首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the relationships between morphology and muscle-tendon dynamics of the quadriceps femoris muscle of 11 men using velocity-encoded phase-contrast magnetic resonance imaging (MRI). Thigh muscle electromyography and joint range of motion were first measured outside the MRI scanner during knee extension-flexion tasks that were performed at a rate of 40 times/min with elastic bands providing peak resistance of 5.2 kp (SD 0.4) to the extension. The same movement was repeated inside the MRI scanner bore where tissue velocities and muscle morphology were recorded. The average displacement in the proximal and distal halves of the rectus femoris and vastus intermedius aponeuroses was different (P = 0.049), reflecting shortening (1.6%), but the tensile strain along the length of the aponeuroses was uniform. The aponeurosis behavior varied among individuals, and these individual patterns were best explained by the differences in relative cross-sectional area of rectus femoris to vastus muscles (r = 0.71, P = 0.014). During dynamic contraction, considerable deformation of muscles in the axial plane caused an anatomic measure such as muscle thickness to change differently (decrease or increase) in different sites of measurement. For example, when analyzed from the axial images, the vastus lateralis thickness did not change (P = 0.946) in the frontal plane through femur but increased in a 45 degrees oblique plane between the frontal and sagittal planes (P = 0.004). The present observations of the heterogeneity and individual behavior emphasize the fact that single-point measurements do not always reflect the overall behavior of muscle-tendon unit.  相似文献   

2.
Lengths of muscle tendon complexes of the quadriceps femoris muscle and some of its heads, biceps femoris and gastrocnemius muscles, were measured for six limbs of human cadavers as a function of knee and hip-joint angles. Length-angle curves were fitted using second degree polynomials. Using these polynomials the relationships between knee and hip-joint angles and moment arms were calculated. The effect of changing the hip angle on the biceps femoris muscle length is much larger than that of changing the knee angle. For the rectus femoris muscle the reverse was found. The moment arm of the biceps femoris muscle was found to remain constant throughout the whole range of knee flexion as was the case for the medial part of the vastus medialis muscle. Changes in the length of the lateral part of the vastus medialis muscle as well as the medial part of the vastus lateralis muscle are very similar to those of vastus intermedius muscle to which they are adjacent, while those changes in the length of the medial part of the vastus medialis muscle and the lateral part of the vastus lateralis muscle, which are similar to each other, differ substantially from those of the vastus intermedius muscle. Application of the results to jumping showed that bi-articular rectus femoris and biceps femoris muscles, which are antagonists, both contract eccentrically early in the push off phase and concentrically in last part of this phase.  相似文献   

3.
In vivo motion of the rectus femoris muscle after tendon transfer surgery   总被引:7,自引:0,他引:7  
Rectus femoris transfer surgery is performed to convert the rectus femoris muscle from a knee extensor to a knee flexor. In this surgery, the distal tendon of the rectus femoris is detached from the patella and reattached to one of the knee flexor tendons. The outcomes of this procedure are variable, and it is not known if the surgery successfully converts the muscle to a knee flexor. We measured the motion of muscle tissue within the rectus femoris and vastus intermedius during knee extension in 10 unimpaired control subjects (10 limbs) and 6 subjects (10 limbs) after rectus femoris transfer using cine phase-contrast magnetic resonance imaging. Displacements of the vastus intermedius during knee extension were similar between control and tendon transfer subjects. In the control subjects, the rectus femoris muscle consistently moved in the direction of the knee extensors and displaced more than the vastus intermedius. The rectus femoris also moved in the direction of the knee extensors in the tendon transfer subjects; however, the transferred rectus femoris displaced less than the vastus intermedius. These results suggest that the rectus femoris is not converted to a knee flexor after its distal tendon is transferred to the posterior side of the knee, but its capacity for knee extension is diminished by the surgery.  相似文献   

