首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The variation with pH of the kinetic parameters for the alcohol and acetaldehyde reactions were studied for the alleloenzyme AdhS from Drosophila melanogaster. The variation of Ki (KEO,I) with pH for two ethanol-competitive inhibitors, pyrazole and 2,2,2-trifluoroethanol, was also studied. Both alcohol oxidation and acetaldehyde reduction follow a compulsory ordered pathway, with coenzyme binding first. The rate-limiting step for ethanol oxidation is complex and involves at least hydride transfer and dissociation of the enzyme-NADH complex (ER). In contrast with this, the rate-limiting step for the back reaction, i.e. the reduction of acetaldehyde, is dissociation of the enzyme-NAD+ complex (EO). A rate-limiting ER dissociation appears in the oxidation of the secondary alcohol propan-2-ol, whereas for the back reaction, i.e. acetone reduction, hydride transfer in the ternary complexes is rate-limiting. There is one group in the free enzyme, with a pK of approx. 8.0, that regulates the kon velocity for NADH, whereas for NAD+ several groups seem to be involved. A group in the enzyme is drastically perturbed by the formation of the binary EO complex. Protonation of this group with a pK of 7.6 in the EO complex resulted in weakened alcohol and inhibitor binding, in addition to an increased dissociation rate of NAD+ from the binary EO complex. Neither the binding of acetaldehyde nor the dissociation rate of NADH from the binary ER complex varied within the pH region studied.  相似文献   

2.
Substitution of Co(II) for the catalytic site Zn(II) of horse liver alcohol dehydrogenase (LADH) yields an active enzyme derivative, CoIIE, with characteristic Co(II) charge-transfer and d-d electronic transitions that are sensitive to the events which take place during catalysis [Koerber, S. C., MacGibbon, A. K. H., Dietrich, H., Zeppezauer, M., & Dunn, M. F. (1983) Biochemistry 22, 3424-3431]. In this study, UV-visible spectroscopy and rapid-scanning stopped-flow (RSSF) kinetic methods are used to detect and identify intermediates in the LADH catalytic mechanism. In the presence of the inhibitor isobutyramide, the pre-steady-state phase of alcohol (RCH2OH) oxidation at pH above 7 is characterized by the formation and decay of an intermediate with lambda max = 570, 640, and 672 nm for both aromatic and aliphatic alcohols (benzyl alcohol, p-nitrobenzyl alcohol, anisyl alcohol, ethanol, and methanol). By comparison with the spectrum of the stable ternary complex formed with oxidized nicotinamide adenine dinucleotide (NAD+) and 2,2',2'-trifluoroethoxide ion (TFE-), CoIIE(NAD+, TFE-), the intermediate which forms is proposed to be the alkoxide ion (RCH2O-) complex, CoIIE(NAD+, RCH2O-). The timing of reduced nicotinamide adenine dinucleotide (NADH) formation indicates that intermediate decay is limited by the interconversion of ternary complexes, i.e., CoIIE(NAD+, RCH2O-) in equilibrium CoIIE(NADH, RCHO). From competition experiments, we infer that, at pH values below 5, NAD+ and alcohol form a CoIIE(NAD+, RCH2OH) ternary complex. RSSF studies carried out as a function of pH indicate that the apparent pKa values for the ionization of alcohol within the ternary complex, i.e., CoIIE(NAD+, RCH2OH) in equilibrium CoIIE(NAD+, RCH2O-) + H+, fall in the range 5-7.5. Using pyrazole as the dead-end inhibitor, we find that the single-turnover time courses for the reduction of benzaldehyde, p-nitrobenzaldehyde, anisaldehyde, and acetaldehyde at pH above 7 all show evidence for the formation and decay of an intermediate. Via spectral comparisons with CoIIE-(NAD+, TFE-) and with the intermediate formed during alcohol oxidation, we identify the intermediate as the same CoIIE(NAD+, RCH2O-) ternary complex detected during alcohol oxidation.  相似文献   

