首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The toxicity of chloride salts of physiological (zinc, manganese, nickel) and non physiological (cadmium) bivalent metal ions was studied in normal or carcinogen-transformed mouse embryo fibroblast cells. The dose response curves for toxicity to both types of cells exhibited similar shapes. The transformed cells, however, were about twice as sensitive to zinc toxicity as normal cells. When normal and transformed cells were grown together and incubated for several hours with an appropriate concentration of zinc, the malignant cells were selectively killed. Cadmium was much more toxic than the three other metal ions in both types of cells. Its toxic effect was reversed by simultaneous addition of zinc at nontoxic concentrations.Abbrevications CFA colony forming ability - MCA 3-methylcholanthrene  相似文献   

2.
Lactic acid bacteria (LAB) as starter culture in food industry must be suitable for large-scale industrial production and possess the ability to survive in unfavorable processes and storage conditions. Approaches taken to address these problems include the selection of stress-resistant strains. In food industry, LAB are often exposed to metal ions induced stress. The interactions between LAB and metal ions are very poorly investigated. Because of that, the influence of non-toxic, toxic and antioxidant metal ions (Zn, Cu, and Mn) on growth, acid production, metal ions binding capacity of wild and adapted species of Leuconostoc mesenteroides L3, Lactobacillus brevis L62 and Lactobacillus plantarum L73 were investigated. The proteomic approach was applied to clarify how the LAB cells, especially the adapted ones, protect themselves and tolerate high concentrations of toxic metal ions. Results have shown that Zn and Mn addition into MRS medium in the investigated concentrations did not have effect on the bacterial growth and acid production, while copper ions were highly toxic, especially in static conditions. Leuc. mesenteroides L3 was the most efficient in Zn binding processes among the chosen LAB species, while L. plantarum L73 accumulated the highest concentration of Mn. L. brevis L62 was the most copper resistant species. Adaptation had a positive effect on growth and acid production of all species in the presence of copper. However, the adapted species incorporated less metal ions than the wild species. The exception was adapted L. brevis L62 that accumulated high concentration of copper ions in static conditions. The obtained results showed that L. brevis L62 is highly tolerant to copper ions, which allows its use as starter culture in fermentative processes in media with high concentration of copper ions.  相似文献   

3.
In laboratory experiments, copper concentrations in plants of Ascophyllum nodosum (L.) Le Jolis (Fucales, Phaeophyta) increased with the concentrations in the culture media and were highest in younger, meristematic thallus parts. After initial accumulation in high-copper medium and subsequent transfer to clean seawater for 5 days, no release of copper could be detected. Iron concentrations in A. nodosum tissue were not related to concentrations in the culture medium. Differences between copper concentrations in plants from different sites in areas with high yachting activity in Strangford Lough, Northern Ireland, could be explained by differences in water motion and human activity, in particular the application of copper-releasing antifouling paints to leisure boats. Iron concentrations were also highest in plants from the sheltered, polluted site but did not differ significantly between the other two sites. No differences in copper nor iron concentrations were found between different-aged thallus parts of plants from any site. X-ray microanalysis revealed that most of the iron detected was located in epiphytic pennate diatoms on the A. nodosum surface. In thallus areas without diatoms, iron levels were below the detection limit for X-ray microanalysis. Mapping for copper indicated that most of the accumulated copper was located in cells near and immediately below the thallus surface. "Epidermis"-shedding occurred in plants from the culture experiments and also in freshly-collected material and may have resulted in a loss of metal ions accumulated by surface cells and by epiphytic diatoms. The results suggest that A. nodosum could be used as a biological indicator for copper but not for iron, and that young, apical plant parts are most sensitive to changes in metal concentrations in the water.  相似文献   

4.
It is well established that the prion protein (PrP) contains metal ion binding sites with specificity for copper. Changes in copper levels have been suggested to influence incubation time in experimental prion disease. Therefore, we studied the effect of heavy metal ions (Cu(2+), Mn(2+), Ni(2+), Co(2+), and Zn(2+)) in vitro in a model system that utilizes changes in the concentration of SDS to induce structural conversion and aggregation of recombinant PrP. To quantify and characterize PrP aggregates, we used fluorescently labelled PrP and cross-correlation analysis as well as scanning for intensely fluorescent targets in a confocal single molecule detection system. We found a specific strong pro-aggregatory effect of Mn(2+) at low micromolar concentrations that could be blocked by nanomolar concentration of Cu(2+). These findings suggest that metal ions such as copper and manganese may also affect PrP conversion in vivo.  相似文献   