4.
Fiber architecture of the extensor musculature of the knee and ankle is examined in two African guenon species—the semiterrestrial Cercopithecus aethiops, and the arboreal C. ascanius. Using histologic and microscopic techniques to measure lengths of sarcomeres, the original lengths of muscle fasciculi and angles of pinnation in quadriceps femoris and triceps surae are reconstructed from direct measurements on cadavers. Calculations of reduced physiological cross-sectional area, mass/predicted effective tetanic tension, maximum excursion, and tendon length/fasciculus + tendon lengths are correlated to preferred locomotor modalities in the wild. For both species, greater morphological differences occur among the bellies of quadriceps femoris—rectus femoris, vastus intermedius, v. lateralis, and v. medialis—than among the bellies of triceps surae—gastrocnemius lateralis, g. medialis, plantaris, and soleus. With regard to quadriceps femoris, few differences occur between species. Interspecific differences in the triceps surae indicate (1) redirection of muscle force to accommodate arboreality in which the substrate is less than body width; (2) muscles more suited for velocity in the semiterrestrial vervets; and (3) muscles used more isotonically in vervets and more isometrically in red-tailed monkeys. The inherent flexibility of muscle may be preadaptive to a primary species shift in locomotor modality until the bony morphology is able to adapt through natural selection. © 1996 Wiley-Liss, Inc.  相似文献   

5.
Skeletal muscles consist of slow-twitch and fast-twitch muscle fibers, which have distinct physiological and biochemical properties. The muscle fiber composition determines the contractile velocity and fatigability of a particular skeletal muscle. We analyzed the systemic distribution of slow muscle fibers in all rodent skeletal muscles by myosin ATPase staining and found that only seven hindlimb skeletal muscles were extremely rich in slow muscle fibers. These included the mouse piriformis (56.5%), gluteus minimus (35.7%), vastus intermedius (24.7%), quadratus femoris (69.9%), adductor brevis (44.3%), gracilis (24.6%), and soleus muscles (35.1%). In mice, the relative proportion of slow muscle fibers did not exceed 15% in skeletal muscles in other regions. The distribution of slow muscle fibers was well conserved in rats and rabbits. The soleus muscle is an important antigravity muscle in both rodents and humans; therefore, these skeletal muscles rich in slow muscle fibers might play an important role in sustaining neutral alignment of the lower extremity.  相似文献   

6.
Physiologically related features of muscle morphology are considered with regard to functional adaptation for locomotor and postural behavior in the brown lemur (Lemur fulvus). Reduced physiological cross-sectional area, estimated maximum excursion of the tendon of insertion, length of tendon per muscle fasciculus, and areal fiber type composition were examined in the quadriceps femoris in order to assess the extent of a "division of labor" among four apparent synergists. Each of these four muscles in this prosimian primate displays a distinguishing constellation of morphological features that implies functional specialization during posture and normal locomotion (walk/run, galloping, leaping). Vastus medialis is best suited for rapid whole muscle recruitment and may be reserved for relatively vigorous activities such as galloping and leaping (e.g., small cross-sectional area per mass, long excursion, predominance of fast-low oxidative fibers, relatively little tendon per fasciculus). In theory, rectus femoris could be employed isometrically in order to store elastic strain energy during all phasic activities (e.g., large cross-sectional area per mass, short excursion, predominance of fast-high oxidative fibers, large amount of tendon per fasciculus). Vastus intermedius exhibits an overall morphology indicative of a typical postural muscle (e.g., substantial cross-sectional area, short excursion, predominance of slow-high oxidative fibers, large amount of tendon per fasciculus). The construction of vastus lateralis reflects an adaptation for high force, relatively high velocity, and resistance to fatigue (e.g., large cross-sectional area, long excursion, most heterogeneous distribution of fiber types, large amount of tendon per fasciculus); this muscle is probably the primary contributor to a wide range of locomotor behaviors in lemurs. Marked dramatic architectural disparity among the four bellies, coupled with relative overall fiber type heterogeneity, suggests the potential for exceptional flexibility in muscle recruitment within this mass. One interpretation of this relatively complex neuromuscular organization in the brown lemur is that it represents an adaptation for the exploitation of a three-dimensional arboreal environment by rapid quadrupedalism and leaping among irregular and spatially disordered substrates.  相似文献   

7.

Background

The aim of this study was to investigate the association between walking ability and muscle atrophy in the trunk and lower limbs.

Methods

Subjects in this longitudinal study were 21 elderly women who resided in nursing homes. The thicknesses of the following trunk and lower-limb muscles were measured using B-mode ultrasound: rectus abdominis, external oblique, internal oblique, transversus abdominis, erector spinae, lumbar multifidus, psoas major, gluteus maximus, gluteus medius, gluteus minimus, rectus femoris, vastus lateralis, vastus intermedius, biceps femoris, gastrocnemius, soleus, and tibialis anterior. Maximum walking speed was used to represent walking ability. Maximum walking speed and muscle thickness were assessed before and after a 12-month period.