3.
To identify ionizations of the active site metal-bound water in horse liver alcohol dehydrogenase (alcohol:NAD+ oxidoreductase; EC 1.1.1.1), the pH, solvent isotope, temperature, and anion dependences of the steady-state kinetic parameters kcat and kcat/KM have been evaluated under initial velocity conditions for the native and the active site-specific Co(2+)-reconstituted enzyme. In the oxidation of benzyl alcohol, a bell-shaped pattern of four prototropic equilibria was observed under conditions of saturating concentrations of NAD+. It is shown that the ionizations governing kcat (pK1 congruent to 6.7, pK2 congruent to 10.6) belong to the ternary enzyme-NAD(+)-alcohol complex, whereas the ionizations governing kcat/KM (pK1' congruent to 7.5, pK2' congruent to 8.9) belong to the binary enzyme-NAD+ complex. The ionizations pK1 and pK1' are not influenced by metal substitution and are ascribed to His-51 on the basis of experimental estimates of their associated enthalpies of ionization. On the other hand, pK2 and pK2' are significantly decreased (delta pKa congruent to 1.0) in the Co(2+)-enzyme and are attributed to the active site metal-bound water molecule. The shape of the pH profiles requires that the metal ion coordinates a neutral water molecule in the ternary enzyme-NAD(+)-alcohol complex under physiological conditions. The possible catalytic role of the water molecule within a pentacoordinate metal ion complex in the active site is discussed.  相似文献   

4.
W Maret  M Zeppezauer 《Biochemistry》1986,25(7):1584-1588
The conformational change of horse liver alcohol dehydrogenase induced by binding of NAD+ was studied by electronic absorption spectroscopy using cobalt as a spectroscopic probe in the active site. The complex of the enzyme with NAD+ exists in an acidic and an alkaline form. The transition between the two forms proceeds through several intermediates and is controlled by an apparent pKa of 6.9. Only at pH values below this pKa can a complex between enzyme, NAD+, and Cl- be formed. The spectral changes indicate that chloride displaces the cobalt-bound water molecule in a tetracoordinate structure. We conclude that a negative charge at the active site is necessary to stabilize the closed conformation of the enzyme in the presence of NAD+. Spectral correlations are given which strongly support the postulation of a metal-bound alkoxide in the closed structure of the enzyme as an essential feature of the catalytic mechanism of horse liver alcohol dehydrogenase.  相似文献   

5.
Heterotropic cooperativity effects in the binding of alcohols and NAD+ or NADH to liver alcohol dehydrogenase have been examined by equilibrium measurements and stopped-flow kinetic studies. Equilibrium data are reported for benzyl alcohol, 2-chloroethanol, 2,2-dichloroethanol, and trifluoroethanol binding to free enzyme over the pH range 6-10. Binary-complex formation between enzyme and alcohols leads to inner-sphere coordination of the alcohol to catalytic zinc and shows a pH dependence reflecting the ionization states of zinc-bound water and the zinc-bound alcohol. The affinity of the binding protonation state of the enzyme for unionized alcohols increases approximately by a factor of 10 on complex formation between enzyme and NAD+ or NADH. The rate and kinetic cooperativity with coenzyme binding of the alcohol association step indicates that enzyme-bound alcohols participate in hydrogen bonding interactions which affect the rates of alcohol and coenzyme equilibration with the enzyme without providing any pronounced contribution to the net energetics of alcohol binding. The pKa values determined for alcohol deprotonation at the binary-complex level are linearly dependent on those of the free alcohols, and can be readily reconciled with the pKa values attributed to ionization of zinc-bound water. Alcohol coordination to catalytic zinc provides a major contribution to the pKa shift which ensures that the substrate is bound predominantly as an alcoholate ion in the catalytically productive ternary complex at physiological pH. The additional pKa shift contributed by NAD+ binding is less pronounced, but may be of particular mechanistic interest since it increases the acidity of zinc-bound alcohols relatively to that of zinc-bound water.  相似文献   

6.
M R Eftink  K Bystr?m 《Biochemistry》1986,25(21):6624-6630
The association of the coenzyme NAD+ to liver alcohol dehydrogenase (LADH) is known to be pH dependent, with the binding being linked to the shift in the pK of some group on the protein from a value of 9-10, in the free enzyme, to 7.5-8 in the LADH-NAD+ binary complex. We have further characterized the nature of this linkage between NAD+ binding and proton dissociation by studying the pH dependence (pH range 6-10) of the proton release, delta n, and enthalpy change, delta Ho(app), for formation of both binary (LADH-NAD+) and ternary (LADH-NAD+-I, where I is pyrazole or trifluoroethanol) complexes. The pH dependence of both delta n and delta Ho(app) is found to be consistent with linkage to a single acid dissociating group, whose pK is perturbed from 9.5 to 8.0 upon NAD+ binding and is further perturbed to approximately 6.0 upon ternary complex formation. The apparent enthalpy change for NAD+ binding is endothermic between pH 7 and pH 10, with a maximum at pH 8.5-9.0. The pH dependence of the delta Ho(app) for both binary and ternary complex formation is consistent with a heat of protonation of -7.5 kcal/mol for the coupled acid dissociating group. The intrinsic enthalpy changes for NAD+ binding and NAD+ plus pyrazole binding to LADH are determined to be approximately 0 and -11.0 kcal/mol, respectively. Enthalpy change data are also presented for the binding of the NAD+ analogues adenosine 5'-diphosphoribose and 3-acetylpyridine adenine dinucleotide.  相似文献   

