首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lysogens of Nocardia erythropolis were mated with nonlysogenic strains to study the inheritance of the phi EC prophage. Crosses between lysogenic strains of the Mat-Ce mating type and nonlysogenic Mat-cE strains produced Mat-cE lysogens at a recovery rate of 17%, whereas recombination frequencies between chromosomal traits were about 2.3 x 10(-5). Crosses of lysogenic Mat-cE mating types with nonlysogenic Mat-Ce produced Mat-Ce lysogens at a recovery rate of 19%, whereas recombinants for chromosomal traits were recovered at only 1.8 x 10(-5). Crosses of homologous mating types, lysogenic Mat-Ce with nonlysogenic Mat-Ce or lysogenic Mat-cE with nonlysogenic Mat-cE, failed to transfer the prophage. It was concluded that the phi EC prophage exists as a plasmid and can be transferred at high frequencies with patterns of transfer controlled like typical nocardial fertility. Evidence that the prophage may also exist as an integrated element was observed from recombination analyses.  相似文献   

2.
The transformation and mutagenic potential of porphyrin photodynamic therapy has been examined in mammalian cells. The mutagenic frequency in Chinese hamster cells at the Na+/K+ ATPase locus was measured by resistance to ouabain following treatment with either photodynamic therapy (PDT) or UV irradiation. The C3H 10T 1/2 mouse embryo cell system was used to document the transformation frequency following PDT, UV irradiation, gamma irradiation or exposure to 3-methylcholanthrene (MCA). Treatments with UV irradiation were effective in producing mutants resistant to ouabain, and treatments with UV irradiation, gamma irradiation and MCA generated transformants at frequencies comparable to those which are reported in the literature. However, PDT treatment conditions (which produced a full range of cytotoxicity) did not induce any mutagenic or transformation activity above background levels.  相似文献   

3.
Many mammalian cells exhibit damage-inducible phenomena that resemble the bacterial SOS functions. However, whereas RecA plays a prominent role in the prokaryotic SOS response, in mammalian cells so far no enhanced recombination as a result of treatment with DNA-damaging agents of the cells, rather than of infecting viruses, has been found. In order to study recombination as a UV-inducible cellular phenomenon we infected UV-irradiated normal and repair-deficient human fibroblasts with a mixed population of adenovirus 5 (Ad5) mutants that carried a deletion in the E1A or the E2A gene. Wild-type recombinant progeny viruses were readily obtained, but no enhanced recombination was observed at any UV dose given to the cells, nor at any time point between -6 h and +4 days between irradiation and infection. Control experiments, in which we infected unirradiated cells with UV-irradiated Ad5 deletion mutants (a test for recombination targeted at UV-damaged DNA) showed a strong increase in wild-type recombinant viruses when both deletion mutants had been irradiated compared to the additive effect of irradiation of either one of the mutants alone. Therefore, this study shows that UV irradiation results in an enhanced recombination activity in cells that is specifically targeted to damaged DNA, but it does not cause a general (untargeted) recombinational response (enhanced recombination) in the cell.  相似文献   

4.
A high frequency of morphogenetic mutants of Dictyostelium discoideum can be induced by treatment with MNNG under conditions which result in relatively low cell killing. Six temperature-sensitive growth mutants induced by this treatment were isolated by replica plating. Among these, five showed spontaneous reversion rates of 10(-4) to 10(-5). The mutagenic activity of ems, measured for the induction of both morphogenetic and temperature-sensitive mutants, was weaker than that of MNNG and UV radiation. High frequencies of morphogenetic mutants were obtained only with doses of UV irradiation that resulted in high killing of cells or spores. Caffeine, at concentrations that slightly decreased the growth rate of amoebae in axenic medium, induced morphogenetic defects and also enhanced the mutagenic effect of UV irradiation. However, all the aggregateless clones derived from caffeine treatment that were studied reverted to the wild-type phenotype after a variable number of clonal re-isolations.  相似文献   

