首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In cells of higher eukaryotes, repair of DNA double strand breaks (DSBs) utilizes different forms of potentially error-prone non-homologous end joining (NHEJ): canonical DNA-PK-dependent (C-NHEJ) and alternative backup pathways (A-NHEJ). In contrast to C-NHEJ, A-NHEJ shows pronounced efficiency fluctuations throughout the cell cycle and is severely compromised as cells cease proliferating and enter the plateau phase (Windhofer et al., 2007 [23]). The molecular mechanisms underpinning this response remain unknown but changes in chromatin structure are prime candidate-A-NHEJ-modulators. Since parameters beyond chromatin acetylation appear to determine A-NHEJ efficiency (Manova et al., 2012 0210 and 0380), we study here the role of chromatin decondensation mediated either by treatment with 5′-aza-2′-deoxycytidine (AzadC) or growth in hypotonic conditions, on A-NHEJ. We report that both treatments have no detectable effect on C-NHEJ but provoke, specifically for A-NHEJ, cell-growth-dependent effects. These results uncover for the first time a link between A-NHEJ and chromatin organization and provide means for understanding the regulatory mechanisms underpinning the growth-state dependency of A-NHEJ. A-NHEJ is implicated in the formation of chromosomal translocations and in chromosome fusions that underlie genomic instability and carcinogenesis. The observations reported here may therefore contribute to the development of drug-based A-NHEJ suppression-strategies aiming at optimizing cancer treatment outcomes and possibly also at suppressing carcinogenesis.  相似文献   

2.
Aged spontaneously activated hamster oocytes recovered from adult females 18 and 24 hours after ovulation were at the pronuclear stage. These oocytes and fresh controls were inseminated in vitro with capacitated hamster spermatozoa and observed with the phase-contrast microscope. The percentage of fertilization in fresh control oocytes was 98%, as compared to 36% and 18% when the oocytes were recovered 18 and 24 hours after ovulation, respectively. The mean number of sperm decondensations per egg in control oocytes was 10, and in the aged ones it was 0.69 and 0.12 when the oocytes were recovered 18 and 24 hours after ovulation, respectively. When similarly treated oocytes were studied with scanning and transmission electron microscopy, it was found that the degree of gamete membrane fusion was greater than that observed with the phase-contrast microscope, but that most of the spermatozoa failed to decondense the chromatin. We suggest that parthenogenetic oocytes at the pronuclear stage are in a similar stage of the cell cycle as in fertilized eggs, in which the cytoplasm does not have the ability to decondense the sperm chromatin.  相似文献   

3.
The effects of chromatin compaction on X-radiation-induced cell killing and the induction and repair of DNA damage were studied in Chinese hamster ovary cells deprived of isoleucine for 24 h (Ile- cells) and compared to untreated controls. The results show that chromatin is decondensed in Ile- cells; i.e., in Ile- cells the nuclear area occupied by heterochromatin decreased 30-fold over control cells, both the rate and limit of micrococcal nuclease digestion were greater for Ile- cells, and 14.2% more propidium iodide was intercalated into the Ile- cell chromatin. The X-ray-induced cytotoxicity did not change in Ile- cells versus the control cells (D0 = 0.99 Gy) nor did the X-ray-induced DNA damage. However, the repair of DNA damage produced by 10 Gy proceeded with different kinetics in Ile- cells when compared to the controls. The initial rate of DNA damage repair was slower in Ile- cells by a factor of 2 compared to controls (the time required to rejoin 50% of the lesions was 6 versus 3 min, respectively). However, after 2 h of repair no DNA damage was detected in either group. Therefore, we conclude that this decondensation of chromatin, per se, does not directly modify the induction or ultimate repair of DNA damage by X radiation or cell clonogenicity and thus does not appear to be a primary factor in cell survival.  相似文献   