7.
V C Sekhar  B V Plapp 《Biochemistry》1988,27(14):5082-5088
The binding of NAD+ to liver alcohol dehydrogenase was studied by stopped-flow techniques in the pH range from 6.1 to 10.9 at 25 degrees C. Varying the concentrations of NAD+ and a substrate analogue used to trap the enzyme-NAD+ complex gave saturation kinetics. The same maximum rate constants were obtained with or without the trapping agent and by following the reaction with protein fluorescence or absorbance of a ternary complex. The data fit a mechanism with diffusion-controlled association of enzyme and NAD+, followed by an isomerization with a forward rate constant of 500 s-1 at pH 8: E E-NAD+ *E-NAD+. The isomerization may be related to the conformational change determined by X-ray crystallography of free enzyme and enzyme-coenzyme complexes. Overall bimolecular rate constants for NAD+ binding show a bell-shaped pH dependence with apparent pK values at 6.9 and 9.0. Acetimidylation of epsilon-amino groups shifts the upper pK to a value of 11 or higher, suggesting that Lys-228 is responsible for the pK of 9.0. Formation of the enzyme-imidazole complex abolishes the pK value of 6.9, suggesting that a hydrogen-bonded system extending from the zinc-bound water to His-51 is responsible for this pK value. The rates of isomerization of E-NAD+ and of pyrazole binding were maximal at pH below a pK of about 8, which is attributable to the hydrogen-bonded system. Acetimidylation of lysines or displacement of zinc-water with imidazole had little effect on the rate of isomerization of the E-NAD+ complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
M R Eftink 《Biochemistry》1986,25(21):6620-6624
The fluorescence of alcohol dehydrogenase is quenched by the acid dissociation of some group on the protein having an apparent pKa of 9.6 at 25 degrees C. The pKa of this alkaline quenching transition is unchanged by the binding of trifluoroethanol or pyrazole to the enzyme or by the selective removal of the active site of Zn2+ ion. This indicates that the ionization of a zinc-bound water molecule is not responsible for the quenching. The binding of NAD+ to the enzyme causes a drop in protein fluorescence and an apparent shift in the alkaline quenching transition to lower pH. In the ternary complex formed with NAD+ and trifluoroethanol the alkaline transition is difficult to discern between pH 6 and pH 11. In the NAD+-pyrazole ternary complex, however, a small but noticeable fluorescence transition is observed with a pKa(app) approximately 9.5. We propose that the alkaline transition centered at pH 9.6 is not shifted to lower pH upon binding NAD+. Instead, the amplitude of the alkaline quenching effect is decreased to the point that it is difficult to detect when NAD+ is bound. We present a model that describes the dependence of the fluorescence of the protein on pH and NAD+ concentration in terms of two independently operating, dynamic quenching mechanisms. Our data and model cast serious doubt on the identification, made previously in the literature, between the alkaline quenching pKa and the pKa of the group whose ionization is coupled to NAD+ binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Activation parameters for each reaction step in the kinetic mechanism of liver alcohol dehydrogenase have been measured for the oxidation of ethanol and the reduction of acetaldehyde. In the oxidation process, the highest enthalpy of activation, 9.7 kcal/mol, occurs for the turnover of the liver alcohol dehydrogenase-NAD(+)-ethanol ternary complex. To investigate if this enthalpy requirement represents a change in the ionization state of ethanol bound in the ternary complex, inhibition of ethanol oxidation was determined using the following series of small, electronegative alcohols with pKa values ranging from 12.37 to 15.5: 2,2,2-trifluoroethanol, 2,2,2-trichloroethanol, 2,2,2-tribromoethanol, 2,2-dichloroethanol, 2,2-difluoroethanol, propargyl alcohol, 3-hydroxypropionitrile, 2-chloroethanol, 2-iodoethanol, 2-methoxyethanol, ethylene glycol, and methanol. The observed inhibition patterns were analyzed according to several kinetic inhibition models; in each case, the best fit model was used to determine the substrate competitive inhibition constant. A plot of the logarithm of these inhibition constants is shown to be dependent on the pKa values of the inhibiting alcohols with a slope approaching -1, indicating that inhibition is controlled by a proton loss from the alcohol. The observed competitive inhibition behavior, coupled with crystallographic studies depicting a direct ligation of an alcohol oxygen to the catalytic zinc ion, indicates that inhibition is controlled by the formation of a zinc-bound alkoxide. Because the inhibiting alcohols are structurally homologous to ethanol, a relationship between the inhibition constant and the inhibiting alcohol's pKa can be derived to show that the pKa of an alcohol bound in a ternary complex is also dependent on its pKa as a free alcohol. Ternary complex pKa values have been determined for ethanol and the inhibiting alcohols.  相似文献   

