首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The realization that experimentally observed functional motions of proteins can be predicted by coarse-grained normal mode analysis has renewed interest in applications to structural biology. Notable applications include the prediction of biologically relevant motions of proteins and supramolecular structures driven by their structure-encoded collective dynamics; the refinement of low-resolution structures, including those determined by cryo-electron microscopy; and the identification of conserved dynamic patterns and mechanically key regions within protein families. Additionally, hybrid methods that couple atomic simulations with deformations derived from coarse-grained normal mode analysis are able to sample collective motions beyond the range of conventional molecular dynamics simulations. Such applications have provided great insight into the underlying principles linking protein structures to their dynamics and their dynamics to their functions.  相似文献   

2.
Zhang Z  Wriggers W 《Proteins》2006,64(2):391-403
Multivariate statistical methods are widely used to extract functional collective motions from macromolecular molecular dynamics (MD) simulations. In principal component analysis (PCA), a covariance matrix of positional fluctuations is diagonalized to obtain orthogonal eigenvectors and corresponding eigenvalues. The first few eigenvectors usually correspond to collective modes that approximate the functional motions in the protein. However, PCA representations are globally coherent by definition and, for a large biomolecular system, do not converge on the time scales accessible to MD. Also, the forced orthogonalization of modes leads to complex dependencies that are not necessarily consistent with the symmetry of biological macromolecules and assemblies. Here, we describe for the first time the application of local feature analysis (LFA) to construct a topographic representation of functional dynamics in terms of local features. The LFA representations are low dimensional, and like PCA provide a reduced basis set for collective motions, but they are sparsely distributed and spatially localized. This yields a more reliable assignment of essential dynamics modes across different MD time windows. Also, the intrinsic dynamics of local domains is more extensively sampled than that of globally coherent PCA modes.  相似文献   

3.
Recent functional studies reported on human adult hemoglobin (HbA) show that heterotropic effector-linked tertiary structural changes are primarily responsible for modulating the oxygen affinity of hemoglobin. We present the results of 6-ns molecular dynamics simulations performed to gain insights into the dynamical and structural details of these effector-linked tertiary changes. All-atom simulations were carried out on a series of models generated for T- and R-state HbA, and for 2,3-diphosphoglycerate-bound models. Cross-correlation analyses identify both intra- and intersubunit correlated motions that are perturbed by the presence of the effector. Principal components analysis was used to decompose the covariance matrix extracted from the simulations and reconstruct the trajectories along the principal coordinates representative of functionally important collective motions. It is found that HbA in both quaternary states exists as ensembles of tertiary conformations that introduce dynamic heterogeneity in the protein. 2,3-Diphosphoglycerate induces significant perturbations in the fluctuations of both HbA states that translate into the protein visiting different tertiary conformations within each quaternary state. The analysis reveals that the presence of the effector affects the most important components of HbA motions and that heterotropic effectors modify the overall dynamics of the quaternary equilibrium via tertiary changes occurring in regions where conserved functionally significant residues are located, namely in the loop regions between helices C and E, E and F, and F and G, and in concerted helix motions. The changes are not apparent when comparing the available x-ray crystal structures in the presence and absence of effector, but are striking when comparing the respective dynamic tertiary conformations of the R and T tetramers.  相似文献   

4.
Horseradish peroxidase C is a class III peroxidase whose structure is stabilized by the presence of two endogenous calcium atoms. Calcium removal has been shown to decrease the enzymatic activity of the enzyme and significantly affect the spectroscopically detectable properties of the heme, such as the spin state of the iron, heme normal modes, and distortions from planarity. In this work, we report on normal mode analysis (NMA) performed on models subjected to 2 ns of molecular dynamics simulations to describe the effect of calcium removal on protein collective motions and to investigate the correlation between active site (heme) and protein matrix fluctuations. We show that in the native peroxidase model, heme fluctuations are correlated to matrix fluctuations while they are not in the calcium-depleted model.  相似文献   