5.
The induction of chromosomal aberrations and sister-chromatid exchanges (SCEs) by short-wave ultraviolet (UV) and X-irradiation was studied in Chinese hamster ovary (CHO) wild-type (WT) cells and one of its UV-hypersensitive mutants, 43-3B. The results indicate that CHO 43-3B show high levels of spontaneously occurring chromosomal aberrations and SCEs; these levels are, respectively, approximately 4 and 1.7 times those found in WT CHO. Treatment with UV produced a considerable delay in the cell-cycle progression of the mutant cells compared to the WT cells. Doses of UV that had no effect on WT cells, significantly induced chromosomal alterations in the mutant in a dose-dependent manner. An approximately 5-fold increase in the induced frequencies of SCEs was obtained in 43-3B cells after UV treatment. No synergistic effect was observed with UV irradiation and the inhibitor of poly(ADP-ribose) synthetase, 3-aminobenzamide (3AB), in either cell type. The frequency of SCEs in the mutant cell lines was lower than would be expected if the effects of UV and the inhibitor were additive. X-Ray alone in G1 and in combination with 3AB in G2 did not induce increased frequencies of chromosomal aberrations in mutant cells in comparison to the WT cells.  相似文献   

6.
Isolation of the rec Mutants in Staphylococcus aureus   总被引:6,自引:2,他引:4       下载免费PDF全文
A histidine auxotroph (his-) of Staphylococcus aureus MS3937 and mutants sensitive to ultraviolet (UV) irradiation were obtained. The UV-sensitive mutants were found also to be sensitive to N-methyl-N'-nitro-N-nitrosoguanidine and mitomycin C, and their sensitivity was accounted for by a defect in deoxyribonucleic acid repair. Transduction of either chromosomal or plasmid markers to UV-sensitive mutants showed that these staphylococcus mutants are of the recA (reckless) type mutants as reported in Escherichia coli and Salmonella typhimurium; therefore the UV-sensitive mutants (uvr-) were renamed recombination-deficient mutants (rec-). The biochemical and genetic properties of these mutants are described, and their usefulness for studies of staphylococcal plasmids is discussed.  相似文献   

7.
The mutabilities of normal and xeroderma pigmentosum variant (XP4BE) human fibroblasts by ultraviolet light (UV) were compared under conditions of maximum expression of the 6-thioguanine resistance (TGr) phenotype. Selection was with 20 micrograms TG/ml on populations reseeded at various times after irradiation. Approx. 6--12 days (4--8 population doublings), depending on the UV dose, were necessary for complete expression. The induced mutation frequencies were linear functions of the UV dose but the slope of the line for normal cells extrapolated to zero induced mutants at 3 J/m2. The postreplication repair-defective XP4BE cells showed a higher frequency of TGr colonies than normal fibroblasts when compared at equal UV doses or at equitoxic treatments. The induced frequency of TGr colonies was not a linear function of the logarithm of survival for either cell type. Instead, the initial slope decreased to a constant slope for survivals less than about 50%. The UV doses and induced mutation frequencies corresponding to 37% survival of cloning abilities were 6.7 J/m2 and 6.2 X 10(-5), respectively, for normal cells and 3.75 J/m2 and 17.3 X 10(-5) for the XP4BE cells. The lack of an observable increase in the mutant frequency for normal fibroblasts exposed to slightly lethal UV doses suggests that normal postreplication repair of UV-induced lesions is error-free (or nearly so) until a threshold dose is exceeded.  相似文献   

8.
Studies were carried out to determine the effect of mutation in the host pol I gene on survival of ultraviolet (UV)-irradiated bacteriophage T4. Whereas a slightly reduced survival was observed in Escherichia coli strain P-3478 (pol A(1)) compared to strain W-3110 (pol A(+)), no such difference was observed in two strains isogenic except for the pol A gene. It was also shown that, whereas bacteriophage T4x is sensitive to UV irradiation, X irradiation, and treatment with methyl-methanesulfonate (MMS), phage T4v(1) is sensitive only to UV irradiation. The survival of damaged phage T4x is neither affected by the presence of the rec A, rec B, or pol A mutations in the host, nor is there evidence that phage T4 effects repair of rec A or pol A mutants previously treated with either UV or MMS.  相似文献   

