首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xylella fastidiosa Wells is a bacterial pathogen that causes a variety of plant diseases, including Pierce's disease (PD) of grapevine, almond leaf scorch, alfalfa dwarf, citrus variegated chlorosis, and oleander leaf scorch (OLS). Numerous strains of this pathogen have been genetically characterized, and several different strains occur in the United States. The dominant vector in southern California is the glassy-winged sharpshooter, Homalodisca coagulata (Say) (Hemiptera: Cicadellidae). The high mobility of this insect, and its use of large numbers of host plant species, provides this vector with ample exposure to multiple strains of X. fastidiosa during its lifetime. To learn more about the ability of this vector to acquire, retain, and transmit multiple strains of the pathogen, we developed a polymerase chain reaction (PCR)-based method to detect and differentiate strains of X. fastidiosa present in individual glassy-winged sharpshooter adults. Insects were sequentially exposed to plants infected with a PD strain in grapevine and an OLS strain in oleander. After sequential exposure, a few insects tested positive for both strains (7%); however, in most cases individuals tested positive for only one strain (29% PD, 41% OLS). In transmission studies, individual adults transmitted either the PD or OLS strain of the pathogen at a rate (39%) similar to that previously reported after exposure to a single strain, but no single individual transmitted both strains of the pathogen. PD and OLS strains of X. fastidiosa remained detectable in glassy-winged sharpshooter, even when insects were fed on a plant species that was not a host of the strain for 1 wk.  相似文献   

2.
Homalodisca coagulata (Say) and Homalodisca lacerta (Fowler) are vectors of a new bacterial disease of oleander in California known as oleander leaf scorch, induced by the bacterium Xylella fastidiosa. H. coagulata also has been implicated in the spread of the strain of X. fastidiosa that induces Pierce's disease of grapevines in California. We monitored the flight activity of H. coagulata and H. lacerta in oleander and citrus by using yellow sticky cards at three southern California locations where outbreaks of oleander leaf scorch have been documented, and where vector compliments are different. Areas sampled included a mesic coastal area (Irvine, CA) that supports predominantly H. coagulata and few H. lacerta, a dry inland location (Palm Desert, CA) that supports predominantly H. lacerta and few H. coagulata, and an intermediate area (Riverside, CA) supporting both Homalodisca species. From November 1996 to October 1999 peak catches of both Homalodisca species occurred during the midsummer at all locations. H. coagulata was trapped in greater numbers in citrus than in oleander at both the Riverside and the Irvine sites. Likewise, H. lacerta in Riverside was more associated with citrus than oleander, yet H. lacerta in Palm Desert was trapped in greater numbers in oleander than citrus.  相似文献   

3.
Successful infection of the plant pathogenic bacterium Xylella fastidiosa (Wells) from an infected plant to a new host involves three main steps: 1) acquisition of the bacterium by a vector; 2) inoculation of a noninfected host plant by the vector; and 3) establishment of sufficient titers of X. fastidiosa in the host plant to sustain a chronic infection. Understanding the basic biology of the transmission process is a key to limiting the spread of plant diseases induced by X. fasdidiosa and reducing agricultural losses, especially those experienced in California since the introduction of a new vector, Homalodisca vitripennis (Germar) (Hemiptera, Cicadellidae) (formerly H. coagulata Say), the glassy-winged sharpshooter. In this study, H. vitripennis adults that acquired X. fastidiosa were allowed access to chrysanthemum plant cuttings for 30, 60, 90, or 120 min. The numbers of X. fastidiosa acquired (i.e., cells present in the insect foregut) and the number inoculated to the plant cuttings were separately determined using quantitative real-time polymerase chain reaction (PCR). In addition, the number of times glassy-winged sharpshooter stylets probed plant cuttings and the amount of time glassy-winged sharpshooter spent actively ingesting were monitored using video surveillance. Linear regression did not indicate a relationship between the number of X. fastidiosa cells inoculated into the plant cutting and either the titer of pathogen present in the insect or amount of time spent ingesting per probe. However, the number of probes significantly influenced the number of X. fastidiosa cells inoculated. Due to the highly variable nature of transmission, our model could not account for all observed variation as indicated by low R2 values. However, our results suggest that the mechanism of transmission is dependent on probing behaviors more than ingestion duration.  相似文献   