4.
Chromatin structure of globin and ovalbumin genes in chicken erythrocyte nuclei has been investigated by means of the "nuclease criterion" (described earlier). In intact nuclei (i.e. in the presence of 3 mM MgCl2) DNase I cleaves chromatin of both genes generating fragments multiple of a double-nucleosome repeat (2N-periodicity). However, in the case of the globin gene, apart from the 2N-periodicity, fragments were observed that are multiple of 100 b.p. and are characteristic for partially unfolded chromatin. This distinction in nuclease cleavage patterns correlates with a higher sensitivity of the globin gene as compared with the inactive ovalbumin gene. At 0.5-0.7 mM MgCl2 the transition from dinucleosomal fragmentation with DNase I and DNase II to fragmentation via a 100 b.p. interval occurs and the difference in digestibility of both genes is dramatically increased. If chromatin has been decondensed by incubation of nuclei in 10 mM Tris-buffer DNase Il generates an usual nucleosomal repeat, and in this ionic conditions one may not observe any difference in nuclease sensitivity of the analyzed genes. The data allow to suggest that the high nuclease sensitivity of potentially active genes can be conditioned by more relaxed arrangement of nucleosomes in higher order chromatin structure.  相似文献   

5.
Nucleotide excision repair (NER) is the principal pathway that removes helix-distorting deoxyribonucleic acid (DNA) damage from the mammalian genome. Recognition of DNA lesions by xeroderma pigmentosum group C (XPC) protein in chromatin is stimulated by the damaged DNA-binding protein 2 (DDB2), which is part of a CUL4A-RING ubiquitin ligase (CRL4) complex. In this paper, we report a new function of DDB2 in modulating chromatin structure at DNA lesions. We show that DDB2 elicits unfolding of large-scale chromatin structure independently of the CRL4 ubiquitin ligase complex. Our data reveal a marked adenosine triphosphate (ATP)-dependent reduction in the density of core histones in chromatin containing UV-induced DNA lesions, which strictly required functional DDB2 and involved the activity of poly(adenosine diphosphate [ADP]-ribose) polymerase 1. Finally, we show that lesion recognition by XPC, but not DDB2, was strongly reduced in ATP-depleted cells and was regulated by the steady-state levels of poly(ADP-ribose) chains.  相似文献   

6.
Increase in intranuclear birefringence during chromatin activation reaction   总被引:1,自引:0,他引:1  
The lymphocytes of rat spleen are birefringent after staining with neutral red. The negative birefringence of the DNA increases remarkably after in vitro incubation with phytohemagglutinin (PHA). The effect of PHA on lymphocytes is demonstrable even in the early stage of stimulation. This early stage is named ‘chromatin activation reaction’. Demonstration of the chromatin activation reaction by means of polarization optical analysis can be applied to the investigation of the lymphocyte transformation reaction.  相似文献   

7.
The chromatin decondensation activity, thermal stability, and secondary structure of recombinant nucleoplasmin, of two deletion mutants, and of the protein isolated from Xenopus oocytes have been characterized. As previously reported, the chromatin decondensation activity of recombinant, unphosphorylated nucleoplasmin is almost negligible. Our data show that deletion of 50 residues at the C-terminal domain of the protein, containing the positively charged nuclear localization sequence, activates its chromatin decondensation ability and decreases its stability. Interestingly, both the decondensation activity and thermal stability of this deletion mutant resemble those of the phosphorylated protein isolated from Xenopus oocytes. Deletion of 80 residues at the C-terminal domain, containing the above-mentioned positively charged region and a poly(Glu) tract, inactivates the protein and increases its thermal stability. These findings, along with the effect of salt on the thermal stability of these proteins, suggest that electrostatic interactions between the positive nuclear localization sequence and the poly(Glu) tract, at the C-terminal domain, modulate protein activity and stability.  相似文献   

8.
The tightly condensed chromatin of spermatozoa is rapidly decondensed after the spermatozoa enter oocytes. Although no factor involved in sperm chromatin decondensation (SCD) has been identified in mammals, it has been suggested that a factor related to SCD activity is present in the germinal vesicle (GV) of oocytes. Here, we found that the nucleolus-like body (NLB), which is a component of the GV, is involved in SCD in murine oocytes. When NLBs were microsurgically removed from GV-stage oocytes, SCD was significantly retarded in the paternal genome after fertilization following meiotic maturation. We found that the retardation of SCD in the NLB-removed oocytes was restored by the microinjection of mRNA encoding nucleoplasmin 2 (NPM2), a component of NLBs. Furthermore, SCD was retarded in the fertilized oocytes from Npm2-knockout females, and recombinant NPM2 alone could induce the SCD in vitro. These data provide evidence that NPM2 is involved in sperm chromatin remodeling in mammals.  相似文献   