9.
The effect of the CAM-OCT plasmid on responses to UV irradiation of Pseudomonas aeruginosa recA mutants was characterized. Mutant alleles examined included rec-1, rec-2, and recA7::Tn501. The plasmid substantially enhanced both survival and mutagenesis of RecA- cells after treatment with UV light. Survival of the RecA-(CAM-OCT) cells after UV irradiation was intermediate between that seen in the wild-type P. aeruginosa PAO1 and the increased survival seen in PAO1(CAM-OCT) cells. Mutability was quantitated by the reversion to carbenicillin resistance of strains carrying a bla(Am) mutation on a derivative of plasmid RP1. UV-induced mutagenesis of CAM-OCT carrying recA mutants occurred at levels comparable to that seen in PAO1(CAM-OCT). The ability of CAM-OCT plasmid to suppress the recombination deficiency in recA mutants was tested by assaying for bacteriophage F116L-generalized transduction of a Tn7 insertion in the alkane utilization genes of CAM-OCT. Transduction of the Tn7 insertion was not detected in RecA-(CAM-OCT) strains but was easily seen in PAO1(CAM-OCT), indicating that the plasmid does not encode a recA analog. The results indicate that the CAM-OCT UV response genes are expressed in RecA- cells, which differs from results seen with other UV response-enhancing plasmids. The results suggest that CAM-OCT either encodes several UV responses genes itself or induces chromosomal UV response genes by an alternate mechanism.  相似文献   

10.
Ultraviolet-Sensitive Mutator Strain of Escherichia coli K-12   总被引:30,自引:20,他引:10       下载免费PDF全文
An ultraviolet (UV)-sensitive mutator gene, mutU, was identified in Escherichia coli K-12. The mutation mutU4 is very close to uvrD, between metE and ilv, on the E. coli chromosome. It was recessive as a mutator and as a UV-sensitive mutation. The frequency of reversion of trpA46 on an F episome was increased by mutU4 on the chromosome. The mutator gene did not increase mutation frequencies in virulent phages or in lytically grown phage lambda. The mutU4 mutation predominantly induced transitional base changes. Mutator strains were normal for recombination and host-cell reactivation of UV-irradiated phage T1. They were normally resistant to methyl methanesulfonate and were slightly more sensitive to gamma irradiation than Mut(+) strains. UV irradiation induced mutations in a mutU4 strain, and phage lambda was UV-inducible. Double mutants containing mutU4 and recA, B, or C were extremely sensitive to UV irradiation; a mutU4 uvrA6 double mutant was only slightly more sensitive than a uvrA6 strain. The mutU4 uvrA6 and mutU4 recA, B, or C double mutants had mutation rates similar to that of a mutU4 strain. Two UV-sensitive mutators, mut-9 and mut-10, isolated by Liberfarb and Bryson in E. coli B/UV, were found to be co-transducible with ilv in the same general region as mutU4.  相似文献   

11.
12.
13.
Genophore homologies among compatible nocardiae   总被引:3,自引:2,他引:1       下载免费PDF全文
Deoxyribonucleic acid (DNA) reassociation analyses were employed to determine the molecular relationships between recombinable nocardiae. Analysis of the compatibility system of Nocardia erythropolis Mat-Ce and Mat-cE mating strains demonstrated the existence of extensive homology under both exacting and nonexacting conditions. Labeled N. erythropolis Mat-cE DNA reassociated equally as well with the Mat-Ce test DNA as with its own filter-bound DNA. However, the Mat-cE DNA bound only ca. 60% of the Mat-Ce DNA, when the latter was the reference. The existence of unique nucleotide sequences is postulated on the basis of these results as well as of aberrant segregation patterns which have been observed in certain class types of recombinants. Reassociation data reveal that recombinants representing the inheritance of different portions of each of the parental genomes have inherited the unique portion from the Mat-Ce parent. N. restrictus AY-B-226 exhibited little relatedness (11 to 32%), and N. globerula ATCC 9356 only slightly more (21 to 42%), to either of these mating strains at either exacting or nonexacting temperatures of incubation.  相似文献   

