首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
野生大豆(Glycine soja)耐高盐碱土壤种质的鉴定与评价   总被引:3,自引:0,他引:3  
使用总含盐量为3%的海滨盐碱土壤盆栽,对津唐渤海湾沿海地区的895份野生大豆株系进行全生育期高强度耐盐碱性鉴定,有109份株系成活并收获种子.对109份高度耐盐碱性株系的10个形态和农艺性状进行主成分分析表明,在高盐碱土壤环境下,野生大豆高耐材料第一主成分的主要构成依次为单株产量、单株粒数、百粒重、单株收获指数、生育期、单株地上干重和株高,贡献率为42.67%.使用总级别值法和隶属函数法对这些高耐盐碱种质进行评价,筛选出高耐盐碱种质15份.  相似文献   

2.
松嫩平原两个生态型羊草实验种群对盐碱胁迫的生理响应   总被引:10,自引:2,他引:8  
周婵  杨允菲 《应用生态学报》2003,14(11):1842-1846
采用盆栽实验,对灰绿型和黄绿型两个生态型羊草(Leymus chinensis)在幼苗期分别用不同强度的NaCl、Na2CO3和混合盐碱胁迫,测定其叶片叶绿素含量、电解质外渗率和植株脯氨酸、Na/K等生理指标。结果表明,在3种盐碱胁迫条件下,灰绿型和黄绿型羊草的叶片叶绿素含量、电解质外渗率和植株脯氨酸、Na/K均与胁强之间呈直线y=a+bx变化,达到了显著或极显著水平,两个实验种群均具有耐盐碱能力,叶片叶绿素含量、电解质外渗率和植株脯氨酸、Na/K均有显著或极显著差异,它们在耐盐碱生理特性上已产生了分化,其中,灰绿型的耐盐碱能力强于黄绿型,本文为羊草生态型分化主导生态因子是土壤盐碱所致提供了的生理学证据。  相似文献   

3.
水稻耐盐碱性生理和遗传研究进展   总被引:19,自引:0,他引:19  
水稻是对盐碱中度敏感的作物,其耐盐碱性因品种、生育阶段、器官、土壤盐碱类型等而存在差异。盐碱胁迫对水稻的伤害主要表现为延迟种子发芽时间、降低发芽率、抑制生育进程、阻碍幼穗分化、推迟分蘖时间、减少分蘖数、降低产量和品质。本文论述了近年来在水稻耐盐碱生理机理、转运蛋白、遗传和数量性状位点的分子检测、分子信号传导以及基因克隆转化方面的研究进展,并对今后的研究工作提出了建议。  相似文献   

4.
氮素营养与水分胁迫对大豆产量补偿效应的影响   总被引:2,自引:0,他引:2  
褚丽丽  张忠学 《生态学报》2010,30(10):2665-2670
在大豆营养生长期,对大豆进行不同程度的干旱锻炼,同时改变土壤中的施氮水平,研究大豆产量及其构成因子对干旱胁迫复水的反应机制,为大豆节水增产及抗旱机制的实践探索提供理论依据。水分胁迫强度、历时和氮素营养都对大豆产量及其构成因子的补偿效应产生明显影响,水分胁迫抑制了大豆单株粒数的增长,但可以显著提高百粒重;氮素营养会抑制大豆百粒重的增加,但在一定水分条件下可以显著提高单株籽粒的数量,然而随着水分胁迫程度的加重,单株粒数的增加幅度也会相应减少。虽然氮素营养和水分胁迫使大豆产量构成因子产生补偿效应的阈值范围不同,但二者具有一定的耦合区域,在耦合区域内(水分胁迫时间14d左右、土壤含水量为田间持水量的50%—55%、施氮量在97.5—225kg/hm2之间)单株粒数和百粒重都产生较强的补偿效应,二者的协同作用显著提高了大豆的经济产量,使大豆产量表现出较强的补偿效应。结果表明:氮素营养和适度水分胁迫可以通过不同途径提高大豆植株的生长能力,当二者结合后大豆的补偿生长机制更为复杂,最终表现为水分胁迫提高了大豆的百粒重,而氮素增加了大豆单株粒数,二者协同作用使大豆经济产量显著增加。  相似文献   