Results

Of the 17 measured muscles of the trunk and lower limbs, age-related muscle atrophy in elderly women was greatest in the erector spinae, rectus femoris, vastus lateralis, vastus intermedius, and tibialis anterior muscles. Correlation coefficient analyses showed that only the rate of thinning of the vastus lateralis was significantly associated with the rate of decline in maximum walking speed (r = 0.518, p < 0.05).

Conclusions

This longitudinal study suggests that reduced walking ability may be associated with muscle atrophy in the trunk and lower limbs, especially in the vastus lateralis muscle, among frail elderly women.  相似文献   

8.
The purpose of this study was to describe the relationships between 16 physiological, biochemical, and morphological variables presumed to relate to the oxidative capacity in quadriceps muscles or muscle parts in Standardbred horses. The variables included O2 delivery (blood flow) and mean capillary transit time (MTT) during treadmill locomotion at whole animal maximal O2 consumption (VO2max, 134 +/- 2 ml.min-1 x kg-1), capillary density and capillary-to-fiber ratio, myoglobin concentration, oxidative enzyme activities, glycolytic enzyme activities, fiber type populations, and fiber size. These components of muscle metabolic capacity were found to be interrelated to varying degrees using correlation matrix analysis, with lactate dehydrogenase activity showing the most significant correlations (n = 14) with other variables. Most of the "oxidative" variables occurred in the highest quantities in the deepest muscle of the group (vastus intermedius) and in the deepest parts of the other quadriceps muscles where the highest proportions of type I fibers were localized. The highest blood flow measured with microspheres in the muscle group during exercise was in vastus intermedius muscle (145 ml.min-1 x 100 g-1), and the lowest was in the superficial part of rectus femoris muscle (32 ml.min-1 x 100 g-1). Average muscle blood flow during exercise at whole animal VO2max was 116 ml.min-1 x 100 g-1. Because skeletal muscle comprised 43% of total body mass (453 +/- 34 kg), total muscle blood flow was estimated at 226 l/min, which was approximately 78% of total cardiac output (288 l/min).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Muscle-specific atrophy of the quadriceps femoris with aging.   总被引:6,自引:0,他引:6  
We examined the size of the four muscles of the quadriceps femoris in young and old men and women to assess whether the vastus lateralis is an appropriate surrogate for the quadriceps femoris in human studies of aging skeletal muscle. Ten young (24 +/- 2 yr) and ten old (79 +/- 7 yr) sedentary individuals underwent magnetic resonance imaging of the quadriceps femoris after 60 min of supine rest. Volume (cm3) and average cross-sectional area (CSA, cm2) of the rectus femoris (RF), vastus lateralis (VL), vastus intermedius (VI), vastus medialis (VM), and the total quadriceps femoris were decreased (P < 0.05) in older compared with younger women and men. However, percentage of the total quadriceps femoris taken up by each muscle was similar (P > 0.05) between young and old (RF: 10 +/- 0.3 vs. 11 +/- 0.4; VL: 33 +/- 1 vs. 33 +/- 1; VI: 31 +/- 1 vs. 31 +/- 0.4; VM: 26 +/- 1 vs. 25 +/- 1%). These results suggest that each of the four muscles of the quadriceps femoris atrophy similarly in aging men and women. Our data support the use of vastus lateralis tissue to represent the quadriceps femoris muscle in aging research.  相似文献   