5.
MOTIVATION: Although information from protein dynamics simulation is important to understand principles of architecture of a protein structure and its function, simulations such as molecular dynamics and Monte Carlo are very CPU-intensive. Although the ability of normal mode analysis (NMA) is limited because of the need for a harmonic approximation on which NMA is based, NMA is adequate to carry out routine analyses on many proteins to compute aspects of the collective motions essential to protein dynamics and function. Furthermore, it is hoped that realistic animations of the protein dynamics can be observed easily without expensive software and hardware, and that the dynamic properties for various proteins can be compared with each other. RESULTS: ProMode, a database collecting NMA results on protein molecules, was constructed. The NMA calculations are performed with a full-atom model, by using dihedral angles as independent variables, faster and more efficiently than the calculations using Cartesian coordinates. In ProMode, an animation of the normal mode vibration is played with a free plug-in, Chime (MDL Information Systems, Inc.). With the full-atom model, the realistic three-dimensional motions at an atomic level are displayed with Chime. The dynamic domains and their mutual screw motions defined from the NMA results are also displayed. Properties for each normal mode vibration and their time averages, e.g. fluctuations of atom positions, fluctuations of dihedral angles and correlations between the atomic motions, are also presented graphically for characterizing the collective motions in more detail. AVAILABILITY: http://promode.socs.waseda.ac.jp  相似文献   

6.
A E García  G Hummer 《Proteins》1999,36(2):175-191
We study the dynamical fluctuations of horse heart cytochrome c by molecular dynamics (MD) simulations in aqueous solution, at four temperatures: 300 K, 360 K, 430 K, and 550 K. Each simulation covers a production time of at least 1.5 nanoseconds (ns). The conformational dynamics of the system is analyzed in terms of collective motions that involve the whole protein, and local motions that involve the formation and breaking of intramolecular hydrogen bonds. The character of the MD trajectories can be described within the framework of rugged energy landscape dynamics. The MD trajectories sample multiple conformational minima, with basins in protein conformational space being sampled for a few hundred picoseconds. The trajectories of the system in configurational space can be described in terms of diffusion of a particle in real space with a waiting time distribution due to partial trapping in shallow minima. As a consequence of the hierarchical nature of the dynamics, the mean square displacement autocorrelation function, <|x(t) - x(0)|2>, exhibits a power law dependence on time, with an exponent of around 0.5 for times shorter than 100 ps, and an exponent of 1.75 for longer times. This power law behavior indicates that the system exhibits suppressed diffusion (sub-diffusion) in sampling of configurational space at time scales shorter than 100 ps, and enhanced (super-diffusion) at longer time scales. The multi-basin feature of the trajectories is present at all temperatures simulated. Structural changes associated with inter-basin displacements correspond to collective motions of the Omega loops and coiled regions and relative motions of the alpha-helices as rigid bodies. Similar motions may be involved in experimentally observed amide hydrogen exchange. However, some groups showing large correlated motions do not expose the amino hydrogens to the solvent. We show that large fluctuations are not necessarily correlated to hydrogen exchange. For example, regions of the proteins forming alpha helices and turns show significant fluctuations, but as rigid bodies, and the hydrogen bonds involved in the formation of these structures do not break in proportion to these fluctuations. Proteins 1999;36:175-191. Published 1999 Wiley-Liss, Inc.  相似文献   

7.
8.
We are describing efficient dynamics simulation methods for the characterization of functional motion of biomolecules on the nanometer scale. Multivariate statistical methods are widely used to extract and enhance functional collective motions from molecular dynamics (MD) simulations. A dimension reduction in MD is often realized through a principal component analysis (PCA) or a singular value decomposition (SVD) of the trajectory. Normal mode analysis (NMA) is a related collective coordinate space approach, which involves the decomposition of the motion into vibration modes based on an elastic model. Using the myosin motor protein as an example we describe a hybrid technique termed amplified collective motions (ACM) that enhances sampling of conformational space through a combination of normal modes with atomic level MD. Unfortunately, the forced orthogonalization of modes in collective coordinate space leads to complex dependencies that are not necessarily consistent with the symmetry of biological macromolecules and assemblies. In many biological molecules, such as HIV-1 protease, reflective or rotational symmetries are present that are broken using standard orthogonal basis functions. We present a method to compute the plane of reflective symmetry or the axis of rotational symmetry from the trajectory frames. Moreover, we develop an SVD that best approximates the given trajectory while respecting the symmetry. Finally, we describe a local feature analysis (LFA) to construct a topographic representation of functional dynamics in terms of local features. The LFA representations are low-dimensional, and provide a reduced basis set for collective motions, but unlike global collective modes they are sparsely distributed and spatially localized. This yields a more reliable assignment of essential dynamics modes across different MD time windows.  相似文献   