14.
We have employed the Chinese hamster ovary (CHO) UV-sensitive mutant cell lines, UV5 and UV20, to determine whether ionizing and ultraviolet irradiation enhance the efficiency of DNA-mediated gene transfer in cells deficient in excision repair. Confluent AA8 (wild type), UV5, and UV20 cells were transfected (via polybrene and dimethyl sulfoxide treatments) with the recombinant DNA plasmid, pSV2-gpt, trypsinized, irradiated with either X rays or ultraviolet in suspension, and then plated into flasks. After a 48-h expression time, cells were trypsinized, counted, and plated in XMAT media to select for pSV2-gpt transformation. We report that X-ray irradiation enhances gene transfer in wild-type AA8 and in both UV-sensitive cell lines. Ultraviolet irradiation enhances gene transfer in AA8 and UV20, but not in UV5. Since both UV20 and UV5 are deficient in excision repair, we suggest that ultraviolet-enhanced gene transfer may involve a postreplication repair mechanism deficient in UV5.  相似文献   

15.
Specific ataxia telangiectasia and Rad3-related (ATR) mutations confer higher frequencies of homologous recombination. The genetic requirements for hyper-recombination in ATR mutants are unknown. MEC1, the essential yeast ATR/ATM homolog, controls S and G2 checkpoints and the DNA damage-inducibility of genes after radiation exposure. Since the mec1-D (null) mutant is defective in both S and G2 checkpoints, we measured spontaneous and DNA damage-associated sister chromatid exchange (SCE), homolog (heteroallelic) recombination, and homology-directed translocations in the mec1-21 hypomorphic mutant, which is defective in the S phase checkpoint but retains some G2 checkpoint function. We observed a sixfold, tenfold and 30-fold higher rate of spontaneous SCE, heteroallelic recombination, and translocations, respectively, in mec1-21 mutants compared to wild type. The mec1-21 hyper-recombination was partially reduced in rad9, pds1, and chk1 mutants, and abolished in rad52 mutants, suggesting the hyper-recombination results from RAD52-dependent recombination pathway(s) that require G2 checkpoint functions. The HU and UV sensitivities of mec1-21 rad9 and mec1-21 rad52 were synergistically increased, compared to the single mutants, indicating that mec1-21, rad52 and rad9 mutants are defective in independent pathways for HU and UV resistance. G2-arrested mec1-21 rad9 cells exhibit more UV resistance than non-synchronized cells, indicating that one function of RAD9 in conferring UV resistance in mec1-21 is by triggering G2 arrest. We suggest that checkpoint genes that function in the RAD9-mediated pathway are required for either homologous recombination or DNA damage resistance in the S phase checkpoint mutant mec1-21.  相似文献   

16.
We examined the relationship of cytotoxicity, mutagenesis, and malignant transformation by measuring in parallel clonogenic survival, mutation to ouabain resistance, and malignant transformation in cultured C3H mouse 10T 1/2 cells. Exposure of caffeine alone for 48 hours was cytotoxic and induced transformation in a dose-dependent manner. However, this same treatment did not induce any detectable ouabain-resistant mutants. When caffeine was present for 48 hours immediately following UV irradiation, alkaline sucrose gradient sedimentation of DNA showed that postreplication repair was inhibited. This inhibition of repair was correlated with reduced survival and inhibition of mutation induction, but the transformation frequencies were either unaltered or potentiated, depending on the UV dose and caffeine concentration. Thus, these experiments demonstrate that gene mutation and malignant transformation in 10T 1/2 cells can be dissociated. We suggest that the mechanism of transformation of 10T 1/2 cells is nonmutagenic in nature.  相似文献   