5.
Mean activity coefficients of different potassium salts KX (X = F-, Cl-, Br-, I-, NO3-, SCN-) have been measured in concentrated isoionic bovine serum albumin (BSA) solutions, by use of the EMF method with ion-exchange membrane electrodes. These solutions may be regarded as simple model systems for the cytoplasm of living cells as far as the influence of the macromolecular component on the activity coefficients of the salts is concerned. Two series of measurements have been carried out: (a) varying the amount of salt from 0.01 to 0.5 molal and maintaining the BSA concentration constant at 20 wt% and (b) varying the protein concentration up to 25 wt% and keeping the salt concentration constant at 0.1 molal. For all salts studied, the mean activity coefficients in the protein-salt solutions increase as the salt concentration rises, when the protein concentration is maintained constant. In the series of measurements (b) the activity coefficients of all salts change linearly with the protein concentration. Marked qualitative differences, however, were observed depending on the anion species, which could be interpreted in terms of specific ion binding of X- to the protein molecule. By taking into account BSA-bound 'non-solvent' water, the results were analyzed in terms of numbers of anions bound per BSA molecule. Comparison with the results of Scatchard, obtained at low protein concentrations, showed only a very small electrostatic effect of the BSA-(X-)v polyions on the activity coefficient of the salts at higher protein and salt concentrations.  相似文献   

6.
The effect of copper(II), lead(II) and chromium(VI) ions on the growth and bioaccumulation properties of Aspergillus niger was investigated as a function of initial pH and initial metal ion concentration. The optimum pH values for growth and metal ion accumulation were determined as 5.0, 4.5 and 3.5 for copper(II), lead(II) and chromium(VI) ions, respectively. Although all metal ion concentrations caused an inhibition effect on the growth of A. niger, it was capable of removing of copper(II) and lead(II) with a maximum specific uptake capacity of 15.6 and 34.4 mg g−1 at 100 mg dm−3 initial copper(II) and lead(II) concentration, respectively. Growth of A. niger was highly effected by chromium(VI) ions and inhibited by 75 mg dm−3 initial chromium(VI) concentration since some inhibition occurred at lower concentrations.  相似文献   

7.
8.
BACKGROUND: Metallochaperone proteins function in the trafficking and delivery of essential, yet potentially toxic, metal ions to distinct locations and particular proteins in eukaryotic cells. The Atx1 protein shuttles copper to the transport ATPase Ccc2 in yeast cells. Molecular mechanisms for copper delivery by Atx1 and similar human chaperones have been proposed, but detailed structural characterization is necessary to elucidate how Atx1 binds metal ions and how it might interact with Ccc2 to facilitate metal ion transfer. RESULTS: The 1.02 A resolution X-ray structure of the Hg(II) form of Atx1 (HgAtx1) reveals the overall secondary structure, the location of the metal-binding site, the detailed coordination geometry for Hg(II), and specific amino acid residues that may be important in interactions with Ccc2. Metal ion transfer experiments establish that HgAtx1 is a functional model for the Cu(I) form of Atx1 (CuAtx1). The metal-binding loop is flexible, changing conformation to form a disulfide bond in the oxidized apo form, the structure of which has been solved to 1.20 A resolution. CONCLUSIONS: The Atx1 structure represents the first structure of a metallochaperone protein, and is one of the largest unknown structures solved by direct methods. The structural features of the metal-binding site support the proposed Atx1 mechanism in which facile metal ion transfer occurs between metal-binding sites of the diffusible copper-donor and membrane-tethered copper-acceptor proteins. The Atx1 structural motif represents a prototypical metal ion trafficking unit that is likely to be employed in a variety of organisms for different metal ions.  相似文献   

9.
Leaf cells accumulate solutes differently depending on their cell type. The accumulation profiles of inorganic ions have been well documented for the mesophyll and epidermis, particularly in cereals. These cell types accumulate ions such as phosphate and calcium to strikingly different extents. Understanding the processes that control ion accumulation could reveal how plants respond to either a limiting supply of important micro- and macronutrient ions or to potentially toxic loads of salts or heavy metal ions. Research has recently begun to reveal the processes that underlie this remarkable sorting of nutrient ions within the leaf.  相似文献   