10.
This study was undertaken to quantify the effect of motor collateral sprouting in an end-to-side repair model allowing end organ contact. Besides documentation of the functional outcome of muscle reinnervation by end-to-side neurorrhaphy, this experimental work was performed to determine possible downgrading effects to the donor nerve at end organ level. In 24 female New Zealand White rabbits, the motor nerve branch to the rectus femoris muscle of the right hindlimb was dissected, cut, and sutured end-to-side to the motor branch to the vastus medialis muscle after creating an epineural window. The 24 rabbits were divided into two groups of 12 each, with the second group receiving additional crush injury of the vastus branch. After a period of 8 months, maximum tetanic tension in the reinnervated rectus femoris and the vastus medialis muscles was determined. The contralateral healthy side served as control. The reinnervated rectus femoris muscle showed an average maximum tetanic force of 24.9 N (control 26.2 N, p = 0.7827), and the donor- vastus medialis muscle 11.0 N (control 7.3 N, p = 0.0223). There were no statistically significant differences between the two experimental groups (p = 0.9914). The average number of regenerated myelinated nerve fibers in the rectus femoris motor branch was 1,185 +/- 342 (control, 806 +/- 166), and the mean diameter was 4.6 +/- 0.6 microm (control, 9.4 +/- 1.0 microm). In the motor branch to the vastus medialis muscle, the mean fiber number proximal to the coaptation site was 1227 (+/-441), and decreased distal to the coaptation site to 795 (+/-270). The average difference of axon counts in the donor nerve proximal to distal regarding the repair site was 483.7 +/- 264.2. In the contralateral motor branch to the vastus medialis muscle, 540 (+/- 175) myelinated nerve fibers were counted. In nearly all cross-section specimens of the motor branch to the vastus medialis muscle, altered nerve fibers could be identified in one fascicle distal and proximal to the repair site. The results show a relevant functional reinnervation by end-to-side neurorrhaphy without functional impairment of the donor muscle. It seems to be evident that most axons in the attached segment were derived from collateral sprouts. Nonetheless, the present study confirms that end-to-side neurorrhaphy is a reliable method of reconstruction for damaged nerves, which should be applied clinically in a more extended manner.  相似文献   

11.
The soleus, rectus femoris, and gastrocnemius muscles of young rats trained isometrically for 4 weeks were studied by light and electron microscopy.--The percentage of fast-twitch oxidative muscle fibers decreased at the cost of the fast-twitch glycolytic fibers in the rectus femoris muscle. The percentages of the slow-twitch oxidative fibers did not change significantly in any of the muscles studied. The changes in the areas of the muscle fibers were specific for the muscle and the fiber type and indicate geometrical rearrangements of the fibers in the trained muscles. The Z and M lines were broader in the soleus (containing about 85% slow-twitch oxidative fibers) than in the rectus femoris muscle (containing about 90% fast-twitch glycolytic fibers), while the sarcomere length and the pseudo-H zone were similar. The length of the myosin filaments appeared to be slightly shorter in the fast rectus femoris than in the slow soleus muscle.--The hypothesis on the temporal progress of muscle adaptation to training (Müller, 1974) was substantiated. Correlations between biochemical (Exner et al., 1973a) and histochemical parameters measuring the oxidative capacity were preserved during adaptation to training. The comparison of the histochemical results with the physiological data on similar animals (Exner et al., 1973a) suggests a complex relationship between the contraction time and the percentage of fast-twitch muscle fibers.  相似文献   

12.
Five healthy men carried out a program of head-down bed rest (BR) for 20 days. Before and after BR, a series of cross-sectional scans of the thigh were performed using magnetic resonance imaging, from which volumes of the quadriceps muscles were determined and physiological cross-sectional areas (PCSA) were calculated. Muscle thickness and pennation angles of the triceps brachii, vastus lateralis, and triceps surae muscles were also determined by ultrasonography. During BR, subjects performed unilateral isokinetic knee extension exercises every day. The contralateral limb served as a control. Decrease in PCSA after BR was greater in the control (-10.2 +/- 6.3%) than in the trained limb (-5.2 +/- 4.2%). Among the quadriceps, vastus intermedius in the control limb was predominantly atrophied by BR with respect to the volume and PCSA, and the rectus femoris showed the greatest training effect and retained its size in the trained limb. Decreases in muscle thicknesses in leg muscles were not prevented by the present exercise protocol, suggesting a need for specific exercise training for these muscles. Neither trained nor control muscles showed significant changes in pennation angles in any muscles after BR, suggesting that muscle architecture does not change remarkably by muscle atrophy by up to 10%.  相似文献   

13.
The purpose of this study was to investigate neuromuscular activation of the vastus intermedius (VI) muscle during fatiguing contraction. Seven healthy men performed sustained isometric knee extension exercise at 50% of maximal voluntary contraction until exhaustion. During the fatiguing task, surface electromyograms (EMGs) were recorded from four muscle components of the quadriceps femoris muscle group: VI; vastus lateralis (VL); vastus medialis (VM); and rectus femoris (RF) muscles. For the VI muscle, our recently developed technique was used. Root mean square (RMS) and median frequency (MF) of the surface EMG signal were calculated and these variables were then normalized by the value at the beginning of the task. Normalized RMS of the VI muscle resembled those of the other three muscles at all given times. At 95% of exhaustion time, normalized MF of the VI muscle was significantly higher than that of the VL muscle (p < 0.05). These results suggested that neuromuscular activation is not consistent between the VI and VL muscles at the exhaustion for isometric submaximal contraction and this could reflect the dissimilar intramuscular metabolism between these muscles.  相似文献   