4.
Xylella fastidiosa (Wells, Raju, Hung, Weisburg, Mandelco-Paul, and Brenner) is a bacterial pathogen transmitted by several sharpshooters in two tribes of Cicadellinae (Proconiini and Cicadellini). Here, we compared the transmission efficiency of X. fastidiosa in coffee (Coffea arabica L.) and citrus [Citrus sinensis (L.) Osbeck] by Cicadellini [Bucephalogonia xanthophis (Berg) and Dilobopterus costalimai Young] and Proconiini [Homalodisca ignorata Melichar and Oncometopia facialis (Signoret)] sharpshooters that occur in both crops. At different seasons, healthy adults of each species were submitted to a 48-h acquisition access period on citrus or coffee source plants infected with X. fastidiosa isolates that cause Citrus variegated chlorosis (CVC) and Coffee leaf scorch (CLS), respectively, and then confined on healthy seedlings of the corresponding host plant for a 48-h inoculation access period. No significant effect of inoculation season was observed when comparing infection rates of citrus or coffee plants inoculated by vectors at different times of the year. In citrus, the transmission rate by single insects was significantly higher for H. ignorata (30%) in relation to B. xanthophis (5%) and O. facialis (1.1%), but there was no difference among vector species in coffee, whose transmission rates ranged from 1.2 to 7.2%. Comparing host plants, H. ignorata was more effective in transmitting X. fastidiosa to citrus (30%) in relation to coffee (2.2%), whereas the other vectors transmitted the bacterium to both hosts with similar efficiencies. Despite these variations, vector efficiency in coffee and citrus is lower than that reported in other hosts.  相似文献   

5.
Homalodisca coagulata (Say) is a recent introduction to California. It is known to spread a strain of the bacterium Xylella fastidiosa Wells, Raju, Hung, Weisberg, Mandelco-Paul & Brenner that induces oleander leaf scorch disease in oleander, Nerium oleander L. Oleander leaf scorch is lethal to oleander and threatens to decimate one of the most important landscape shrubs in California. Towards developing a management strategy for H. coagulata-spread oleander leaf scorch, we documented the affects of selected insecticides on H. coagulata mortality, feeding behavior, and disease transmission in a greenhouse study. Oleanders treated with fenpropathrin, fenpropathrin + acephate, and imidacloprid caused significant mortality to caged H. coagulata within 4 h of exposure. Within 24 h, these pesticides caused nearly 100% mortality 3 wk after treatment. In other experiments, acetamiprid and fenpropathrin treatments reduced time spent feeding and total time on plants. H. coagulata on fenpropathrin-, acetamiprid-, and imidacloprid-treated oleander died in less than 13 min on average. Oleander leaf scorch transmission by H. coagulata was blocked by applications of foliar-applied acetamiprid, and soil-applied imidacloprid and thiamethoxam.  相似文献   

6.
Recent epidemics of Pierce's disease of grapevine in California vectored by Homalodisca coagulata (Say), an invasive vector species, have characteristics that differ from epidemics involving native vectors. Among these differences are the longer distances and greater speed that the disease is spread by H. coagulata. In this investigation, we used yellow sticky traps to study the seasonal dispersion activity of H. coagulata in a southern California grape-growing area in which an epidemic of Pierce's disease has caused large losses. For 21 mo, we monitored adult H. coagulata at the edges of vineyards bordering citrus, an important crop host, natural coastal sage scrub vegetation, and natural riparian vegetation. We also monitored H. coagulata dispersion from 0 to 40 m into vineyards. Finally, we examined the vertical dispersion of H. coagulata adults into grapevines through a season. This investigation showed that H. coagulata is associated with citrus, from where it disperses deep into vineyards, and not just the vineyard edge as with Pierce's disease vectors that are native to California. Peak dispersion into vineyards occurred in the summer. Another period of H. coagulata activity occurred in the winter in vineyards bordering citrus. Through the period of peak flight activity, 97% of all H. coagulata adults trapped between 1 and 7 m were caught at an altitude of 5 m or lower, suggesting the potential of a barrier as a management tactic to keep H. coagulata out of vineyards.  相似文献   

