protein phi 0 exclusively. We conclude that these particles arise from a cooperative displacement of core histones by protein phi 0 and histone H1. These results show that minor changes in histone H1 complement can result in the formation of artifactual particles upon microccocal nuclease digestion. These observations may be of interest in other systems which contain H1 variants.  相似文献   

4.
The assembly of hybrid core particles onto long chicken DNA with histone H2B in the chicken histone octamer replaced with either wheat histone H2B(2) or sea urchin sperm histone H2B(1) or H2B(2) is described. All these histone H2B variants have N-terminal extensions of between 18 and 20 amino acids, although only those from sea urchin sperm have S(T)PXX motifs present. Whereas chicken histone octamers protected 167 base pairs (bp) (representing two full turns) of DNA against micrococcal nuclease digestion (Lindsey, G. G., Orgeig, S., Thompson, P., Davies, N., and Maeder, D. L. (1991) J. Mol. Biol. 218, 805-813), all the hybrid histone octamers protected an additional 17-bp DNA against nuclease digestion. This protection was more marked in the case of hybrid octamers containing sea urchin sperm histone H2B variants and similar to that described previously (Lindsey, G. G., Orgeig, S., Thompson, P., Davies, N., and Maeder, D. L. (1991) J. Mol. Biol. 218, 805-813) for hybrid histone octamers containing wheat histone H2A variants all of which also have S(T)PXX motifs present. Continued micrococcal nuclease digestion reduced the length of DNA associated with the core particle via 172-, 162-, and 152-bp intermediates until the 146-bp core particle was obtained. These DNA lengths were approximately 5 bp or half a helical turn longer than those reported previously for stripped chicken chromatin and for core particles containing histone octamers reconstituted using "normal" length histone H2B variants. This protection pattern was also found in stripped sea urchin sperm chromatin, demonstrating that the assembly/digestion methodology reflects the in vivo situation. The interaction between the N-terminal histone H2B extension and DNA of the "linker" region was confirmed by demonstrating that stripped sea urchin sperm chromatin precipitated between 120 and 500 mM NaCl in a manner analogous to unstripped chromatin whereas stripped chicken chromatin did not. Tryptic digestion to remove all the histone tails abolished this precipitation as well as the protection of DNA outside of the 167-bp core particle against nuclease digestion.  相似文献   

5.
6.
7.
Assembly of active chromatin   总被引:3,自引:0,他引:3  
S Kumar  M Leffak 《Biochemistry》1986,25(8):2055-2060
  相似文献   

8.
9.
We investigated the relationship between linker histone stoichiometry and the acetylation of core histones in vivo. Exponentially growing cell lines induced to overproduce either of two H1 variants, H1(0) or H1c, displayed significantly reduced rates of incorporation of [(3)H]acetate into all four core histones. Pulse-chase experiments indicated that the rates of histone deacetylation were similar in all cell lines. These effects were also observed in nuclei isolated from these cells upon labeling with [(3)H]acetyl-CoA. Nuclear extracts prepared from control and H1-overexpressing cell lines displayed similar levels of histone acetylation activity on chromatin templates prepared from control cells. In contrast, extracts prepared from control cells were significantly less active on chromatin templates prepared from H1-overexpressing cells than on templates prepared from control cells. Reduced levels of acetylation in H1-overproducing cell lines do not appear to depend on higher order chromatin structure, because it persists even after digestion of the chromatin with micrococcal nuclease. The results suggest that alterations in chromatin structure, resulting from changes in linker histone stoichiometry may modulate the levels or rates of core histone acetylation in vivo.  相似文献   

10.
Bovine thymus and trout testis chromatin were fractionated into regions which differed in their micrococcal nuclease accessibility and solubility properties, and the distribution of the ubiquitinated histone species among these chromatin regions was elucidated. Ubiquitinated (u) species of histones H2A and H2B were enriched in the nuclease-sensitive, low-ionic-strength, soluble fraction of both chromatins. These results indicate that the presence of ubiquitinated histones may alter nucleosome-nucleosome interactions and destabilize higher-order chromatin structures. Bovine thymus chromatin was separated into aggregation-resistant, salt-soluble and aggregation-prone, salt-insoluble chromatin fractions. The aggregation-resistant chromatin fraction depleted in H1 histones was enriched in uH2A and uH2B, with uH2B showing the greater enrichment. The chromatin fragments were also stripped and reconstituted with the H1 histones prior to fractionation. The results were the same as above: uH2A and uH2B were preferentially localized in the aggregation-resistant. H1-depleted chromatin fraction, suggesting that chromatin regions enriched in ubiquitinated histone species have a reduced affinity for the H1 histones. Thus, ubiquitinated histone species may be one of the contributing factors in the differential assembly of various parts of the genome.  相似文献   

