首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent years, there has been an increased interest in the study of saliva. This bodily fluid contains a vast number of protein species, the salivary peptidome, of low molecular weight, comprising approximately 40–50% of the total secreted proteins, in addition to peptides generated by proteolysis of proteins of different sources. Owing to the presence of other components, in particular mucins and enzymes, some distinctive requirements and precautions related to sample collection, time of analysis, sample preservation and treatment are necessary for the successful analysis of salivary peptides. More than 2000 peptides compose the salivary peptidome, from which only 400–600 are directly derived from salivary glands, suggesting an important qualitative peptide contribution of other sources, namely of epithelial cells. Proteolysis events are the main supply for the peptidome and considerable efforts have been made to identify the resulting fragments, the cleavage sites and the involved proteases. The salivary proteins more prone to proteolysis are proline-rich proteins (PRPs; acidic PRPs and basic PRPs), statherin, histatins and P-B peptide. Gln–Gly cleavages are largely associated with PRP classes, while Tyr–Gly cleavages are related to histatin 1 and to the P-B peptide. The interest in saliva has been growing for clinical purposes, as it is an alternative sample to other traditional bodily fluids, such as blood or urine, since it involves an easy and noninvasive collection. In fact, apart from its usefulness as a source of information for the prognosis, diagnosis and treatment of oral diseases, such as Sjögren’s syndrome, gum disease, tooth decay or oral cancer, saliva might also be seen as a potential tool to the diagnosis of systemic diseases. Owing to the enormous amount of previously discovered salivary peptide species, in this article, we attempt to harmonize the nomenclature, following International Union of Pure and Applied Chemistry recommendations.  相似文献   

2.
In recent years, there has been an increased interest in the study of saliva. This bodily fluid contains a vast number of protein species, the salivary peptidome, of low molecular weight, comprising approximately 40-50% of the total secreted proteins, in addition to peptides generated by proteolysis of proteins of different sources. Owing to the presence of other components, in particular mucins and enzymes, some distinctive requirements and precautions related to sample collection, time of analysis, sample preservation and treatment are necessary for the successful analysis of salivary peptides. More than 2000 peptides compose the salivary peptidome, from which only 400-600 are directly derived from salivary glands, suggesting an important qualitative peptide contribution of other sources, namely of epithelial cells. Proteolysis events are the main supply for the peptidome and considerable efforts have been made to identify the resulting fragments, the cleavage sites and the involved proteases. The salivary proteins more prone to proteolysis are proline-rich proteins (PRPs; acidic PRPs and basic PRPs), statherin, histatins and P-B peptide. Gln-Gly cleavages are largely associated with PRP classes, while Tyr-Gly cleavages are related to histatin 1 and to the P-B peptide. The interest in saliva has been growing for clinical purposes, as it is an alternative sample to other traditional bodily fluids, such as blood or urine, since it involves an easy and noninvasive collection. In fact, apart from its usefulness as a source of information for the prognosis, diagnosis and treatment of oral diseases, such as Sj?gren's syndrome, gum disease, tooth decay or oral cancer, saliva might also be seen as a potential tool to the diagnosis of systemic diseases. Owing to the enormous amount of previously discovered salivary peptide species, in this article, we attempt to harmonize the nomenclature, following International Union of Pure and Applied Chemistry recommendations.  相似文献   

3.
From electrophoretic analysis, we identified in the saliva of an Ashkenazi Jew a disulfide-bonded major glycoprotein variant (Gl 8) that is a product of the proline-rich protein (PRP) locus PRB3. A previous study of this variant protein misidentified it as Pa 2 and as a product of a different PRP locus. The other PRB3 allele in this individual is an apparent null. To identify the mutations, we sequenced the tandemly repetitious exon 3 (the major protein-coding portions) of both alleles. A CGT----TGT (Arg----Cys) mutation was found in one allele (PRB3Scys), which accounts for the disulfide-bonded and peroxidase-modifying properties of Gl 8. A single nucleotide insertion was found in the other allele (PRB3Mnull) that leads to a frameshift with a premature termination codon that causes an apparent lack of gene expression. Null alleles are frequent at PRP loci coding for basic and glycosylated PRPs, and the mechanism described might explain other null phenotypes among PRPs. From nucleotide comparisons, a model of intragenic unequal crossing-over is proposed to explain, in part, the generation of the PRB3Mnull allele. The Gl 8 protein variant is found in Ashkenazi Jews (gene frequency around .008) but not in the general white, black, or Japanese populations. It is interesting that products of different PRP genes, Gl 8 from PRB3 and Pa 1 from PRH1, are both disulfide bonded and probably modify salivary peroxidase (part of an important intraoral antibacterial system) through formation of disulfide-bonded heterodimers.  相似文献   