10.
The kinetics of enzymatic oxidation of ethanol in the presence of alcohol dehydrogenase within a wide range of ethanol and NAD concentrations (pH 6.0--11.5) were studied. It was shown that high concentrations of ethanol (greater than 0.7--5 mM, depending on pH) and NAD (greater than 0.4--0.8 mM) activate alcohol dehydrogenase from horse liver within the pH range of 6.0--7.9. A mechanism of activation based on negative cooperativity of ADH subunits for binding of ethanol and NAD was proposed. The catalytic and Michaelis constants for alcohol dehydrogenase were calculated from ethanol and NAD at all pH values studied. The changes resulting from the subunit cooperativity were revealed. The nature of ionogenic groups of alcohol dehydrogenase, which affect the formation of complexes between the enzyme and NAD and ethanol, and the rate constants for catalytic oxidation of ethanol was assumed. The biological significance of the enzyme capacity for activation by high concentrations of ethanol within the physiological range of pH in the blood under excessive use of alcohol is discussed.  相似文献   

11.
W Maret 《Biochemistry》1989,28(26):9944-9949
The catalytic zinc atoms in class III (chi) alcohol dehydrogenase (ADH) and sorbitol dehydrogenase (SDH) from human liver have been specifically removed and replaced by cobalt(II) with a new ultrafiltration technique. The electronic absorption spectrum of class III cobalt ADH (epsiolon 638 = 870 M-1 cm-1) is nearly identical with those of active site substituted horse EE and human class I (beta 1 beta 1) cobalt ADH. Thus, the coordination environment of the catalytic metal is strictly conserved in these enzymes. However, significant differences are noted when the spectra of class III ADH-coenzyme complexes are compared to the corresponding spectra of the horse enzyme. The spectrum of class III ADH.NADH is split into three bands, centered at 680, 638, and 562 nm. The class III ADH.NAD+ species resembles the alkaline form of the corresponding horse enzyme complex but without exhibiting the pH dependence of the latter. These spectral changes underscore the role of the coenzymes in differentially fine tuning the catalytic metal for its particular function in each ADH. The noncatalytic zinc of class III ADH exchanges with cobalt at pH 7.0. While 9 residues out of 15 in the loop surrounding the noncatalytic zinc of class III ADH differ from those of the class I ADH, the electronic absorption spectra of cobalt in the noncatalytic metal site of class III ADH establish that the coordination environment of this site is conserved as well. The spectrum of cobalt SDH differs significantly from those of cobalt ADHs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The synergism between coenzyme and anion binding to liver alcohol dehydrogenase has been examined by equilibrium measurements and transient-state kinetic methods to characterize electrostatic interactions of coenzymes with ligands which are bound to the catalytic zinc ion of the enzyme subunit. Inorganic anions typically exhibit an at least 200-fold higher affinity for the general anion-binding site than for catalytic zinc on complex formation with free enzyme. Acetate and SCN- interact more strongly with catalytic zinc in the enzyme X NAD+ complex than with the general anion-binding site in free enzyme. CN- shows no significant affinity for the general anion-binding site, but combines to catalytic zinc in the absence as well as the presence of coenzymes. Coordination of CN- to catalytic zinc weakens the binding of NADH by a factor of 50, and tightens the binding of NAD+ to approximately the same extent through interactions which do not include any contributions from covalent adduct formation between CN- and NAD+. These observations provide unambiguous information about the magnitude of electrostatic field effects of coenzymes on anion (e.g. hydroxyl ion) binding to catalytic zinc. They lead to the important inference that coenzyme binding must be strongly affected by ionization of zinc-bound water irrespective of the actual acidity of the latter group. It is concluded on such grounds that the much debated pH dependence of coenzyme binding to liver alcohol dehydrogenase must derive from ionization of zinc-bound water. The assumption that such is not the case leads to the inference that there is no detectable effect of ionization of zinc-bound water on coenzyme binding over the pH range 6-12, a possibility which is definitely excluded by the present results.  相似文献   