5.
该研究选取六个多年生苦荞新品系,对春季、秋季直播与秋季再生其主要农艺性状进行调查。结果表明:(1)不同播种季节对多年生苦荞新品系主花序的花粉可育率、总结实率、有效结实率、植株株高、主茎粗、主茎分枝数、主茎节数、籽粒百粒重、单株粒数、单株产量的影响均达到显著或极显著水平;秋播主花序花粉可育率、总结实率、有效结实率、植株主茎分枝数、籽粒百粒重、单株粒数、单株产量均极显著高于春播;植株株高、主茎粗、主茎节数均极显著低于春播;主花序花朵大小、籽粒种子长宽比无显著差异。(2)不同种植方式对主花序花粉可育率、有效结实率、植株主茎节数及籽粒百粒重的影响达到显著或极显著水平;秋季再生主花序花粉可育率、籽粒单株粒数显著高于秋季直播;主花序有效结实率、植株主茎粗、主茎节数、籽粒百粒重显著低于秋季直播;主花序花朵大小、总结实率、植株株高、主茎分枝数、籽粒种子长宽比、单株产量无显著差异;相关分析表明,各生长季节下主花序有效结实率及单株粒数与单株产量的相关系数均最高。(3)所有参试品系中,1612-241秋季直播的单株产量显著高于其他品系; 1612-16、1612-33秋季再生单株产量较正季优势显著。该研究结果有助于筛选出适宜一季播种两季收获的优良品系,为今后多年生苦荞的选择育种提供线索基础。  相似文献   

6.
湘中、湘东地区早籼稻耐土壤潜育性评价   总被引:2,自引:0,他引:2  
我国南方稻区的主要低产稻田是潜育性稻田,约有一亿亩。挖掘其“潜在生产力”,种植耐潜育性土壤逆境胁迫能力较强的水稻品种,则是简便、经济而有效的重要途径之一。本文就几个早籼稻品种(组合)对潜育性稻田的生态适应性进行了较系统的观测,并初步提出了耐潜育性的几个鉴定指标,诸如根系生长量和幼穗分化期根系氧化力;分蘖早期茎蘖增长速率;分蘖后期单株干物质产量;乳熟期剑叶片过氧化氢酶活性GDI和光合强度等。上述鉴定指标,综合应用于水稻品种生态适应性和耐潜育性育种研究,有助于提高水稻抗逆性育种的效率。  相似文献   

7.
土壤盐碱化在世界范围内普遍存在,日益严峻的盐碱化形势严重威胁着植物的生长发育。芒(Miscanthus sinensis)和荻(Miscanthus sacchariflora)作为能源植物具有良好的经济效益和生态效益,并且在城市园林中已得到广泛应用。该研究以引种自辽宁省本溪阿家岭的芒和哈尔滨市太阳岛的荻为对象,模拟我国东北大庆盐碱地的低(浓度1、2)、中(浓度3)、高(浓度4、5)浓度土壤环境,分别对芒和荻的种子进行复合盐碱胁迫处理,对芒和荻的种子萌发情况进行研究。结果表明:(1)复合盐碱胁迫处理下,芒种子的发芽率随着复合盐碱浓度的升高而降低,发芽势、活力指数、发芽指数、胚根长度、胚芽长度、胚根鲜重、胚芽鲜重和耐盐碱指数均先升高后降低;荻种子的发芽率、发芽势、活力指数、发芽指数、胚根长度、胚芽长度、胚根鲜重、胚芽鲜重和耐盐碱指数均随着复合盐碱浓度的升高而降低。(2)芒和荻的种子能够抵抗低、中浓度的复合盐碱胁迫处理,当高浓度的复合盐碱胁迫处理时,各项指标均下降明显,且芒种子的各项指标均优于荻种子,说明芒种子比荻种子更耐盐碱。该研究结果基本界定芒荻种子的复合盐碱耐受范围,为今后芒荻类能源植物的耐盐碱性筛选和在园林中的应用提供了理论依据。  相似文献   