4.
In order to describe developmental changes in human salivary peptidome, whole saliva was obtained from 98 infants followed longitudinally at 3 and 6months of age. Data on teeth eruption and diet at the age of 6months were also recorded. Salivary peptide extracts were characterised by label-free MALDI-MS. Peptides differentially expressed between the two ages, and those significantly affected by teeth eruption or introduction of solid foods were identified by MALDI TOF-TOF and LC ESI MS-MS. Out of 81 peaks retained for statistical analysis, 26 were overexpressed at the age of 6months. Exposure to solid foods had a more pronounced effect on profiles (overexpression of nine peaks) than teeth eruption (overexpression of one peak). Differential peaks corresponded to fragments of acidic and basic PRPs, statherin and histatin. Comparison with existing knowledge on adult saliva peptidome revealed that proteolytic processing of salivary proteins is qualitatively quite comparable in infants and in adults. However, age and diet are modulators of salivary peptidome in human infants.  相似文献   

5.
D M Carlson 《Biochimie》1988,70(11):1689-1695
Our recent research interests have focused on a group of unusual proteins and glycoproteins high in proline content, or the so-called proline-rich proteins (PRPs). The PRPs are tissue-specific expressions of salivary gland multigene families. Normally PRPs are not detected or are present in very low amounts in rat, mouse and hamster salivary glands, but these unusual proteins are dramatically induced by treatment with the catecholamine isoproterenol. The structures and organizations of several PRP mRNAs and PRP genes have been determined. The amino acid sequences of all PRPs show 4 distinct regions, namely, a signal peptide, a transition region, a repeat region and a carboxyl-terminal region. Glycoproteins induced by isoproterenol treatment may be N-glycosylated or O-glycosylated. The N-glycosylated glycoprotein GP-158 from rat submandibular glands has a 12 amino acid glycopeptide which repeats possibly 49 times. Proline-rich proteins of the parotid glands of rats and mice are also greatly induced by dietary tannins. The apparent unique occurrence of PRPs in saliva suggests that one biological role is to neutralize the detrimental effects of dietary tannins and other polyphenols. The upstream regions of the mouse and hamster PRP genes contain cyclic AMP-regulated sequences as demonstrated by deletions and transient transfections. The PRP multigene family members of mouse are all located on chromosome 8.  相似文献   

6.
To elucidate the localization of post-translational modifications of different classes of human salivary proteins and peptides (acidic and basic proline-rich proteins (PRPs), Histatins, Statherin, P-B peptide, and "S type" Cystatins) a comparative reversed phase HPLC-ESI-MS analysis on intact proteins of enriched granule preparations from parotid and submandibular glands as well as parotid, submandibular/sublingual (Sm/Sl), and whole saliva was performed. The main results of this study indicate the following. (i) Phosphorylation of all salivary peptides, sulfation of Histatin 1, proteolytic cleavages of acidic and precursor basic PRPs occur before granule storage. (ii) In agreement with previous studies, basic PRPs are secreted by the parotid gland only, whereas all isoforms of acidic PRPs (aPRPs) are secreted by both parotid and Sm/Sl glands. (iii) Phosphorylation levels of aPRPs, Histatin 1, and Statherin are higher in the parotid gland, whereas the extent of cleavage of aPRP is higher in Sm/Sl glands. (iv) O-Sulfation of tyrosines of Histatin 1 is a post-translational modification specific for the submandibular gland. (v) The concentration of Histatin 3, Histatin 5, and Histatin 6, but not Histatin 1, is higher in parotid saliva. (vi) Histatin 3 is submitted to the first proteolytic cleavage (generating Histatins 6 and 5) during granule maturation, and it occurs to the same relative extent in both glands. (vii) The proteolytic cleavages of Histatin 5 and 6, generating a cascade of Histatin 3 fragments, take place after granule secretion and are more extensive in parotid secretion. (viii) Basic PRPs are cleaved in the oral cavity by unknown peptidases, generating various small proline-rich peptides. (ix) C-terminal removal from Statherin is more extensive in parotid saliva. (x) P-B peptide is secreted by both glands, and its relative quantity is higher in submandibular/sublingual secretion. (xi) In agreement with previous studies, S type Cystatins are mainly the product of Sm/Sl glands.  相似文献   