13.
Kovaleva EG  Plapp BV 《Biochemistry》2005,44(38):12797-12808
Binding of NAD+ to wild-type horse liver alcohol dehydrogenase is strongly pH-dependent and is limited by a unimolecular step, which may be related to a conformational change of the enzyme-NAD+ complex. Deprotonation during binding of NAD+ and inhibitors that trap the enzyme-NAD+ complex was examined by transient kinetics with pH indicators, and formation of complexes was monitored by absorbance and protein fluorescence. Reactions with pyrazole and trifluoroethanol had biphasic proton release, whereas reaction with caprate showed proton release followed by proton uptake. Proton release (200-550 s(-1)) is a common step that precedes binding of all inhibitors. At all pH values studied, the rate constants for proton release or uptake matched those for formation of ternary complexes, and the most significant quenching of protein fluorescence (or perturbation of adenine absorbance at 280 nm) was observed for enzyme species involved in deprotonation steps. Kinetic simulations of the combined transient data for the multiple signals indicate that all inhibitors bind faster and tighter to the unprotonated enzyme-NAD+ complex, which has a pK of about 7.3. The results suggest that rate-limiting deprotonation of the enzyme-NAD+ complex is coupled to the conformational change and controls the formation of ternary complexes.  相似文献   

14.
Coenzyme analogues with the adenosine ribose replaced with n-propyl, n-butyl, and n-pentyl groups; coenzyme analogues with the adenosine replaced with 3-(4-acetylanilino)propyl and 6-(4-acetylanilino)hexyl moieties; and nicotinamide mononucleotide, nicotinamide hypoxanthine dinucleotide, and 3-acetylpyridine adenine dinucleotide were used in steady-state kinetic studies with native and activated, amidinated enzymes. The Michaelis and inhibition constants increased up to 100-fold upon modification of coenzyme or enzyme. Turnover numbers with NAD+ and ethanol increased in some cases up to 10-fold due to increased rates of dissociation of enzyme-reduced coenzyme complexes. Rates of dissociation of oxidized coenzyme appeared to be mostly unaffected, but the values calculated (10-60 s-1) were significantly less than the turnover numbers with acetaldehyde and reduced coenzyme (20-900 s-1, at pH 8, 25 degrees C). Rates of association of coenzyme analogues also decreased up to 100-fold. When Lys-228 in the adenosine binding site was picolinimidylated, turnover numbers increased about 10-fold with NAD(H). Furthermore, the pH dependencies for association and dissociation of NAD+ and turnover number with NAD+ and ethanol showed the fastest rates above a pK value of 8.0. Turnover with NADH and acetaldehyde was fastest below a pK value of 8.1. These results can be explained by a mechanism in which isomerization of the enzyme-NAD+ complex (110 s-1) is partially rate limiting in turnover with NAD+ and ethanol (60 s-1) and is controlled by ionization of the hydrogen-bonded system that includes the water ligated to the catalytic zinc and the imidazole group of His-51.  相似文献   