14.
The sliding filament and cross-bridge theories of muscle contraction provide discrete predictions of the tetanic force-length relationship of skeletal muscle that have been tested experimentally. The active force generated by a maximally activated single fiber (with sarcomere length control) is maximal when the filament overlap is optimized and is proportionally decreased when overlap is diminished. The force-length relationship is a static property of skeletal muscle and, therefore, it does not predict the consequences of dynamic contractions. Changes in sarcomere length during muscle contraction result in modulation of the active force that is not necessarily predicted by the cross-bridge theory. The results of in vivo studies of the force-length relationship suggest that muscles that operate on the ascending limb of the force-length relationship typically function in stretch-shortening cycle contractions, and muscles that operate on the descending limb typically function in shorten-stretch cycle contractions. The joint moments produced by a muscle depend on the moment arm and the sarcomere length of the muscle. Moment arm magnitude also affects the excursion (length change) of a muscle for a given change in joint angle, and the number of sarcomeres arranged in series within a muscle fiber determines the sarcomere length change associated with a given excursion.  相似文献   

15.
The purpose of this study was to measure isometric force-length properties of cat soleus, gastrocnemius and plantaris muscle-tendon units, and to relate these properties to the functional demands of these muscles during everyday locomotor activities. Isometric force-length properties were determined using an in situ preparation, where forces were measured using buckle-type tendon transducers, and muscle-tendon unit lengths were quantified through ankle and knee joint configurations. Functional demands of the muscles were assessed using direct muscle force measurements in freely moving animals. Force-length properties and functional demands were determined for soleus, gastrocnemius and plantaris muscles simultaneously in each animal. The results suggest that isometric force-length properties of cat soleus, gastrocnemius and plantaris muscles, as well as the region of the force-length relation that is used during everyday locomotor tasks, match the functional demands.  相似文献   

16.
Computational models of muscle generally lump the material properties of connective tissue, muscle fibers, and muscle fascicles together into one constitutive relationship that assumes a transversely isotropic microstructure. These models do not take into account how variations in the microstructure of muscle affect its macroscopic material properties. The goal of this work was to develop micromechanical models of muscle to determine the effects of variations in muscle microstructure on the macroscopic constitutive behavior. We created micromechanical models at the fiber and fascicle levels based on histological cross-sections of two rabbit muscles, the rectus femoris (RF) and the soleus, to determine the effects of microstructure geometry (fiber and fascicle shapes) on the along-fiber shear modulus of muscle. The two fiber-level models predicted similar macroscopic shear moduli (within 13.5% difference); however, the two fascicle-level models predicted very different macroscopic shear moduli (up to 161% difference). We also used the micromechanical models to test the assumption that the macroscopic properties of muscle are transversely isotropic about the fiber (or fascicle) direction. The fiber-level models exhibited behavior consistent with the transverse isotropy assumption; however, the fascicle-level models exhibited transversely anisotropic behavior. Micromechanical models, combined with fiber and fiber bundle mechanical experiments, are needed to understand how normal or pathological variations in microstructure give rise to the observed macroscopic behavior of muscle.  相似文献   

17.
Sarcomerogenesis, or the addition of sarcomeres in series within a fiber, has a profound impact on the performance of a muscle by increasing its contractile velocity and power. Sarcomerogenesis may provide a beneficial adaptation to prevent injury when a muscle consistently works at long lengths, accounting for the repeated-bout effect. The association between eccentric exercise, sarcomerogenesis and the repeated-bout effect has been proposed to depend on damage, where regeneration allows sarcomeres to work at shorter lengths for a given muscle-tendon unit length. To gain additional insight into this phenomenon, we measured fiber dynamics directly in the vastus lateralis (VL) muscle of rats during uphill and downhill walking, and we measured serial sarcomere number in the VL and vastus intermedius (VI) after chronic training on either a decline or incline grade. We found that the knee extensor muscles of uphill walking rats undergo repeated active concentric contractions, and therefore they suffer no contraction-induced injury. Conversely, the knee extensor muscles during downhill walking undergo repeated active eccentric contractions. Serial sarcomere numbers change differently for the uphill and downhill exercise groups, and for the VL and VI muscles. Short muscle lengths for uphill concentric-biased contractions result in a loss of serial sarcomeres, and long muscle lengths for downhill eccentric-biased contractions result in a gain of serial sarcomeres.  相似文献   