9.
Lange OF  Grubmüller H 《Proteins》2006,62(4):1053-1061
Correlated motions in biomolecules are often essential for their function, e.g., allosteric signal transduction or mechanical/thermodynamic energy transport. Because correlated motions in biomolecules remain difficult to access experimentally, molecular dynamics (MD) simulations are particular useful for their analysis. The established method to quantify correlations from MD simulations via calculation of the covariance matrix, however, is restricted to linear correlations and therefore misses part of the correlations in the atomic fluctuations. Herein, we propose a general statistical mechanics approach to detect and quantify any correlated motion from MD trajectories. This generalized correlation measure is contrasted with correlations obtained from covariance matrices for the B1 domain of protein G and T4 lysozyme. The new method successfully quantifies correlations and provides a valuable global overview over the functionally relevant collective motions of lysozyme. In particular, correlated motions of helix 1 together with the two main lobes of lysozyme are detected, which are not seen by the conventional covariance matrix. Overall, the established method misses more than 50% of the correlation. This failure is attributed to both, an interfering and unnecessary dependence on mutual orientations of the atomic fluctuations and, to a lesser extent, attributed to nonlinear correlations. Our generalized correlation measure overcomes these problems and, moreover, allows for an improved understanding of the conformational dynamics by separating linear and nonlinear contributions of the correlation.  相似文献   

10.
Abstract

This study embodies a detailed comparative analysis of the essential motions of the Wild type and the eight different disease mutant forms of the Human CYPlbl. The mutations considered in this study have been implicated in Primary Congenital Glaucoma, an in-born, genetic disorder associated with eye-abnormality. The principal component analysis for Wild type and the Mutants was carried out using the stabilized molecular dynamics trajectories, which ranged from 35 to 45 nanoseconds. Investigations revealed the nature of the collective motions that characterize functionally relevant ‘essential motions’. The essential motions in Wild type are characterized by the collective motions of the Substrate Access Channel including the β-rich domain and the loops in the region of p450-reductase interaction. Comparative analysis of the essential motions of the Wild type and Mutants, especially those involving the functionally important regions indicated distinct differences in their magnitudes as well as the residue-wise distribution. The Mutants in general are associated with higher root mean square fluctuations, and involve some of the relatively intact core regions of the protein, in large collective motions. This study sheds light on the possible effects of disease causing mutations on the large functionally important collective motions in proteins.  相似文献   

11.
The influence of the protein topology-encoded dynamical properties on its thermal unfolding motions was studied in the present work. The intrinsic dynamics of protein topology was obtained by the anisotropic network model (ANM). The ANM has been largely used to investigate protein collective functional motions, but it is not well elucidated if this model can also reveal the preferred large-scale motions during protein unfolding. A small protein barnase is used as a typical case study to explore the relationship between protein topology-encoded dynamics and its unfolding motions. Three thermal unfolding simulations at 500 K were performed for barnase and the entire unfolding trajectories were sampled and partitioned into several windows. For each window, the preferred unfolding motions were investigated by essential dynamics analysis, and then associated with the intrinsic dynamical properties of the starting conformation in this window, which is detected by ANM. The results show that only a few slow normal modes imposed by protein structure are sufficient to give a significant overlap with the preferred unfolding motions. Especially, the large amplitude unfolding movements, which imply that the protein jumps out of a local energy basin, can be well described by a single or several ANM slow modes. Besides the global motions, it is also found that the local residual fluctuations encoded in protein structure are highly correlated with those in the protein unfolding process. Furthermore, we also investigated the relationship between protein intrinsic flexibility and its unfolding events. The results show that the intrinsic flexible regions tend to unfold early. Several early unfolding events can be predicted by analysis of protein structural flexibility. These results imply that protein structure-encoded dynamical properties have significant influences on protein unfolding motions.  相似文献   