17.
The time course of the intracellular ATP concentration in several UV-irradiated RecA protease constitutive (Cptc) mutants of E. coli has been studied. All Cptc mutants harboring a mutation in region 3 of the RecA protein (including amino acid residues 298-301) increased ATP after UV damage but without any subsequent decrease. Nevertheless, these mutants induced the SOS response after UV irradiation. Likewise, truncated RecA proteins lacking region 3 are also unable to carry out massive ATP hydrolysis in UV-irradiated cells. On the other hand, mutants in region 1 (including amino acids 25-39) or 2 (amino acids 157-184) of the RecA protein showed an increase in ATP concentration during the first 20 min following UV irradiation, which dropped afterwards to the basal level. All these data indicate that region 3 of the RecA protein must be involved in the ATP hydrolysis process. Furthermore, a relationship between the quantity of the UV-mediated ATP produced and the strength of the different RecA Cptc mutants has also been found. Accordingly, both lexA71::Tn5 and null lexA mutants of E. coli only show a cellular ATP increase after UV irradiation when containing a multicopy plasmid carrying either a wild-type lexA or a lexA (Ind-) gene.  相似文献   

18.
The effect of plasmid CAM-OCT on responses to UV irradiation was compared in Pseudomonas aeruginosa, in Pseudomonas putida, and in Pseudomonas putida mutants carrying mutations in UV response genes. CAM-OCT substantially increased both survival and mutagenesis in the two species. P. aeruginosa strains without CAM-OCT exhibited much higher UV sensitivity than did P. putida strains. UV-induced mutagenesis of plasmid-free P. putida was easily detected in three different assays (two reversion assays and one forward mutation assay), whereas UV mutagenesis of P. aeruginosa without CAM-OCT was seen only in the forward mutation assay. These results suggest major differences in DNA repair between the two species and highlight the presence of error-prone repair functions on CAM-OCT. A number of P. putida mutants carrying chromosomal mutations affecting either survival or mutagenesis after UV irradiation were isolated, and the effect of CAM-OCT on these mutants was determined. All mutations producing a UV-sensitive phenotype in P. putida were fully suppressed by the plasmid, whereas the plasmid had a more variable effect on mutagenesis mutations, suppressing some and producing no suppression of others. On the basis of the results reported here and results obtained by others with plasmids carrying UV response genes, it appears that CAM-OCT may differ either in regulation or in the number and functions of UV response genes encoded.  相似文献   

19.
Summary Some evidence was obtained that genetic interaction occurs inBacillus subtilis K. A mixed inoculation of two doubly auxotrophic mutants onto approriate media yielded tiny colonies which seemed to be initiated by heterocaryons or heterozygotes. The tiny colonies contained not only a recombinant type which acquired two characters from one or another parent, but also some abnormal types having new characters which were not recognized in either parent. The phenomenon is similar to the genetic interaction found inStreptomyces.With 5 Figures in the Text  相似文献   

20.
Five among six species of microorganisms isolated from the mesosphere contained pigments which made them more resistant to the action of UV as compared to pigmentless microorganisms in the atmosphere of Earth. UV irradiation in the atmosphere is supposed to select resistant pigmented forms, so that they predominate in the mesosphere. To confirm this assumption, mutants of Aspergillus niger, Penicillium notatum and Circinella muscae were sported by irradiating them four times and then subjecting to stepwise selection. These mutants either synthesized pigments at a very low rate or did not produce them at all. No significant differences were found by studying the biomass, mycelium and sporeforming organs of the parent cultures and their mutants. However, their resistance to UV was not the same. Addition of the pigment apsergillin, isolated from the conidia of Aspergillus niger, to a suspension of the pigmentless (mutant) conidia of Penicillium notatum, the spores of Circinella muscae, and the vegetative cells of Micrococcus albus, before their irradiation with UV, considerably increased their resistance to this factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号