11.
The solubilization of nucleosomes and histone H1 with increasing concentrations of NaCl has been investigated in rat liver nuclei that had been digested with micrococcal nuclease under conditions that did not substantially alter morphological properties with respect to differences in the extent of chromatin condensation. The pattern of nucleosome and H1 solubilization was gradual and noncoordinate and at least three different types of nucleosome packing interactions could be distinguished from the pattern. A class of nucleosomes containing 13-- 17% of the DNA and comprising the chromatin structures most available for micrococcal nuclease attack was eluted by 0.2 M NaCl. This fraction was solubilized with an acid-soluble protein of apparent molecular weight of 20,000 daltons and no histone H1. It differed from the nucleosomes released at higher NaCl concentrations in content of nonhistone chromosomal proteins. 40--60% of the nucleosomes were released by 0.3 M NaCl with 30% of the total nuclear histone H1 bound. The remaining nucleosomes and H1 were solublized by 0.4 M or 0.6 M NaCl. H1 was not nucleosome bound at these ionic strengths, and these fractions contained, respectively, 1.5 and 1.8 times more H1 per nucleosome than the population released by 0.3 M NaCl. These fractions contained the DNA least available for micrococcal nuclease attach. The strikingly different macromolecular composition, availability for nuclease digestion, and strength of the packing interactions of the nucleosomes released by 0.2 M NaCl suggest that this population is involved in a special function.  相似文献   

12.
A chromatin fraction solubilized from mouse myeloma nuclei under near-physiological ionic conditions by very mild micrococcal nuclease digestion at 0°C is enriched at least 7-fold in DNA complementary to total myeloma polyadenylated mRNA, and 15-fold in DNA originating near the replication fork (labeled within 30 s). Newly replicated DNA recovered in solubilized chromatin after brief labeling was incorporated mainly into particles sedimenting with, or faster than, mononucleosomes. A rapid decrease in enrichment of newly replicated DNA in readily released, soluble chromatin with increasing labeling times indicated that newly replicated chromatin matured within 90 s to a form that was partitioned similarly to bulk chromatin by this fractionation method. Previous studies showed that chromatin readily solubilized from myeloma nuclei is enriched in high-mobility-group (HMG) and other non-histone proteins, RNA and single-stranded DNA; and depleted in H1 and 5-methylcytosine, relative to bulk chromatin (Jackson, J.B., Pollock, J.M., Jr., and Rill, R.L. (1979) Biochemistry 18, 3739–3748). Mild digestion of chicken erythrocyte nuclei with micrococcal nuclease yielded a soluble chromatin fraction (1–2% of the total DNA) with similar properties. This fraction was enriched at least 6-fold in DNA complementary to chicken globin mRNA, relative to total erythrocyte DNA.  相似文献   

13.
Mononucleosomes were released from both isolated mammalian (hog thyroid) and protozoan (Tetrahymena) nuclei by the bleomycin-induced DNA-strand breaking reaction. Trout sperm nuclei, on the other hand, were protected from the bleomycin-mediated DNA degradation. The mononucleosomes released from the bleomycin-treated nuclei contained the core histones H2A, H2B, H3, and H4; while HMG1 and HMG2 proteins, in addition to the core histones, were detected in the mononucleosomes obtained by micrococcal nuclease digestion of nuclei. HMGs, but not H1 histone, were dissociated into the supernatant by cleavage of chromatin DNA with bleomycin, whereas both HMGs and H1 were found in that fraction by digestion of nuclei with micrococcal nuclease. HMG1 and HMG2 were exclusively dissociated from chromatin with 1 mM bleomycin under the solvent condition where the DNA strand-breaking activity of the drug is repressed. These observations suggest the possibility that bleomycin preferentially binds to linker DNA regions not occupied by H1 histone in chromatin and exclusively dissociates HMG proteins and breaks the DNA strand. The results of the effects on bleomycin-induced DNA cleavage of nuclei of various drugs including polyamines, chelating agents, intercalating antibiotics such as mitomycin C or adriamycin, and radical scavengers are also presented.  相似文献   

14.
Micrococcal nuclease digestion of nuclei from sea urchin embryos revealed transient changes in chromatin structure which resulted in a reduction in the repeat length of nascent chromatin DNA as compared with bulk DNA. This was considered to be entirely the consequence of in vivo events at the replication fork (Cell 14, 259, 1978). However, a micrococcal nuclease-generated sliding of nucleosome cores relative to nascent DNA, which might account for the smaller DNA fragments, was not excluded. In vivo [3H]thymidine pulse-labeled nuclei were fixed with a formaldehyde prior to micrococcal nuclease digestion. This linked chromatin proteins to DNA and thus prevented any in vitro sliding of histone cores. All the nascent DNAs exhibiting shorter repeat lengths after micrococcal nuclease digestion, were resolved at identical mobilities in polyacrylamide gels of DNA from fixed and unfixed nuclei. We conclude that these differences in repeat lengths between nascent and bulk DNA was generated in vivo by changes in chromatin structure during replication, rather than by micrococcal nuclease-induced sliding of histone cores in vitro.  相似文献   