7.
A 1 year follow-up investigation of salivary acidic proline-rich proteins (aPRPs) in preterm and at-term newborns using HPLC-ESI-IT-MS showed that (i) this class of proteins is constitutive rather than inducible, as it is still found in the oral cavity of preterm newborns from 180 days of postconception age (PCA); (ii) the expression of PRH-2 locus anticipates that of PRH-1, since Db isoforms are expressed some months after the PRP-1 and PRP-2 isoforms. The evaluation of the relative abundances of the different aPRPs isoforms and derivatives (differently phosphorylated and cleaved) as a function of PCA showed that (iii) the proteolytic enzymes generating truncated isoforms are also constitutive because they are fully active since 180 days of PCA; (iv) the kinase involved in aPRP phosphorylation is not fully mature in preterm newborns, but its activity increases with PCA, synchronizing with that of at-term newborns and reaching the adult levels at about 500-600 days of PCA, in concomitance with the beginning of deciduous dentition.  相似文献   

8.
The PRB2/1 fusion gene is produced by homologous and unequal crossing-over between PRB1 and PRB2 genes that code for basic salivary proline-rich proteins (PRPs). To determine the molecular basis for the PRB2/1 fusion gene, the DNA sequence was determined for the PRB2/1 gene and was compared with those of the PRB1 and PRB2 genes. From these comparisons, the crossing-over is postulated to occur in a 743-bp region of identity, with only 1-bp mismatch between the PRB1 and PRB2 genes, in the third intron outside the coding region of the two genes. This region of virtual complete identity is the largest found between any of the six closely linked PRB genes and may facilitate recombination. Since the coding region of PRB1 is completely absent from the PRB2/1 gene, salivas from two white PRB2/1 homozygotes were studied to determine which polymorphic PRPs were missing from the salivas. Polymorphic PRPs Pe, PmF, PmS, and Ps were found to be missing from the salivas. However, a white individual lacking the same salivary PRPs is a PRB2/1 heterozygote with one PRB1 allele. The explanation for the missing salivary proteins in this individual is unknown. The PRB2/1 gene is relatively frequent in several populations of unrelated individuals, including American blacks (n = 41), American Utah whites (n = 76), and mainland Chinese (n = 131), with gene frequencies of .22, .06, and .09, respectively. Evidence for the occurrence of PRB1/2 heterozygotes is also presented.  相似文献   

9.
Zhang J  Zhang H  Ayaz-Guner S  Chen YC  Dong X  Xu Q  Ge Y 《Biochemistry》2011,50(27):6081-6092
Cardiac troponin T (cTnT), the tropomyosin binding subunit of the troponin complex, plays a pivotal regulatory role in the Ca(2+)-mediated interaction between actin thin filament and myosin thick filament. The post-translational modifications (PTMs) and alternative splicing of cTnT may represent important regulatory mechanisms of cardiac contractility. However, a complete characterization of PTMs and alternatively spliced isoforms in cTnT present in vivo is lacking. Top-down protein mass spectrometry (MS) analyzes whole proteins, thus providing a global view of all types of modifications, including PTMs and sequence variants, simultaneously in one spectrum without a priori knowledge. In this study, we applied an integrated immunoaffinity chromatography and top-down MS approach to comprehensively characterize PTMs and alternatively spliced isoforms of cTnT purified from healthy human and wild-type mouse heart tissue. High-resolution Fourier transform MS revealed that human cTnT (hcTnT) and mouse cTnT (mcTnT) have similar phosphorylation patterns, whereas higher molecular heterogeneity was observed for mcTnT than hcTnT. Further MS/MS fragmentation of monophosphorylated hcTnT and mcTnT by electron capture dissociation and collisionally activated dissociation unambiguously identified Ser1 as the conserved in vivo phosphorylation site. In contrast, we identified a single spliced isoform for hcTnT but three alternatively spliced isoforms for mcTnT. Moreover, we observed distinct proteolytic degradation products for hcTnT and mcTnT. This study also demonstrates the advantage of top-down MS/MS with complementary fragmentation techniques for the identification of modification sites in the highly acidic N-terminal region of cTnT.  相似文献   