10.
The concentrations of toxic heavy metals (Hg, Cd, Cr, Cu, Zn and Pb) were measured by atomic absorption spectrophotometry in the gills of mussels (Unio pictorum L.) both living in Lake Balaton as well as transferred to various parts of tributaries of the Lake. The measurements were performed separately with two-week intervals during the course of several months. It was found that (1) the concentration of the studied metals varied with time at each location, less variation occurred in the mussels living in the Lake itself. (2) There were both increases and decreases in the heavy metal concentration of the gills, presumably reflecting the changing level of pollution of the water. It is concluded that mussels can be used as biological indicators for detecting temporal variations in the degree of toxic heavy metal contamination in surface waters, and are good objects for signalizing local events of pollution.  相似文献   

11.
In a survey of a number of heavy metal ions for effects on the oxidative metabolism (respiratory burst) of human polymorphonuclear leukocytes (neutrophils) we have found that mercury(II) and silver ions in micromolar concentration significantly increase the production of superoxide anions in cells, initiated by formyl-methionyl-leucylphenylalanine (fMLP). The stimulation of radical formation induced by a certain ion concentration varied considerably in cells isolated from different blood donors, from a moderate increase to a very large (up to 400% of control values). When the soluble stimulator phorbol myristate acetate (PMA) or the particulate stimulator Zymosan were used to initiate the cell respiratory burst, no additional stimulating effects by the metal ions on superoxide anion formation were observed. This fact might indicate that the effect of the metal ions on the fMLP-dependent initiation of cell activity is a mechanism coupled to the interaction between the chemotactic peptide and its corresponding receptor molecules on the cell surface.

By increasing the concentration of silver ions during pre-incubation of resting neutrophils, a spontaneous activation of the cells could be recorded at a concentration exceeding 5 μM. However, the silver ion concentration at which such spontaneous initiation of the respiratory burst occurred varied significantly between blood samples from different donors with a concentration range of 5 to 15 μM. This effect could not be shown for mercuric ions due to the toxicity of the metal above 5 μM. Blood samples from some donors contained neutrophils that could be activated by either mercuric- or silver ions at concentration as low at 1 μM.

The spontaneous activation of neutrophils with elevated concentrations of silver ions is kinetically similar to the PMA-induced. The onset of superoxide anion formation is preceeded by a lag period whose length varies in time with the concentration of agent applied to the cells. It is a known fact that once the neutrophils have been activated with fMLP it is not possible to reactivate the cells by a second supplementation of fMLP. However, after cessation of the fMLP-induced activation, addition of PMA or silver ions gives rise to renewed production of superoxide anions.

We propose two different mechanisms of action of silver ions on oxidative metabolism of neutrophils. At a low concentration the metal ions are thought to interact with an activating agent and a corresponding cell surface receptor molecule, while at elevated ion concentrations, we postulate an action like that of phorbol-esters on neutrophils, (i.e., an interaction between activating agent and the enzyme protein kinase C of the cells).  相似文献   

12.
Geochemical processes in the Lake Fryxell Basin (Victoria Land,Antarctica)   总被引:2,自引:0,他引:2  
Major ion, nutrient, transition metal, and cadmium concentrations are presented for nine meltwater streams flowing into Lake Fryxell, a permanently stratified lake with an anoxic hypolimnion in Taylor Valley, Antarctica. For the major ions, stream compositions are considered in terms of dissolution of marine-derived salts and chemical weathering of local rocks. Although Lake Fryxell has undergone significant evaporative concentration, only calcite, of the simple salts, is predicted to precipitate. Geochemical budgets indicate, however, that large quantities of K, Mg, and SO4 have also been removed from the lake. Reverse weathering may be an important sink for K and Mg, although magnesium removal with calcium carbonate phases is also likely. Assuming constancy of composition over recent geologic time, all of the salts in the Fryxell water column could have been delivered under present flows in about three thousand years (chloride age).Comparison of nutrient concentrations in these meltwater streams with other flowing waters in the world reveals that the Fryxell streams are strikingly deficient in NO3-N but not PO4-P. The apparent nitrogen deficiency in Lake Fryxell itself can be attributed to the low annual stream loadings of this nutrient.Stream concentrations and loadings are also presented for Mn, Fe, Co, Ni, Cu, and Cd. Dissolved metal concentrations correlate roughly with average crustal abundances, suggesting that chemical weathering is the major source for these elements. Vertical metal profiles within Lake Fryxell itself appear to be governed by the formation of insoluble sulfide phases, or, in the case of Mn, by MnHPO4. However, dissolved nickel levels in sulfide-bearing waters are much higher than can be explained in terms of metal-sulfide equilibria, and we suspect that significant organic complexing of this metal is occurring in the deeper waters.  相似文献   