7.
Chrysanthemum yellows (CY) phytoplasma is a plant-pathogenic mollicutes belonging to the 16Sr-IB genetic group which infects a variety of dicotyledonous plants and is transmitted in nature by some species of Cicadellidae Deltocephalinae. The transmission characteristics of CY and the factors influencing the vector efficiencies of the leafhoppers Macrosteles quadripunctulatus Kirschbaum and Euscelidius variegatus Kirschbaum are described in the present study using transmission experiments and phytoplasma-specific polymerase chain reaction (PCR) assays. Vector insects were allowed to acquire CY under different experimental conditions and then transferred to healthy test plants for inoculation and/or sampled for DNA extraction and amplification. The transmission efficiency of CY was very high and almost all the leafhoppers became infective following acquisition on CY-infected daisies. The latent period in the vector ranged from 16 to 20 days after the start of the acquisition and infectivity lasted, in general, for life. The PCR assay was successful in detecting CY phytoplasmas in the insects well before they became infective (5 versus 16–18 days) and was used to estimate the proportion of infective insects. When analysed for CY presence by PCR, all the leafhoppers fed for 7–18 days on source daisy reacted positively while, following one day of acquisition, some insects failed to provide amplification. Host-plant species influenced CY acquisition, and daisy appeared a more efficient source for both leafhoppers compared to periwinkle. Life stage did not appear to be critical for CY acquisition, although newly-hatched nymphs of E. variegatus acquired CY less efficiently than fifth instar nymphs.  相似文献   

8.
Xylella fastidiosa Wells et al., a gram-negative and xylem limited bacterium, causes significative economic on several crops, such as the leaf scorch in coffee. It is transmitted by xylem feeding insects and four sharpshooters species have been reported as vectors of X. fastidiosa in coffee. The objective of this study was to determine the natural infectivity of X. fastidiosa in five species of sharpshooters from coffee trees: Acrogonia citrina Marucci & Cavichioli, Bucephalogonia xanthophis (Berg), Dilobopterus costalimai Young, Oncometopia facialis (Signoret) and Sonesimia grossa (Signoret). Samples were collected from coffee plantations in five counties of the North and Northwest regions of the State of Parana, Brazil, from October 1998 through November 2001. A total of 806 samples containing three to five insects were examined for the presence of X. fastidiosa by using PCR and nested PCR tests. X. fastidiosa was present in samples of all five species of sharpshooters collected in the two coffee regions. The average level of natural infectivity potential was 30.4%. However, this natural infectivity ranged from 2.2% for O. facialis to 68.8% for A. citrina. Sharpshooters collected in the spring tended to have lower natural infectivity of X. fastidiosa as compared to those collected in other seasons. The results obtained showed the high potential of dissemination of X. fastidiosa by different insect vectors in coffee trees in Parana.  相似文献   

9.
10.
Populations of Homalodisca coagulata (Say) were sampled from citrus orchards in southern California, USA to characterize and quantify seasonal occurrences of nymphs and adults with the goal of identifying management opportunities through well-timed treatments and/or natural enemy releases. Higher densities of H. coagulata in 2001 contributed to a complete seasonal profile that began in early spring with the emergence of first instar nymphs and their progression through five nymphal instars lasting until mid-August. Adult emergence began in mid-June with peak adult densities attained from mid to late August followed by a gradual decline through autumn. A persistent and significant male bias was observed in the adult sex ratio from the time of first emergence through mid-October in oranges; the same trend was present in lemons, but with more variability. Adult densities gradually declined through the winter months into the following spring before rapidly increasing again in June as the 2002 spring generation of nymphs began emerging as adults. The seasonal timing of nymphs and adults in 2002 was nearly identical to that observed the previous year. Phenology data from both years were incorporated into a stochastic, temperature-dependent model that predicts the occurrences of H. coagulata stages through time. Applications of imidacloprid early in the spring generation of nymphs proved very effective at reducing nymphs and sustaining lower densities of adults through summer.  相似文献   