8.
采用盆栽试验,设置不同盐胁迫浓度,通过萌发至幼苗期的出苗速度、植株形态和生物量等指标对200个花生品种(系)进行耐盐性评价.结果表明: 随盐胁迫浓度的增加,花生出苗时间延长,对植株形态建成抑制加重,物质积累减少.鉴定花生品种耐盐性强弱的适宜盐胁迫浓度为0.30%~0.45%.采用隶属函数值法将10个指标归结为平均隶属函数值,根据不同胁迫浓度下各指标与平均隶属函数值之间的相关性大小,植株鲜质量、地上部鲜质量、地下部鲜质量、地下部干质量、株高和主茎高均较大,可作为首选指标,植株干质量、地上部干质量、主根长和出苗速率均较小,可作为辅助指标综合判断品种的耐盐能力.200个品种(系)在不同盐胁迫浓度下均可分成高度耐盐型、耐盐型、盐敏感型和高度盐敏感型4组.随盐胁迫强度加大,耐盐品种数量下降,而盐敏感品种数量上升.部分品种在低、中、高盐胁迫强度下表现出统一性(均耐盐或均敏感);部分品种存在差异性,即低胁迫强度下表现耐盐性而在高胁迫强度下表现盐敏感性.  相似文献   

9.
为了研究AtNHX5基因在植物耐盐中的作用,构建了植物过量表达载体pROKⅡ-AtNHX5,并转化拟南芥。结果显示:(1)RT-PCR检测表明,转基因拟南芥中AtNHX5基因的表达大幅提高。(2)对转基因纯合株系进行耐盐性分析显示,AtNHX5过量表达提高了植株在种子萌发和苗期的耐盐性。(3)转基因植株在盐处理下的干重、鲜重以及地上部分Na+、K+含量均高于野生型对照。在200mmol/L NaCl处理下,以转基因株系a1-4为例,其地上部分单株鲜重、单株干重、K+含量分别是野生型的1.27、1.54、1.16倍,较野生型显著升高。研究表明,过量表达AtNHX5基因促进了盐胁迫下转基因植株对K+的吸收,转基因拟南芥的耐盐性明显提高。  相似文献   

10.
北京地区野生大豆天然种群表型结构分析   总被引:2,自引:1,他引:1  
调查了北京地区10个野生大豆种群的10个形态性状,结果显示:质量性状形态相对单一;种群内个体间的数量性状值相差很大,种群间数量性状的平均差异大小有一定的地理分布性,但各性状差异表现不尽相同.性状变异系数大小顺序依次为:叶片长×宽>单株产量>地上部茎叶干重>生长速率>株高>百粒重>播种至开花天数.数量性状的多样性指数高于质量性状的多样性指数.通过聚类分析,把北京地区10个种群分为4组.  相似文献   

11.
Summary This research was undertaken to investigate differences in salt tolerance under conditions in which salinity is increased gradually and maintained for long periods or increased rapidly and maintained for shorter periods. The responses of populations of a C4 nonhalophytic grass, Andropogon glomeratus, to long- and short-term salinity were measured under controlled environment conditions. Additionally, plants from a salt marsh population and an inland population were transplanted into a salt marsh and their survival compared. The relative growth reductions in the salt marsh and the inland populations under long-term salinity were similar. Survival of seedlings of 4 populations inundated with full-strength seawater over a relatively short period indicated differential capacities to tolerate soil salinities imposed in a manner similar to tidal inundation in a salt marsh. The greater survival of plants from the marsh population transplanted into the salt marsh further indicated genetic differentiation between the populations. These results indicate that genetic differentiation to salt tolerance in A. glomeratus is better reflected by survival after shortterm salinity events, rather than growth inhibition due to long-term salinity imposed gradually.  相似文献   