13.
The inherent cellular toxicity of copper ions demands that their concentration be carefully controlled. The cellular location of the Menkes ATPase, a key element in the control of intracellular copper, is regulated by the intracellular copper concentration through the N-terminus of the enzyme, comprising 6 homologous subdomains or modules, each approximately 70 residues in length and containing a -Cys-X-X-Cys- motif. Based on the proposal that binding of copper to these modules regulates the Menkes ATPase cellular location by promoting changes in the tertiary structure of the enzyme, we have expressed the entire N-terminal domain (MNKr) and the second metal-binding module (MNKr2) of the Menkes protein in E. coli and purified them to homogeneity. Ultraviolet-visible, luminescence, and X-ray absorption spectroscopy show that copper and silver bind to the single module, MNKr2, with a stoichiometry of one metal ion per module. However, the array of six modules, MNKr, binds Cu(I) to produce a homogeneous conformer with 4 mol equiv of metal ion. The metal ions are bound in an environment that is shielded from solvent molecules. We suggest a model of the Menkes protein in which the Cu(I) binding induces tertiary changes in the organization of the six metal-binding domains.  相似文献   

14.
We studied the interaction of several metal ions with the copper chaperone from Enterococcus hirae (EhCopZ). We show that the stoichiometry of the protein-metal complex varies with the experimental conditions used. At high concentration of the protein in a noncoordinating buffer, a dimer, (EhCopZ)2-metal, was formed. The presence of a potentially coordinating molecule L in the solution leads to the formation of a monomeric ternary complex, EhCopZ-Cu-L, where L can be a buffer or a coordinating molecule (glutathione, tris(2-carboxyethyl)phosphine). This was demonstrated in the presence of glutathione by electrospray ionization MS. The presence of a tyrosine close to the metal-binding site allowed us to follow the binding of cadmium to EhCopZ by fluorescence spectroscopy and to determine the corresponding dissociation constant (Kd = 30 nm). Competition experiments were performed with mercury, copper and cobalt, and the corresponding dissociation constants were calculated. A high preference for copper was found, with an upper limit for the dissociation constant of 10-12 m. These results confirm the capacity of EhCopZ to bind copper at very low concentrations in living cells and may provide new clues in the determination of the mechanism of the uptake and transport of copper by the chaperone EhCopZ.  相似文献   

15.
The present results show that the NADP specific isocitrate dehydrogenase from pig heart exhibits a time lag before the reaction rate approaches a constant value at low metal ion concentrations. Addition of NADPH or EDTA to the assay mixture abolished the lag, and will under certain conditions activate the enzyme.The lag time increased with increasing concentrations of isocitrate and decreased with increasing enzyme concentration. The NADP and metal ion concentration affected the lag in a complex manner. At low NADP and isocitrate concentration, the lag was reduced 50% by an NADPH concentration of less than 2 μm. Stopped flow experiments showed that premixing of NADP or NADPH with the enzyme abolished the effect of NADPH on the lag time. NADPH activated the enzyme at high NADP concentrations. This activating effect could be accounted for by removal of substrate inhibition by NADP.Evidence was obtained to show that the effect of NADPH on the activity was caused by binding of the reduced coenzyme to a site separate from the normal coenzyme binding site. Binding of metal ions by the reduced coenzyme is probably of importance as EDTA affects the lag time and activity in a manner similar to NADPH. The NADPH effect seems to be a general property of NADP-linked isocitrate dehydrogenases.  相似文献   

16.
Of 16 metal cations tested on agar medium, only copper and iron stimulated mycelial growth of Endothia parasitica in relatively high concentrations. Similarly enhanced growth was produced in high (32%) glucose concentrations and also when the fungus was grown on cellophane placed over the agar surface. E. parasitica secreted large amounts of oxalate that precipitated primarily as calcium oxalate at the periphery of the fungal colony, causing an opaque halo in the medium. Mycelial growth was retarded greatly when calcium oxalate accumulated, but retardation was reversed by copper and iron salts that prevented accumulation of the calcium oxalate crystals. E. parasitica grew well on media containing copper oxalate and copper-calcium oxalate but grew poorly with calcium oxalate as the carbon source and was inhibited by sodium oxalate in the medium. The specificity by which only copper and iron salts stimulated mycelial growth suggested that the metal and oxalate ions interact to form specific oxalate complexes that reverse the inhibition of simple oxalate salts. This probably accounts for enhanced growth in the presence of otherwise toxic levels of metals and oxalate. The stimulation did not occur in liquid cultures.  相似文献   