11.
Compared to human- and wildlife-transmitted pathogens, less emphasis has been placed on developing models of plant pathogen transmission by insects. Here, we describe the transmission ecology of the bacterium Xylella fastidiosa Wells et al., the causal agent of Pierce's disease in grapevines, by its leafhopper vectors. First, we performed a meta-analysis of transmission studies of X. fastidiosa by its two most important vectors in the Western USA, the invasive glassy-winged sharpshooter, Homalodisca vitripennis Germar, and the native blue-green sharpshooter, Graphocephala atropunctata Signoret (both Hemiptera: Cicadellidae). The importance of vector number, pathogen acquisition period, and inoculation access period (IAP) for transmission differed between the two species. We fit these transmission datasets to two biologically derived transmission models, i.e., a binomial and a Poisson probability model. The Poisson model provided substantially better fit and produced estimates of H. vitripennis transmission efficiency that were dramatically lower than for G. atropunctata . We also conducted a separate pair of experiments that decoupled vector number from IAP. These experiments supported the results of the meta-analysis. Interestingly, high vector loads not only increased transmission rate, but also shortened X. fastidiosa incubation period in grapevines. This work provides quantitative estimates of transmission of an economically important pathogen that is analogous to risk models for arthropod-vectored human and wildlife diseases. In addition, this work suggests that heterogeneous vector loads may accelerate the disease cycle, increasing the potential for secondary spread in vineyards.  相似文献   

12.
A 4-yr landscape-scale study was conducted to investigate spatial and temporal dynamics of overwintering Homalodisca coagulata (Say) (Hemiptera: Cicadellidae) in the lower San Joaquin Valley, California. Spatial structures of H. coagulata distributions were characterized with Moran's I index, and spatial associations between H. coagulata and the surrounding environment were investigated with a geographic information system. H. coagulata was caught consistently with sticky traps throughout the winter, and trap catches formed a distinctive peak in December or January, indicating active flight of H. coagulata during the winter. In 2000-2001, the mean +/-SE trap count was 4.8 +/- 1.21 per trap per wk, and H. coagulata trap catches were spatially autocorrelated within approximately 1.3 km. Approximately 49% of H. coagulata were caught in citrus, 23% in stone fruit, and 11% in grape. After a control program began in spring 2001, the mean trap count was considerably lower (0.041 +/- 0.0004 per trap per wk), and no spatial autocorrelations were detected in 2001-2004. H. coagulata trap catch-crop associations also changed after initiation of the control program. Between 25 and 38% of H. coagulata trap catches were from citrus, between 8 and 20% were from stone fruit, and between 11 and 25% were from grape. Potential for winter-season spread and management of Xylella fastidiosa Wells et al., a pathogen causing Pierce's disease, are discussed.  相似文献   

13.
The infectivity of females of the planthopper vector Laodelphax striatellus given access to maize rough dwarf virus (MRDV) infected plants was assessed for up to 55 days from the end of the access period. A 3-day inoculation access period was used, and this avoided intermittent transmission. Maximum infectivity was reached c. 30 days after acquisition access and the proportion of transmitter insects then remained constant. There was no difference in the efficiency of female L. striatellus in acquiring MRDV as third instar nymphs or as adults when compared in transmission tests 24, 30, 35 and 40 days after access to the virus. ELISA tests for MRDV subviral particles (SVPs) discriminated between individual viruliferous and non-viruliferous insects from the 30th day after access. Of the viruliferous (ELISA positive) insects about 30% did not transmit MRDV and the proportion remained similar from 30 to 55 days after access. None of the non-transmitter insects tested in serial transfer transmission tests was positive in ELISA. The concentration of SVPs detected by ELISA in the transmitter hoppers continued to increase exponentially, even after maximum infectivity was reached.  相似文献   