12.
Three populations of non-native Asian swamp eels are established in peninsular Florida (USA), and comprise two different genetic lineages. To assess potential for these fish to penetrate estuarine habitats or use coastal waters as dispersal routes, we determined their salinity tolerances. Swamp eels from the three Florida populations were tested by gradual (chronic) salinity increases; additionally, individuals from the Miami population were tested by abrupt (acute) salinity increases. Results showed significant tolerance by all populations to mesohaline waters: Mean survival time at 14 ppt was 63 days. The Homestead population, a genetically distinct lineage, exhibited greater tolerance to higher salinity than Tampa and Miami populations. Acute experiments indicated that swamp eels were capable of tolerating abrupt shifts from 0 to 16 ppt, with little mortality over 10 days. The broad salinity tolerance demonstrated by these experiments provides evidence that swamp eels are physiologically capable of infiltrating estuarine environments and using coastal waters to invade new freshwater systems.  相似文献   

13.
The relative importance of natural selection and genetic drift in determining patterns of phenotypic diversity observed in nature is still unclear. The natterjack toad (Bufo calamita) is one of a few amphibian species capable of breeding in saline ponds, even though water salinity represents a considerable stress for them. Results from two common-garden experiments showed a pattern of geographic variation in embryonic salinity tolerance among populations from either fresh or brackish environments, consistent with the hypothesis of local adaptation. Full-sib analysis showed increased variation in survival among sibships within population for all populations as osmotic stress was increased (broad-sense heritability increased as salinity raised). Nevertheless, toads native to the brackish water environment had the highest overall survival under brackish conditions. Levels of population genetic differentiation for salinity tolerance were higher than those of neutral genetic differentiation, the latter obtained through the analysis of eight microsatellite loci. Microsatellite markers also revealed little population differentiation, lack of an isolation-by-distance pattern, and moderate gene flow connecting the populations. Therefore, environmental stress tolerance appears to have evolved in absence of geographic isolation, and consequently we reject the null hypothesis of neutral differentiation.  相似文献   

14.
During the last decade, a large number of QTLs and candidate genes for rice tolerance to salinity have been reported. Using 124 SNP and 52 SSR markers, we targeted 14 QTLs and 65 candidate genes for association mapping within the European Rice Core collection (ERCC) comprising 180 japonica accessions. Significant differences in phenotypic response to salinity were observed. Nineteen distinct loci significantly associated with one or more phenotypic response traits were detected. Linkage disequilibrium between these loci was extremely low, indicating a random distribution of favourable alleles in the ERCC. Analysis of the function of these loci indicated that all major tolerance mechanisms were present in the ERCC although the useful level of expression of the different mechanisms was scattered among different accessions. Under moderate salinity stress some accessions achieved the same level of control of Na(+) concentration and Na(+)/K(+) equilibrium as the indica reference variety for salinity tolerance Nona Bokra, although without sharing the same alleles at several loci associated with Na(+) concentration. This suggests (a) differences between indica and japonica subspecies in the effect of QTLs and genes involved in salinity tolerance and (b) further potential for the improvement of tolerance to salinity above the tolerance level of Nona Bokra, provided the underlying mechanisms are complementary at the whole plant level. No accession carried all favourable alleles, or showed the best phenotypic responses for all traits measured. At least nine accessions were needed to assemble the favourable alleles and all the best phenotypic responses. An effective strategy for the accumulation of the favourable alleles would be marker-assisted population improvement.  相似文献   