9.
The effect of gold nanoparticles on mouse epididymal sperm has been studied using the model system of nuclear chromatin decondensation in vitro. It is shown that the treatment of gametes, preliminary membrane-freed by sodium dodecyl sulfate, in the mediums containing gold nanoparticles (with diameter ∼2.5 nm) in concentrations 1.0 × 1015 or 0.5 × 1015 particles/ml and following incubation in dithiothreitol solution (DTT) resulted in failure of chromatin decondensation process and nucleus structure. We conclude that gold nanoparticles possess spermatotoxicity. The mechanism of cytotoxic effect of gold nanoparticles may be related with their interaction with molecules of double-helix DNA. The model system studied in this research is applicable for further investigations of cytotoxic effects of nanoparticles of different origin and made of different metals.  相似文献   

10.
Condensation of sperm chromatin occurs after spermatozoa have left the caput epididymis and are in transit to the cauda epididymis, during which time large numbers of disulfide bonds are formed. The formation of these disulfide bonds requires the repeated oxidation of the cofactor, NAD(P)H. To date, the means by which this oxidation is achieved has yet to be elucidated. Spermatozoa lose the bulk of their cytoplasm prior to leaving the testis; and, as a result, any shuttle systems for removing and transferring reducing equivalents into the mitochondria are unlikely to be operational. In an apparent preparation for the loss of cytoplasm, however, the following events occur during spermatogenesis. First, androgen-binding protein (ABP) is produced by the Sertoli cells of the testis; second, high affinity binding sites for ABP are inserted into the membrane surrounding the nucleus; and third, a nuclear location is acquired for the enzyme, 3α-hydroxysteroid dehydrogenase (3α-HSD).  相似文献   

11.
Genome organization within the cell nucleus is a result of chromatin condensation achieved by histone tail-tail interactions and other nuclear proteins that counter the outward entropic pressure of the polymeric DNA. We probed the entropic swelling of chromatin driven by enzymatic disruption of these interactions in isolated mammalian cell nuclei. The large-scale decondensation of chromatin and the eventual rupture of the nuclear membrane and lamin network due to this entropic pressure were observed by fluorescence imaging. This swelling was accompanied by nuclear softening, an effect that we quantified by measuring the fluctuations of an optically trapped bead adhered onto the nucleus. We also measured the pressure at which the nuclear scaffold ruptured using an atomic force microscope cantilever. A simple theory based on a balance of forces in a swelling porous gel quantitatively explains the diffusive dynamics of swelling. Our experiments on decondensation of chromatin in nuclei suggest that its compaction is a critical parameter in controlling nuclear stability.  相似文献   

12.
Barrier-to-autointegration factor (BAF) is a DNA-bridging protein, highly conserved in metazoans. BAF binds directly to LEM (LAP2, emerin, MAN1) domain nuclear membrane proteins, including LAP2 and emerin. We used site-directed mutagenesis and biochemical analysis to map functionally important residues in human BAF, including those required for direct binding to DNA or emerin. We also tested wild-type BAF and 25 point mutants for their effects on nuclear assembly in Xenopus egg extracts, which contain approximately 12 microM endogenous BAF dimers. Exogenous BAF caused two distinct effects: at low added concentrations, wild-type BAF enhanced chromatin decondensation and nuclear growth; at higher added concentrations, wild-type BAF completely blocked chromatin decondensation and nuclear growth. Mutants fell into four classes, including one that defines a novel functional surface on the BAF dimer. Our results suggest that BAF, unregulated, potently compresses chromatin structure, and that BAF interactions with both DNA and LEM proteins are critical for membrane recruitment and chromatin decondensation during nuclear assembly.  相似文献   

13.
14.
15.
Due to the highly folded chromatin in human sperm, a proper nuclear swelling was highly required to localize certain DNA inside the sperm nuclei. Therefore, previous method for denaturation of sperm chromatin had to adopt chemical agents of decondensation treatment using Heparin/DTT or LIS, directly applied into the sperm cell before further examinations by FISH. Nevertheless, authors still had questions arising on the efficiency of decondensation process which is directly related to the quality of fluorescence signals, which, in turn, underlies the reliability of the results in frequencies and compositions as that still not a proper solution to overcome the major limitation in sperm studies. In this study, we approached a newly improved denaturation process of sperm chromatin without undergoing decondensation treatments that intact human sperms were used as the first time to localize examined DNA, and also two rounds of sequential FISH was carried out in the same sperm cell for the first time to investigate an idea of nullisomy of given chromosomes. From the results, all the variable centromeric compositions of sperm chromosomes 7, 8, and sex chromosomes revealed with significantly given frequencies of monosomy, disomy and nullisomy. Moreover, nullisomy was identified as a true absence of given chromosome rather than technical error of hybridization failure under decondensation. From the findings by our modified denaturation of human sperm chromatin without undergoing decondensation treatment, we strongly believe that more advanced and deep studies in human sperm of nuclear architecture and frequencies can be progressed with significantly reliable results.  相似文献   