14.
The recent spread of the plant pathogenic bacterium Xylclla fastidiosa Wells et al. by an invasive vector species, Homalodisca coagulata Say, in southern California has resulted in new epidemics of Pierce's disease of grapevine. Our goal is to develop an efficient method to detect low titers of X. fastidiosa in H. coagulata that is amenable to large sample sizes for epidemiological studies. Detection of the plant pathogenic bacterium X. fastidiosa in its insect vector is complicated by low titers of bacteria, difficulty in releasing it from the insect mouthparts and foregut, and the presence of substances in the insect that inhibit polymerase chain reaction (PCr). To select the optimal protocol for DNA extraction to be used with PCR, we compared three standard methods and 11 commercially available kits for relative efficiency of X. fastidiosa DNA extraction in the presence of insect tissue. All of the protocols tested were proficient at extracting DNA from pure bacterial culture (1 x 10(5) cells), and all but one protocol successfully extracted sufficient bacterial DNA in the presence of insect tissue. Three DNA extraction techniques, immunomagnetic separation, the DNeasy Tissue kit (Qiagen, Hercules, CA), and Genomic DNA Purification kit (Fermentus, Hanover, MD), were compared more closely using a dilution series of X. fastidiosa (5000-0 cells) with and without insect tissue present. The DNeasy Tissue kit was the best kit tested, allowing detection of 5 x 10(3) X. fastidiosa cells with an insect head background.  相似文献   

15.
Acyrthosiphon pisum was a more efficient vector than Myzus persicae of bean leaf roll virus (BLRV), but the two species transmitted pea enation mosaic virus (PEMV) equally well and much more often than Megoura viciae. M. viciae did not transmit BLRV, and Aphis fabae did not transmit BLRV or PEMV. BLRV and PEMV were transmitted more often by nymphs of A. pisum than by adult apterae or alatae that fed on infected plants only as adults, but both viruses were readily transmitted by adults that had developed on infected plants. The shortest time in which nymphs acquired BLRV was 2 h, and 50 % transmitted after an acquisition period of 4 days. Some nymphs acquired PEMV in 30 min and 50% in 8 h. The shortest time for inoculation of BLRV by adults was 15 min, but some transmitted PEMV in probes lasting less than 1 min. The median latent periods of BLRV and PEMV in aphids fed for 12 h on infected plants were, respectively, 105 and 44 h. Clones of A. pisum differed in their ability to transmit BLRV and PEMV, and efficiency in transmitting the two viruses seemed to be unrelated. Some aphids that fed successively on plants infected with each virus transmitted both viruses, and infectivity with one virus did not seem to affect transmission of the other.  相似文献   

16.
Vector-borne generalist pathogens colonize several reservoir species and are usually dependent on polyphagous arthropods for dispersal; however, their spatial genetic structure is generally poorly understood. Using fast-evolving genetic markers (20 simple sequence repeat loci, resulting in a total of 119 alleles), we studied the genetic structure of the vector-borne plant-pathogenic bacterium Xylella fastidiosa in Napa Valley, CA, where it causes Pierce's disease when it is transmitted to grapevines from reservoir plants in adjacent riparian vegetation. Eighty-three different X. fastidiosa multilocus microsatellite genotypes were found in 93 isolates obtained from five vineyards, resulting in an index of clonal fraction closer to 0 and a Simpson's genotypic diversity index (D) closer to a maximum value of 1. Moderate values of Nei's gene diversity (H(Nei); average H(Nei) = 0.41) were observed for most of the X. fastidiosa populations. The low Wright's index of genetic diversity among populations calculated by the FSTAT software (Wright's F(ST) index) among population pairs (0.0096 to 0.1080) indicated a weak or absent genetic structure among the five populations; a panmictic population was inferred by Bayesian analyses (with the STRUCTURE and BAPS programs). Furthermore, a Mantel test showed no significant genetic isolation by distance when both Nei (r = -0.3459, P = 0.268) and linearized (r = -0.3106, P = 0.269) indices were used. These results suggest that the riparian vegetation from which vectors acquire the pathogen prior to inoculation of grapevines supports a diverse population of X. fastidiosa.  相似文献   

17.
Xylella fastidiosa infects a wide range of plant hosts and causes economically serious diseases, including Pierce's disease (PD) of grapevines. X. fastidiosa biocontrol strain EB92-1 is infectious to grapevines but does not cause symptoms. The draft genome of EB92-1 reveals that it may be missing 10 potential pathogenicity effectors.  相似文献   