10.
Phosphorylation of many secreted salivary proteins is necessary for their biological functions. Identification of the kinase, which is responsible for in vivo phosphorylation, is complicated, because several of the protein phosphorylation sites conform both to the recognition sequence of casein kinase 2 (CK2) and Golgi kinase (G-CK), which both are found in the secretory pathway. This study was undertaken to determine the kinase recognition sequence in a secreted proline-rich salivary protein, PRP1, and thereby identify the responsible kinase. This was done by transfecting a human submandibular cell line, HSG, and a kidney cell line, HEK293, with expression vectors encoding wild-type or mutated PRP1. It was shown that phosphorylation occurred only at the same sites, Ser8 and 22, as in PRP1 purified from saliva. Phosphorylation at either site did not depend on the other site being phosphorylated. The sequence surrounding Ser8 has characteristics of both CK2 and G-CK recognition sequences, but destruction of the CK2 recognition site had no effect on phosphorylation, whereas no phosphorylation occurred if the G-CK recognition sequence was altered. The sequence surrounding Ser22 did not conform to any known kinase recognition sites. If Ser22 was mutated to Thr, no phosphorylation was seen, and a cluster of negatively charged residues at positions 27-29 was identified as part of the enzyme recognition site. Ser22 may be phosphorylated by a G-CK that recognizes an atypical substrate sequence or by a novel kinase. No difference in phosphorylation was seen between undifferentiated and differentiated HSG cells.  相似文献   

11.
Summary Rabbit polyclonal antibodies against isoproterenol-induced mouse proline-rich proteins (PRPs) were used to localize PRPs in the parotid salivary glands of normal adult BALB/c mice. The antibodies recognized both acidic-type and basic-type PRPs. Immunoblotting experiments revealed that the glands contained an acidic-type and a basic-type PRP. Parotid gland tissue was fixed with Karnosky's fixative and embedded in Lowicryl resin at low temperature. PRPs were localized at the electron microscope level using an indirect post-embedding staining technique with protein A-gold. The secretion granules of the acinar cells were strongly labelled. Pre-absorption of the antibody with purified acidic-type and basic-type PRPs indicated that the basic-type PRP is mainly located at the periphery of the granules but that the acidic-type PRP is more evenly distributed within the granules. Pre-absorption of the antibody with -amylase did not affect the staining pattern, suggesting minimal cross-reactivity. PRPs were also detected within the rough endoplasmic reticulum and the Golgi apparatus of acinar cells, within the granules of the proacinar cells and in the lumena of the ducts, but not within the intercalated or striated duct cell granules.  相似文献   

12.
Six closely linked PRP (proline-rich protein) genes code for many salivary PRPs that show frequent length and null variants. From determined protein sequences and DNA sequence analysis of variant alleles, we here report the coding and molecular basis for Con (concanavalin A-binding) and Po (parotid "o") protein polymorphisms. The Con1 glycoprotein is encoded in exon 3 of a PRB2 allele (PRB2L CON1+) with a potential N-linked glycosylation site. Because of a probable gene conversion encompassing > or = 684 bp of DNA, the "PRB2-like" Con2 glycoprotein is encoded in exon 3 of a PRB1 allele (PRB1M CON2+) with a potential glycosylation site. The PmF protein is also encoded in the PRB1M CON2+ allele, thus explaining the previously reported association between Con2 and PmF proteins. A PRB2L CON1 allele contains a single nt missense change [TCT(Ser)-->CCT (Pro)] that abolishes the potential N-linked glycosylation site (NKS-->NKP) in the Con1 protein, and this explains the Con- type. The Po protein and a glycoprotein (II-1) are encoded in the PRB4 gene, and both proteins are absent in the presence of a mutation in the PRB4M PO- allele that contains a single nt change (G--C) at the +1 invariant position of the intron 3 5'donor splice site. The genetically determined absence of the II-1 glycoprotein leads to altered in vitro binding of Streptococcus sanguis 10556 to salivary proteins, which suggests a biological consequence for null mutations of the PRB4 gene.  相似文献   