18.
Hill-type muscle models are commonly used in musculoskeletal models to estimate muscle forces during human movement. However, the sensitivity of model predictions of muscle function to changes in muscle moment arms and muscle-tendon properties is not well understood. In the present study, a three-dimensional muscle-actuated model of the body was used to evaluate the sensitivity of the function of the major lower limb muscles in accelerating the whole-body center of mass during gait. Monte-Carlo analyses were used to quantify the effects of entire distributions of perturbations in the moment arms and architectural properties of muscles. In most cases, varying the moment arm and architectural properties of a muscle affected the torque generated by that muscle about the joint(s) it spanned as well as the torques generated by adjacent muscles. Muscle function was most sensitive to changes in tendon slack length and least sensitive to changes in muscle moment arm. However, the sensitivity of muscle function to changes in moment arms and architectural properties was highly muscle-specific; muscle function was most sensitive in the cases of gastrocnemius and rectus femoris and insensitive in the cases of hamstrings and the medial sub-region of gluteus maximus. The sensitivity of a muscle's function was influenced by the magnitude of the muscle's force as well as the operating region of the muscle on its force-length curve. These findings have implications for the development of subject-specific models of the human musculoskeletal system.  相似文献   

19.
Rat skeletal muscle mitochondrial [Ca2+] and injury from downhill walking   总被引:7,自引:0,他引:7  
The purpose of this study was to evaluate the relationship between mitochondrial Ca2+ concentration (MCC) and the extent of muscle injury in rats that have performed prolonged downhill walking (eccentric exercise). MCC was used as an indicator of elevated [Ca2+] in the muscles, and injury was estimated from histochemical analysis of muscle cross sections by determining the numbers of intact fibers per unit area in the muscles. Elevations in MCC in the soleus and vastus intermedius muscles over time postexercise were inversely related (P less than 0.05) to the number of intact fibers per square millimeter in the respective muscles after downhill walking. Verapamil administration attenuated the elevation in MCC and injury in histochemical sections resulting from the downhill walking in soleus muscle, but intraperitoneal injection of the chelators EDTA or ethylene glycol-bis(beta-aminoethylether)-N,N,N',N'- tetraacetic acid significantly attenuated the increases in MCC and injury to both the vastus intermedius and soleus muscles in the downhill walkers. The chelators appear to exert their "protective" effects within the specific muscles that show the injury and do not significantly affect serum [Ca2+]. It is concluded that increases in MCC occur during exercise-induced fiber injury and that elevations in cellular Ca2+ may have a role in the etiology of the injury process.  相似文献   

20.
To investigate the time-course of changes in transverse relaxation time (T2) and cross-sectional area (CSA) of the quadriceps muscle after a single session of eccentric exercise, magnetic resonance imaging was performed on six healthy male volunteers before and at 0, 7, 15, 20, 30 and 60 min and 12, 24, 36, 48, 72 and 168 h after exercise. Although there was almost no muscle soreness immediately after exercise, it started to increase 1 day after, peaking 1–2 days after the exercise (P<0.01). Immediately after exercise, T2 increased significantly in the rectus femoris, vastus lateralis and intermedius muscles (P<0.05) and decreased quickly continuing until 60 min after exercise. At and after the 12th h, a significant increase was perceived again in the T2 values of the vastus lateralis and intermedius muscles (P<0.01) [maximum 9.3 (SEM 2.8)% and 10.9 (SEM 2.2)%, respectively]. The maximal values were exhibited at 24–36 h after exercise. In contrast, the rectus femoris muscle showed no delayed-stage increase. Also, in CSA, an increase after 12 h was observed in addition to the one immediately after exercise in the vastus lateralis, intermedius and medialis and quadriceps muscles as a whole (P < 0.01), reaching the maximal values at 12–24 h after exercise. The plasma creative kinase activity remained unchanged up to 24 h after and then increased significantly 48 h after exercise (P < 0.05). Beginning 12 h after exercise, the subjects whose T2 and CSA increased less than the others displayed a faster decrease in muscle soreness. These results suggested that T2 and CSA displayed bimodal responses after eccentric exercise and the time-courses of changes in them were similar to those in muscle soreness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号