15.
The natterjack toad (Bufo calamita) shows variation in embryonic and larval salinity tolerance across populations in southern Spain. However, its aquatic/terrestrial biphasic life cycle, together with remarkable differences in salinity tolerance between Spanish and UK freshwater populations suggest an alternative hypothesis to local adaptation. Drought resistance during the terrestrial phase and salinity tolerance during the aquatic phase are both related to osmotic stress tolerance, and if there were an association between them, one could have evolved as an exaptation from the other. To test such an association, we reared B. calamita juveniles from three populations known to differ genetically in their salinity tolerance, under either dry or humid conditions. Drought decreased growth rate, enhanced burying behaviour, and decreased foraging activity and efficiency. No significant population x treatment interaction was found for any variable, i.e. populations were equally affected by drought. These results do not support the hypothesis of a genetic association between salinity and drought tolerance.  相似文献   

16.
Invasive species are commonly thought to have broad tolerances that enable them to colonize new habitats, but this assumption has rarely been tested. In particular, the relative importance of acclimation (plasticity) and adaptation for invasion success are poorly understood. This study examined effects of short-term and developmental acclimation on adult salinity tolerance in the copepod Eurytemora affinis. This microcrustacean occurs in estuarine and salt marsh habitats but has invaded freshwater habitats within the past century. Effects of short-term acclimation were determined by comparing adult survival in response to acute versus gradual salinity change to low salinity (fresh water). Effects of developmental acclimation on adult tolerance were determined using a split-brood 4 x 2 factorial experimental design for one brackish-water population from Edgartown Great Pond, Massachusetts. Twenty full-sib clutches were split and reared at four salinities (fresh, 5, 10, and 27 practical salinity units [PSU]). On reaching adulthood, clutches from three of the salinity treatments (no survivors at fresh) were split into low- (fresh) and high- (40 PSU) salinity stress treatments, at which survival was measured for 24 h. Short-term acclimation of adults did not appear to have a long-term affect on low-salinity tolerance, given that gradual transfers to fresh water enhanced survival relative to acute transfers in the short term (after 7 h) but not over a longer period of 8 d. Developmental acclimation had contrasting effects on low- versus high-salinity tolerance. Namely, rearing salinity had a significant effect on tolerance of high-salinity (40 PSU) stress but no significant effect on tolerance of low-salinity (freshwater) stress. In addition, there was a significant effect of clutch on survival under freshwater conditions, indicating a genetic component to low-salinity tolerance but no significant clutch effect in response to high salinity. While developmental acclimation might enhance survival at higher salinities, the minimal effect of acclimation and significant effect of clutch on low-salinity tolerance suggest the importance of natural selection during freshwater invasion events.  相似文献   

17.
This study examined the extent of phenotypic plasticity for salinity tolerance and genetic variation in plasticity in the invasive copepod Eurytemora affinis. Euryemora affinis is a species complex inhabiting brackish to hypersaline environments but has invaded freshwater lakes and reservoirs within the past century. Reaction norm experiments were performed on a relatively euryhaline population collected from a brackish lake with fluctuating salinity. Life history traits (hatching rate, survival, and development time) were measured for 20 full-sib clutches that were split and reared at four salinities (fresh, 5, 10, and 27 practical salinity units [PSU]). On average, higher salinities (10 and 27 PSU) were more favorable for larval growth, yielding greater survival and faster development rate. Clutches differed significantly in their response to salinity, with a significant genotype-by-environment interaction for development time. In addition, genetic (clutch) effects were evident in response to low salinity, given that survival in fresh (lake) water was significantly positively correlated with survival at 5 PSU for individual clutches. Clutches raised in fresh water could not survive beyond metamorphosis, suggesting that acclimation to fresh water could not occur in a single generation. Results suggest the importance of natural selection during freshwater invasion events, given the inability of plasticity to generate a freshwater phenotype, and the presence of genetic variation for plasticity upon which natural selection could act.  相似文献   