15.
Drosophila alcohol dehydrogenase belongs to the short chain dehydrogenase/reductase (SDR) family which lack metal ions in their active site. In this family, it appears that the three amino acid residues, Ser138, Tyr151 and Lys155 have a similar function as the catalytic zinc in medium chain dehydrogenases. The present work has been performed in order to obtain information about the function of these residues. To obtain this goal, the pH and temperature dependence of various kinetic coefficients of the alcohol dehydrogenase from Drosophila lebanonensis was studied and three-dimensional models of the ternary enzyme-coenzyme-substrate complexes were created from the X-ray crystal coordinates of the D. lebanonensis ADH complexed with either NAD(+) or the NAD(+)-3-pentanone adduct. The kon velocity for ethanol and the ethanol competitive inhibitor pyrazole increased with pH and was regulated through the ionization of a single group in the binary enzyme-NAD(+) complex, with a DeltaHion value of 74(+/-4) kJ/mol (18(+/-1) kcal/mol). Based on this result and the constructed three-dimensional models of the enzyme, the most likely candidate for this catalytic residue is Ser138. The present kinetic study indicates that the role of Lys155 is to lower the pKa values of both Tyr151 and Ser138 already in the free enzyme. In the binary enzyme-NAD(+) complex, the positive charge of the nicotinamide ring in the coenzyme further lowers the pKa values and generates a strong base in the two negatively charged residues Ser138 and Tyr151. With the OH group of an alcohol close to the Ser138 residue, an alcoholate anion is formed in the ternary enzyme NAD(+) alcohol transition state complex. In the catalytic triad, along with their effect on Ser138, both Lys155 and Tyr151 also appear to bind and orient the oxidized coenzyme.  相似文献   

16.
Insertion of Cu2+ ions into horse liver alcohol dehydrogenase depleted of its catalytic Zn2+ ions creates an artificial blue copper center similar to that of plastocyanin and similar copper proteins. The esr spectrum of a frozen solution and the optical spectra at 296 and 77 K are reported, together with the corresponding data for binary and ternary complexes with NAD+ and pyrazole. The binary complex of the cupric enzyme with pyrazole establishes a novel type of copper proteins having the optical characteristics of Type 1 and the esr parameters of Type 2 Cu2+. Ternary complex formation with NAD+ converts the Cu2+ ion to a Type 1 center. By an intramolecular redox reaction the cuprous enzyme is formed from the cupric enzyme. Whereas the activity of the cupric alcohol dehydrogenase is difficult to assess (0.5%-1% that of the native enzyme), the cuprous enzyme is distinctly active (8% of the native enzyme). The implications of these findings are discussed in view of the coordination of the metal in native copper proteins.  相似文献   

17.
We have studied the binding of 1,10-phenanthroline to specifically active-site cobalt(II)-substituted horse-liver alcohol dehydrogenase [Co(II)-LADH]. The dissociation constant is a factor of 6500 smaller than in the native enzyme. Spectral evidence is given which shows that 1,10-phenanthroline does not remove the catalytic Co(II) ion and that binding of 1,10-phenanthroline renders the catalytic metal ion pentacoordinate. The maximum limiting rate constant for the association of 1,10-phenanthroline to Co(II)-LADH is about 60 s-1. This is about a third of the value (169 s-1) determined for native horse-liver alcohol dehydrogenase, Zn(II)LADH [Frolich et al. (1978) Arch. Biochem. Biophys. 189, 471-480]. For cadmium(II)-substituted horse-liver alcohol dehydrogenase, [Cd(II)LADH] the maximum limiting rate constant for association of 1,10-phenanthroline increased to 590 s-1. These findings demonstrate that the rate-limiting step is strongly dependent on the chemical nature of the catalytic metal ion and its immediate environment. 1,10-Phenanthroline is shown to bind to the Co(II)-LADH.NAD+ complex in the open conformation. The maximum limiting rate constant remains unchanged in the presence of NAD+. The data have been used to derive a kinetic scheme for the formation of ternary complexes including NAD+ that involves a slow intermediary step.  相似文献   

18.
K H Dahl  M F Dunn 《Biochemistry》1984,23(18):4094-4100
Evidence that horse liver alcohol dehydrogenase forms a ternary complex with 4-trans-(N,N-dimethylamino)cinnamaldehyde (DACA) and oxidized nicotinamide adenine dinucleotide (NAD+) is presented. Formation of the complex is characterized by a 97-nm red shift of the free chromophore to 495 nm (epsilon 495 approximately 6.0 X 10(4) M-1 cm-1). This shift is larger than the 66-nm red shift of the E(NADH,-DACA) complex (lambda max = 464 nm) previously reported by Dunn and Hutchinson [Dunn, M.F., & Hutchison, J.S. (1973) Biochemistry 12, 4882-4892]. The large red shift of the E(NAD+,DACA) complex is due to the combined effects of coordination of the carbonyl oxygen of DACA to the active-site zinc ion and to the close proximity of the positively charged nicotinamide ring of NAD+. The stability of this complex is pH dependent and depends on a single apparent ionization with pKa = 7.6 +/- 0.3. The pH-independent dissociation constant for binding of DACA to E(NAD+) is 23 +/- 6 microM. The stoichiometry of DACA binding to the E(NAD+) complex is shown to be one per active site (two per enzyme molecule). Liver alcohol dehydrogenase is also shown to catalyze the NAD+-mediated oxidation of DACA to the corresponding carboxylic acid with a very slow turnover rate. The possibility that the observed E(NAD+,DACA) complex is an intermediate in the enzyme-catalyzed oxidation of DACA is discussed.  相似文献   