17.
18.
Growth in a biofilm modulates microbial metal susceptibility, sometimes increasing the ability of microorganisms to withstand toxic metal species by several orders of magnitude. In this study, a high-throughput metal toxicity screen was initiated with the aim of correlating biological toxicity data in planktonic and biofilm cells to the physiochemical properties of metal ions. To this end, Pseudomonas fluorescens ATCC 13525 was grown in the Calgary Biofilm Device (CBD) and biofilms and planktonic cells of this microorganism were exposed to gradient arrays of different metal ions. These arrays included 44 different metals with representative compounds that spanned every group of the periodic table (except for the halogens and noble gases). The minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and minimum biofilm eradication concentration (MBEC) values were obtained after exposing the biofilms to metal ions for 4 h. Using these values, metal ion toxicity was correlated to the following ion-specific physicochemical parameters: standard reduction-oxidation potential, electronegativity, the solubility product of the corresponding metal–sulfide complex, the Pearson softness index, electron density and the covalent index. When the ions were grouped according to outer shell electron structure, we found that heavy metal ions gave the strongest correlations to these parameters and were more toxic on average than the other classes of the ions. Correlations were different for biofilms than for planktonic cells, indicating that chemical mechanisms of metal ion toxicity differ between the two modes of growth. We suggest that biofilms can specifically counter the toxic effects of certain physicochemical parameters, which may contribute to the increased ability of biofilms to withstand metal toxicity.  相似文献   

19.
The fungus Rhizopus delemar produced extracellular and cellular acid phosphatase during the growth in starch-supplemented medium in the presence or absence of copper ions. The levels of both AP-ase activities were maximal at the end of exponential growth phase and were dependent on copper concentrations. Copper ions in the medium provoked slight decrease of specific AP-ase activities and significant increase of the values of secreted enzyme per gram dry cells. On the other hand, an increase of copper ions in the reaction mixture leads to considerable increase of the values of cellular enzyme activity. Total uptake of copper (II) was highest at the highest copper (II) concentration, when resting cells were used. Between 27 and 30% copper (II) was not removed by acid washing, suggested that this copper was bound intracellularly by mycelium. Determination of the Michaelis constant for the cellular AP-ase gave value of 0.325 mM. The pH optimum of the enzyme was determined to be in the range of 3.5–4.5 using p-nitrophenyl phosphate (pNPP) as a substrate. The data obtained indicated a possible participation of AP-ases in the processes of heavy metal resistance and heavy metal uptake of this fungus.  相似文献   

20.
The properties of purified capsular polysaccharide from the cyanobacterium Microcystis flos-aquae C3-40 were examined by capillary viscometry. Capsule suspensions exhibited similar viscosities between pH 6 and 10 but were more viscous at pH <=4 than at pH 6 to 11. At pH 7, a biphasic effect of metal ion concentration on capsule viscosity was observed: (i) capsule viscosity increased with increasing metal ion concentration until a maximal viscosity occurred at a specific concentration that was a reproducible characteristic of each metal ion, and (ii) the viscosity decreased with further addition of that ion. Because the latter part of the biphasic curve was complicated by additional factors (especially the precipitation or gelation of capsule by divalent metal ions), the effects of various metal chlorides were compared for the former phase in which capsule viscosity increased in the presence of metal ions. Equivalent increases in capsule viscosity were observed with micromolar concentrations of divalent metal ions but only with 10 to 20 times greater concentrations of Na(sup+). The relative abilities of various metal salts to increase capsule viscosity were as follows: CdCl(inf2), Pb(NO(inf3))(inf2), FeCl(inf2) > MnCl(inf2) > CuCl(inf2), CaCl(inf2) >> NaCl. This pattern of metal efficacy resembles known cation influences on the structural integrity of capsule in naturally occurring and cultured M. flos-aquae colonies. The data are the first direct demonstration of an interaction between metal ions and purified M. flos-aquae capsule, which has previously been proposed to play a role in the environmental cycling of certain multivalent metals, especially manganese. The M. flos-aquae capsule and the plant polysaccharide pectin have similar sugar compositions but differ in their relative responses to various metals, suggesting that capsular polysaccharide could be a preferable alternative to pectin for certain biotechnological applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号