16.
The left lateral lobes were surgically removed from livers of female rats. The number of cells containing sex chromatin bodies was counted in the surgically removed lobes and compared with counts from the remaining lobes removed at various intervals after the operation. The proportion of cells showing positive sex chromatin was found to decrease to nearly one-half the initial preoperative value by four days after partial hepatectomy. Sex chromatin frequency returned to near preoperative levels by 21 days. A 3H-thymidine autoradiography showed that the number of cells in the S-phase was less than 5 percent at the postoperative time when sex chromatin frequency was lowest, thus ruling out the possibility that the decreased numbers of sex chromatin positive cells was related to genome replication. These data show that condensation of the late-replicating, and, presumably, inactive X-chromosome is not permanent, a fact that may relate to X-inactivation observed in embryogenesis.  相似文献   

17.
18.
Feeding of the shrimp, Penaeus monodon, with diets containing leaf meal of the leguminous shrub, Leucaena leucocephala, resulted in complete chromatin decondensation of hepatopancreas cells. The fibrillar component of the nucleolus was decondensed in parallel, whereas the granular component remained intact. This unique combination of nuclear signs was accompanied by only moderate alterations of other cell organelles. Our findings therefore demonstrate an encouraging possibility to manipulate the chromatin organization in living cells. Furthermore, ultrastructural features obtained thus far only in isolated and chromatin-depleted nuclei could be verified. These are, for instance, filament bundles which attach the nucleolus to the nuclear periphery, or a filamentous skeleton of the nuclear pores. In addition, the attachment of chromatin to the inner membrane of the nuclear envelope was observed. Decondensation was probably caused by the major Leucaena ingredient mimosine and is obviously related to its copper chelating properties.  相似文献   

19.
Nuclear envelope (NE) formation can be studied in a cell-free system made from Xenopus eggs. In this system, NE formation involves the small GTPase Ran. Ran associates with chromatin early in nuclear assembly and concentration of Ran on inert beads is sufficient to induce NE formation. Here, we show that Ran binds to chromatin prior to NE formation and recruits RCC1, the nucleotide exchange factor that generates Ran-GTP. In extracts prepared by high-speed centrifugation, increased concentrations of Ran are sufficient to induce chromatin decondensation and NE assembly. Using field emission in-lens scanning electron microscopy (FEISEM), we show that Ran promotes the formation of smoothed membranes and the assembly of nuclear pore complexes (NPCs). In contrast, RanT24N, a mutant that fails to bind GTP and inhibits RCC1, does not support efficient NE assembly, whereas RanQ69L, a mutant locked in a GTP-bound state, permits some membrane vesicle recruitment to chromatin, but inhibits vesicle fusion and NPC assembly. Thus, binding of Ran to chromatin, followed by local generation of Ran-GTP and GTP hydrolysis by Ran, induces chromatin decondensation, membrane vesicle recruitment, membrane formation and NPC assembly. We propose that the biological activity of Ran is determined by its targeting to structures such as chromatin as well as its guanine nucleotide bound state.  相似文献   

20.
Nucleoplasmin (NP) is a histone chaperone involved in nucleosome assembly, chromatin decondensation at fertilization, and apoptosis. To carry out these activities NP has to interact with different types of histones, an interaction that is regulated by phosphorylation. Here we have identified a number of phosphorylated residues by mass spectrometry and generated mutants in which these amino acids are replaced by Asp to mimic the effect of phosphorylation. Our results show that, among the eight phosphoryl groups experimentally detected, four are located at the flexible N terminus, and the rest are found at the tail domain, flanking the nuclear localization signal. Phosphorylation-mimicking mutations render a recombinant protein as active in chromatin decondensation as hyperphosphorylated NP isolated from Xenopus laevis eggs. Comparison of mutants in which the core and tail domains of the protein were independently or simultaneously "activated" indicates that activation or phosphorylation of both protein domains is required for NP to efficiently extract linker-type histones from chromatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号