19.
Horse-liver alcohol dehydrogenase was carboxymethylated with iodoacetate, which is known to selectively alkylate cysteine-46 in the polypeptide sequence. Carboxymethyl and native enzyme had the same electrophoretic mobility on starch or polyacrylamide gel, but some separation was achieved when isobutyramide and a low concentration of NADH were present (under these conditions NADH was bound by native enzyme but not by Carboxymethyl enzyme).The Carboxymethyl enzyme formed ternary complexes with NAD+ and pyrazole or decanoate. The fluorescence emission of NADH was enhanced 7- to 8-fold (at 410 nm), and a dissociation-constant of 1.7 μM was calculated at pH 7.4; but, in contrast to native enzyme, neither the affinity nor fluorescence were increased by amides (acetamide or isobutyramide).Carboxymethyl alcohol dehydrogenase possesses catalytic activity. Higher alcohols gave maximum velocities up to 7-fold higher than ethanol (reaching nearly 20% of the activity of native enzyme) while [2H]ethanol showed an isotope-rate effect of 3.3. Although the affinity for aldehydes was considerably increased, the maximum velocity of aldehyde-reduction was always at least 20% of that shown by native enzyme, and at pH 9.9 it was almost 2-fold greater than with native enzyme. The rate-limiting step in alcohol-oxidation is likely to be the interconversion of ternary complexes (possibly the hydride-transfer step), while in aldehyde-reduction it could still be the dissociation of the enzyme/NAD+ complex. This is also indicated by inhibition experiments with decanoate, pyrazole, and isobutyramide.These results suggest that a major effect of carboxymethylation is upon ternary complexes of enzyme and NADH, which become much more reluctant to form, either by combination of NADH and ligand with the modified enzyme, or by catalytic conversion of the enzyme/NAD +/alcohol complex.  相似文献   

20.
Alcohol dehydrogenase was purified in 14 h from male Fischer-344 rat livers by differential centrifugation, (NH4)2SO4 precipitation, and chromatography over DEAE-Affi-Gel Blue, Affi-Gel Blue, and AMP-agarose. Following HPLC more than 240-fold purification was obtained. Under denaturing conditions, the enzyme migrated as a single protein band (Mr congruent to 40,000) on 10% sodium dodecyl sulfate-polyacrylamide gels. Under nondenaturing conditions, the protein eluted from an HPLC I-125 column as a symmetrical peak with a constant enzyme specific activity. When examined by analytical isoelectric focusing, two protein and two enzyme activity bands comigrated closely together (broad band) between pH 8.8 and 8.9. The pure enzyme showed pH optima for activity between 8.3 and 8.8 in buffers of 0.5 M Tris-HCl, 50 mM 2-(N-cyclohexylamino)ethanesulfonic acid (CHES), and 50 mM 3-(cyclohexylamino)-1-propanesulfonic acid (CAPS), and above pH 9.0 in 50 mM glycyl-glycine. Kinetic studies with the pure enzyme, in 0.5 M Tris-HCl under varying pH conditions, revealed three characteristic ionization constants for activity: 7.4 (pK1); 8.0-8.1 (pK2), and 9.1 (pK3). The latter two probably represent functional groups in the free enzyme; pK1 may represent a functional group in the enzyme-NAD+ complex. Pure enzyme also was used to determine kinetic constants at 37 degrees C in 0.5 M Tris-HCl buffer, pH 7.4 (I = 0.2). The values obtained were Vmax = 2.21 microM/min/mg enzyme, Km for ethanol = 0.156 mM, Km for NAD+ = 0.176 mM, and a dissociation constant for NAD+ = 0.306 mM. These values were used to extrapolate the forward rate of ethanol oxidation by alcohol dehydrogenase in vivo. At pH 7.4 and 10 mM ethanol, the rate was calculated to be 2.4 microM/min/g liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号