13.
14.
Two new genetic polymorphisms (Pe and Po) are found in human parotid saliva. Each polymorphism is determined by the autosomal inheritance of one expressed (dominant) and one unexpressed (recessive) allele. Autosomal inheritance is supported by studies of 63 families including 264 children for Pe and 57 families including 242 children for Po. For randomly collected salivas, gene frequencies in 317 whites are Pe+ = 0.76 and Pe- = 0.24; in 408 whites, Po+ = 0.75 and Po- = 0.25; in 51 blacks, Pe+ = 0.76 and Pe- = 0.24; and in 59 blacks, Po+ = 0.77 and Po- = 0.23. Both Pe and Po proteins react immunologically with polyclonal antisera prepared to proline-rich proteins PRPs. The Pe protein has an isoelectric point of approximately pH 6.1-6.3, and the Po protein has an isoelectric point greater than pH 8.0. In randomly collected salivas, the Pe and Po proteins are associated with other known salivary PRPs. The Pe protein is most strongly associated with the CON 1 and Ps proteins, is less strongly associated with the Pr and Pa proteins, and is not significantly associated with the PmF, PmS, PIF, Db, Con 2, or Gl proteins. If it is assumed that the strength of these associations (presumed linkage disequilibrium) may be related in part to map distance, then these data roughly fit the linear order of PRP genes as previously determined from recombination data derived from family linkage studies. The Po protein is associated with the PmS protein. There is evidence for probable linkage of Pe and Po to the SPC (salivary protein gene complex): Pe to Pa (nine families, lod score at theta = 0 is 2.67) and Po to CON 2 (three families, lod score at theta = 0 is 2.35).  相似文献   

15.
Tyrosine hydroxylase (TH) is the rate-limiting enzyme in the biosynthesis of the catecholamines dopamine, noradrenaline, and adrenaline. In response to short term stimuli TH activity is primarily controlled by phosphorylation of serine 40. We have previously shown that phosphorylation of serine 19 in TH can indirectly activate TH via a hierarchical mechanism by increasing the rate of phosphorylation of serine 40. Here we show that phosphorylation of serine 31 in rat TH increases the rate of serine 40 phosphorylation 9-fold in vitro. Phosphorylation of serine 31 in intact bovine chromaffin cells potentiated the forskolin-induced increase in serine 40 phosphorylation and TH activity more than 2-fold. Humans are unique in that they contain four TH isoforms but to date no significant differences have been shown in the regulation of these isoforms. Phosphorylation of the human TH isoform 1 at serine 31 by extracellular signal-regulated protein kinase (ERK) also produced a 9-fold increase in the rate of phosphorylation of serine 40, whereas little effect was seen in the TH isoforms 3 and 4. ERK did not phosphorylate human TH isoform 2. The effect of serine 19 phosphorylation on serine 40 (44 in TH2) phosphorylation is stronger in TH2 than in TH1. Thus hierarchical phosphorylation provides a mechanism whereby the two major human TH isoforms (1 and 2) can be differentially regulated with only isoform 1 responding to the ERK pathway, whereas isoform 2 is more sensitive to calcium-mediated events.  相似文献   