18.
Effects of salinity, temperature and their interactions on the rate and final percentage of germination were evaluated for two populations (Msarref, Oued dkouk) of the invasive glycophyte Lotus creticus Linné, grown under arid environmental conditions of the Tunisia. Seeds that were not treated with NaCl germinated well in a wide range of temperatures. For both populations, maximum germination occurred in distilled water at 25°C and lowest germination for all salinities was at 35°C. Germination was substantially delayed and significantly reduced with an increase in NaCl to levels above 300 mm . Compared to the Oued dkouk population, final germination and germination rate of the Msarref population was completely inhibited at 300 mm NaCl. The interactive effect of temperature and NaCl concentration on final germination and germination rate was significant (P < 0.01), indicating that the germination response to salinity depended on temperature. The inhibition of Oued dkouk population seed germination at high salt concentration was mostly due to osmotic effects while ionic effects were noted at Msarref population. The germination behaviour of the Oued dkouk population would therefore imply adaptive mechanisms to saline environments, while in the Msarref population such mechanisms seem to be absent. Since seed germination is more sensitive to salinity stress than the growth of established plants, the greater tolerance to salinity of Oued dkouk population would be an adaptive feature of this population to saline environment.  相似文献   

19.

Background

Drought and salinity are two major abiotic stresses that severely limit barley production worldwide. Physiological and genetic complexity of these tolerance traits has significantly slowed the progress of developing stress-tolerant cultivars. Marker-assisted selection (MAS) may potentially overcome this problem. In the current research, seventy two double haploid (DH) lines from a cross between TX9425 (a Chinese landrace variety with superior drought and salinity tolerance) and a sensitive variety, Franklin were used to identify quantitative trait loci (QTL) for drought and salinity tolerance, based on a range of developmental and physiological traits.

Results

Two QTL for drought tolerance (leaf wilting under drought stress) and one QTL for salinity tolerance (plant survival under salt stress) were identified from this population. The QTL on 2H for drought tolerance determined 42% of phenotypic variation, based on three independent experiments. This QTL was closely linked with a gene controlling ear emergency. The QTL on 5H for drought tolerance was less affected by agronomic traits and can be effectively used in breeding programs. A candidate gene for this QTL on 5H was identified based on the draft barley genome sequence. The QTL for proline accumulation, under both drought and salinity stresses, were located on different positions to those for drought and salinity tolerance, indicating no relationship with plant tolerance to either of these stresses.

Conclusions

Using QTL mapping, the relationships between QTL for agronomic and physiological traits and plant drought and salinity tolerance were studied. A new QTL for drought tolerance which was not linked to any of the studied traits was identified. This QTL can be effectively used in breeding programs. It was also shown that proline accumulation under stresses was not necessarily linked with drought or salinity tolerance based on methods of phenotyping used in this experiment. The use of proline content in breeding programs can also be limited by the accuracy of phenotyping.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1243-8) contains supplementary material, which is available to authorized users.  相似文献   

20.
Abstract. Water salinity is an intense physiological stress for amphibians. However, some species, such as Bufo calamita, breed in both brackish and freshwater environments. Because selection under environmentally stressful conditions can promote local adaptation of populations, we examined the existence of geographic variation in water salinity tolerance among B. calamita populations from either fresh or brackish water ponds in Southern Spain. Comparisons were made throughout various ontogenetic stages. A combination of field transplant and common garden experiments showed that water salinity decreased survival probability of individuals in all populations, prolonged their larval period, and reduced their mass at metamorphosis. However, significant population X salinity interactions indicated that the population native to brackish water (Saline) had a higher salinity tolerance than the freshwater populations, suggesting local adaptation. Saline individuals transplanted to freshwater environments showed similar survival probabilities, length of larval period, and mass at metamorphosis than those native to freshwater. This indicates that increased tolerance to osmotic stress does not imply a loss of performance in freshwater, at least during the larval and juvenile phases. Despite the adaptive process apparently undergone by Saline, all populations still shared the same upper limit of embryonic stress tolerance (around 10 g/l), defining a window of salinity range within which selection can act. Significant differences in embryonic and larval survival in brackish water among sibships for all populations suggest the existence of a genetic basis for the osmotic tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号