18.
Studies were made of the relations of parsnip yellow fleck virus (PYFV) and its helper virus, anthriscus yellows (AYV), with their aphid vector, Cavariella aegopodii. Apterous insects were more efficient vectors than alates; apterous nymphs were as efficient as apterous adults. C. aegopodii never transmitted PYFV in the absence of AYV, but aphids carrying both viruses infected some test plants with one or other virus alone. C. aegopodii that fed first on a source of AYV and then on a source of PYFV transmitted both viruses to test plants, but aphids that fed on the sources in the reverse order transmitted only AYV. Test plants receiving some aphids from a source of AYV, and others from a source of PYFV, became infected only with AYV. C. aegopodii acquired AYV or the AYV/PYFV complex from plants in a minimum acquisition access time (AAT) of 10–15 mm and inoculated the viruses to test plants in a minimum inoculation access time (IAT) of 2 min. Increasing either AAT or IAT, or both, to 1 h or longer increased the frequency of transmission of each virus. Starving the insects before the acquisition feed on AYV or AYV/PFYV sources did not affect transmission. Aphids already carrying AYV acquired PYFV from plants in a minimum AAT of only 2 min; they acquired and inoculated PYFV in a minimum total time of 12 min. The data suggest that AYV is confined to deeply lying tissues whereas PYFV is distributed throughout the leaf. C. aegopodii transmitted both PYFV and AYV in a semi-persistent manner: the aphids retained both viruses for up to 4 days but lost them on moulting. Neither virus was passed to progeny of viruliferous adults. Earlier results suggesting that AYV is a persistent virus may have been caused by contamination of the AYV culture with carrot red leaf virus.  相似文献   

19.
The incidence and transmissibility of Flavescence dorée phytoplasma (FDP) in populations of the vector Scaphoideus titanus Ball (Homoptera: Cicadellidae) were investigated by periodically collecting nymphs and adults of the leafhopper species in four vineyards with high incidence of Flavescence dorée (FD)‐diseased grapevines. Insects were tested individually for FDP with an ELISA procedure, after transmission assays to broadbean seedlings and further transmission to grapevine cuttings. No transmission occurred when early or middle instar nymphs were used to inoculate broadbeans, although a limited number of fifth‐instar nymphs and young adults transmitted the pathogen to broadbean seedlings. However, the same batches of insects transmitted FDP more efficiently to grapevine cuttings during prolonged inoculation periods, confirming the existence of a latent period before infected insects become infective. The proportions of ELISA‐positive individuals in the three categories of insects used for transmission assays reflected the rate of FDP transmission to grapevine cuttings. According to the data obtained by ELISA and from field sampling of first‐instar nymphs, we adapted the proportions of nymph hatching, of infected leafhoppers, and of infective leafhoppers (assuming a conservative latent period in the vector of 30 days) to logistic models as a function of degree‐days. We then discussed the possible use of the model developed for improving vector control decisions in FD‐infected vineyards.  相似文献   

20.
Invasive diseases present an increasing problem worldwide; however, genomic techniques are now available to investigate the timing and geographical origin of such introductions. We employed genomic techniques to demonstrate that the bacterial pathogen causing Pierce's disease of grapevine (PD) is not native to the US as previously assumed, but descended from a single genotype introduced from Central America. PD has posed a serious threat to the US wine industry ever since its first outbreak in Anaheim, California in the 1880s and continues to inhibit grape cultivation in a large area of the country. It is caused by infection of xylem vessels by the bacterium Xylella fastidiosa subsp. fastidiosa, a genetically distinct subspecies at least 15,000 years old. We present five independent kinds of evidence that strongly support our invasion hypothesis: 1) a genome-wide lack of genetic variability in X. fastidiosa subsp. fastidiosa found in the US, consistent with a recent common ancestor; 2) evidence for historical allopatry of the North American subspecies X. fastidiosa subsp. multiplex and X. fastidiosa subsp. fastidiosa; 3) evidence that X. fastidiosa subsp. fastidiosa evolved in a more tropical climate than X. fastidiosa subsp. multiplex; 4) much greater genetic variability in the proposed source population in Central America, variation within which the US genotypes are phylogenetically nested; and 5) the circumstantial evidence of importation of known hosts (coffee plants) from Central America directly into southern California just prior to the first known outbreak of the disease. The lack of genetic variation in X. fastidiosa subsp. fastidiosa in the US suggests that preventing additional introductions is important since new genetic variation may undermine PD control measures, or may lead to infection of other crop plants through the creation of novel genotypes via inter-subspecific recombination. In general, geographically mixing of previously isolated subspecies should be avoided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号