16.
Exocrine cells have an essential function of sorting secreted proteins into the correct secretory pathway. A clear understanding of sorting in salivary glands would contribute to the correct targeting of therapeutic transgenes. The present work investigated whether there is a change in the relative proportions of basic proline-rich protein (PRP) and acidic PRPs in secretory granules in response to chronic isoproterenol treatment, and whether this alters the sorting of endogenous cargo proteins. Immunoblot analysis of secretory granules from rat parotids found a large increase of basic PRP over acidic PRPs in response to chronic isoproterenol treatment. Pulse chase experiments demonstrated that isoproterenol also decreased regulated secretion of newly synthesized secretory proteins, including PRPs, amylase and parotid secretory protein. This decreased efficiency of the apical regulated pathway may be mediated by alkalization of the secretory granules since it was reversed by treatment with mild acid. We also investigated changes in secretion through the basolateral (endocrine) pathways. A significant increase in parotid secretory protein and salivary amylase was detected in sera of isoproterenol-treated animals, suggesting increased routing of the regulated secretory proteins to the basolateral pathway. These studies demonstrate that shifts of endogenous proteins can modulate regulated secretion and sorting of cargo proteins. amylase; parotid secretory protein; polarized secretion  相似文献   

17.
The complete amino acid sequence of the macaque proline-rich phosphoglycoprotein (MPRP) was determined by automated Edman degradation of the protein, fragments F-1 and F-2 derived from the protein by an intrinsic salivary protease, and chymotryptic, tryptic, Staphylococcus aureus V8 protease, and endoproteinase lysine-C peptides. MPRP contains 115 amino acid residues including phosphorylated serine at residues 1, 2, 6, 12, and 15, and 6 O-glycosidic carbohydrate units at residues 69, 75, 87 (threonine) and 96, 103, and 106 (serine). The Mr of the polypeptide moiety of the protein is 12,656. The amino-terminal domain contains all 5 phosphoserine residues and most of the other negatively charged and hydrophilic residues, whereas the carboxyl-terminal domain contains 24 of 25 proline residues, and 6 O-glycosidic oligosaccharides. Comparison of MPRP with the four major anionic proline-rich proteins (PRPs) from human glandular secretion shows that 57% of the amino acid residues are identical if gaps are introduced to maximize homology, suggesting that these proteins are phylogenetically related. Significant structural and functional differences occur between the macaque and human proteins. MPRP has 5 phosphoserines, PRPs have 2. MPRP is a glycoprotein, PRPs are not. MPRP inhibits the spontaneous precipitation (primary precipitation) of calcium phosphate salts from supersaturated solutions in addition to inhibiting seeded crystal growth (secondary precipitation) (Oppenheim, F. G., Offner, G. D., and Troxler, R. F. (1982) J. Biol. Chem. 257, 9271-9282), whereas PRPs inhibit only secondary precipitation. MPRP is the only major anionic proline-rich protein in macaque glandular secretion; in contrast, there are four major anionic PRPs and these display a genetic polymorphism. The significance of these structural differences with respect to biological function and the possible relationship of MPRP to salivary mucins are discussed.  相似文献   

18.
19.
20.
《Journal of molecular biology》2019,431(17):3107-3123
FmtA is a penicillin-recognizing protein (PRP) with novel hydrolytic activity toward the ester bond between d-Ala and the backbone of teichoic acids. Teichoic acids are polyol-phosphate polymers found in the Staphylococcus aureus cell wall, and they play important roles in antibiotic resistance and pathogenesis. Two of the PRPs conserved motifs, namely, SXXK and Y(S)XN, are involved in the hydrolysis by FmtA, but the catalytic mechanism remains elusive. Here we determined the crystal structure of FmtA. FmtA shares the core structure of PRPs: an all α-helical domain and α/β domain sandwiched together. However, it does not have the typical PRPs active-site cleft. Its active site is shallow, solvent-exposed, and enlarged. Furthermore, our mutagenesis and kinetic studies suggest that the SXXK and Y(S)XN motifs of FmtA offer all that is necessary for catalysis, and more: the active-site nucleophile (serine), the general base (lysine) required for the acylation step and the deacylation step, and an anchor (tyrosine) to hold the active-site serine, and possibly the substrate, in an optimum conformation for catalysis. Our study establishes that the FmtA esterase activity represents an expansion of the catalytic activity repertoire of the PRPs core structure, which typically displays peptidase activity. This finding points toward a novel mechanism of ester bond hydrolysis by a PRP. The structure of FmtA provides insights to the design of inhibitor molecules with the potential to serve as leads in the development of novel antibacterial chemotherapeutic agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号