15.
The importance of histone H1 heterogeneity and total H1 stoichiometry in chromatin has been enigmatic. Here we report a detailed characterization of the chromatin structure of cells overexpressing either H1(0) or H1c. Nucleosome spacing was found to change during cell cycle progression, and overexpression of either variant in exponentially growing cells results in a 15-base pair increase in nucleosome repeat length. H1 histones can also assemble on chromatin and influence nucleosome spacing in the absence of DNA replication. Overexpression of H1(0) and, to a lesser extent, H1c results in a decreased rate of digestion of chromatin by micrococcal nuclease. Using green fluorescent protein-tagged H1 variants, we show that micrococcal nuclease-resistant chromatin is specifically enriched in the H1(0) variant. Overexpression of H1(0) results in the appearance of a unique mononucleosome species of higher mobility on nucleoprotein gels. Domain switch mutagenesis revealed that either the N-terminal tail or the central globular domain of the H1(0) protein could independently give rise to this unique mononucleosome species. These results in part explain the differential effects of H1(0) and H1c in regulating chromatin structure and function.  相似文献   

16.
The nucleosomal organization of active and repressed alpha subtype histone genes has been investigated by micrococcal nuclease digestion of P. lividus sperm, 32-64 cell embryo and mesenchyme blastula nuclei, followed by hybridization with 32P-labeled specific DNA probes. In sperms, fully repressed histone genes are regularly folded in nucleosomes, and exhibit a greater resistance to micrococcal nuclease cleavage than bulk chromatin. In contrast, both coding and spacer alpha subtype histone DNA sequences acquire an altered conformation in nuclei from early cleavage stage embryos, i.e., when these genes are maximally expressed. Switching off of the alpha subtype histone genes, in mesenchyme blastulae, restores the typical nucleosomal organization on this chromatin region. As probed by hybridization to D.melanogaster actin cDNA, actin genes retain a regular nucleosomal structure in all the investigated stages.  相似文献   

17.
G R Green  D L Poccia 《Biochemistry》1988,27(2):619-625
Several physical properties of sea urchin spermatid chromatin, which contains phosphorylated Sp H1 and Sp H2B histone variants, and mature sperm chromatin, in which these histones are dephosphorylated, were compared. Density, thermal stability, average nucleosomal repeat length, and resistance to micrococcal nuclease digestion are all increased in mature sperm relative to spermatid chromatin. Since the chromatins are identical in histone variant subtypes, the altered physical properties are not a consequence of changes in histone primary structure during spermiogenesis. The data are interpreted to mean that dephosphorylation of the N-terminal regions of Sp H1 and Sp H2B in late spermatid nuclei permits strong ionic binding of these highly basic regions to the extended linker, stabilizing the highly condensed structure of sperm chromatin.  相似文献   

18.
19.
Micrococcal nuclease digestion and light scattering are used to compare native chromatins with various histone H1[0] contents. The experimental data show that the higher the H1[0] content, the greater the ability to form compact structures with increasing ionic strength, and the lower the DNA accessibility to micrococcal nuclease. On the contrary, reconstituted samples from H1-depleted chromatin and pure individual H1 fractions behave in such a way that samples reconstituted with pure H1 degree give rise to a looser structure, more accessible to nuclease than samples reconstituted with H1-1. This contradiction suggests that the effect of H1o on chromatin structure must originate from the interaction of this histone with other components in native chromatin among which other histone H1 subfractions are good candidates.  相似文献   

20.
Histones are key components of chromatin. We investigated histone H2A-immunoreactive proteins in acute monocytic leukemia THP-1 cells using three polyclonal antibodies raised against peptides corresponding to distinct regions of H2A. Two unknown immunoreactive proteins (9- and 12-kDa proteins), H2A (14kDa) and ubiquitinated H2A (23kDa) were found in the cell lysates prepared by immediate direct addition of SDS-PAGE sample buffer to the cells as well as in the nuclear and chromatin fractions. However, they were not found in the cytoplasmic fraction. The unknown proteins were successfully purified by immunoaffinity chromatography from the cell nucleus extract and identified as 9-kDa H2A(1-87) and 12-kDa H2A(1-114), suggesting that both were produced by limited proteolysis of intact H2A(1-129). The truncated forms of H2A probably persisted as chromatin constituents, since the stability of H2A(1-87) in the chromatin fraction was sensitive to treatment with micrococcal nuclease, and H2A(1-114) was solubilized with lower ionic strength from the chromatin fraction obtained by micrococcal nuclease treatment. Truncated H2A proteins in THP-1 cells were transiently increased in amount by short-term treatment with phorbol 12-myristate 13-acetate or all-trans-retinoic acid, both of which induce macrophage-like differentiation. Furthermore, these increases were suppressed by preceding treatment with carbobenzoxy-l-leucyl-l-leucyl-l-leucinal (MG132) but not with carbobenzoxy-l-isoleucyl-gamma-t-butyl-l-glutamyl-l-alanyl-l-leucinal (PSI), both of which are generally known as proteasome inhibitors. Our results suggest that histone H2A is cleaved at least at two sites by protease(s) that remain obscure, and might affect chromatins in the early stage of THP-1 cell differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号