12.
The dynamics of collective protein motions derived from Molecular Dynamics simulations have been studied for two small model proteins: initiation factor I and the B1 domain of Protein G. First, we compared the structural fluctuations, obtained by local harmonic approximations in different energy minima, with the ones revealed by large scale molecular dynamics (MD) simulations. It was found that a limited set of harmonic wells can be used to approximate the configurational fluctuations of these proteins, although any single harmonic approximation cannot properly describe their dynamics. Subsequently, the kinetics of the main (essential) collective protein motions were characterized. A dual-diffusion behavior was observed in which a fast type of diffusion switches to a much slower type in a typical time of about 1-3 ps. From these results, the large backbone conformational fluctuations of a protein may be considered as "hopping" between multiple harmonic wells on a basically flat free energy surface.  相似文献   

13.
Anisotropic network model (ANM) is used to analyze the collective motions of restriction enzyme EcoRI in free form and in complex with DNA. For comparison, three independent molecular dynamics (MD) simulations, each of 1.5 ns duration, are also performed for the EcoRI-DNA complex in explicit water. Although high mobility (equilibrium fluctuations) of inner and outer loops that surround the DNA is consistent in both methods and experiments, MD runs sample different conformational subspaces from which reliable collective dynamics cannot be extracted. However, ANM employed on different conformations from MD simulations indicates very similar collective motions. The stems of the inner loops are quite immobile even in the free enzyme and form a large, almost fixed, pocket for DNA binding. As a result, the residues that make specific and non-specific interactions with the DNA exhibit very low fluctuations in the free enzyme. The vibrational entropy difference between the EcoRI complex and free protein + unkinked DNA is positive (favorable), which may partially counteract the unfavorable enthalpy difference of DNA kink formation. Dynamic domains in EcoRI complex and cross-correlations between residue fluctuations indicate possible means of communication between the distal active sites.  相似文献   

14.
Understanding collective motions in protein crystals is likely to furnish insight into functional protein dynamics and will improve models for refinement against diffraction data. Here, four 10 ns molecular dynamics simulations of crystalline Staphylococcal nuclease are reported and analyzed in terms of fluctuations and correlations in atomic motion. The simulation-derived fluctuations strongly correlate with, but are slightly higher than, the values derived from the experimental B-factors. Approximately 70% of the atomic fluctuations are due to internal protein motion. For 65% of the protein atoms the internal fluctuations converge on the nanosecond timescale. Convergence is much slower for the elements of the interatomic displacement correlation matrix--of these, >80% converge within 1 ns for interatomic distances less, approximately <6 A, but only 10% for separations approximately =12 A. Those collective motions that converged on the nanosecond timescale involve mostly correlations within the beta-barrel or between alpha-helices of the protein. The R-factor with the experimental x-ray diffuse scattering for the crystal, which is determined by the displacement variance-covariance matrix, decreases to 8% after 10 ns simulation. Both the number of converged correlation matrix elements and the R-factor depend logarithmically on time, consistent with a model in which the number of energy minima sampled depends exponentially on the maximum energy barrier crossed. The logarithmic dependence is also extrapolated to predict a convergence time for the whole variance-covariance matrix of approximately 1 micros.  相似文献   

15.
The analysis of the dynamic behavior of enzymes is fundamental to structural biology. A direct relationship between protein flexibility and biological function has been shown for bovine pancreatic ribonuclease (RNase A) (Rasmussen et al., Nature 1992;357:423-424). More recently, crystallographic studies have shown that functional motions in RNase A involve the enzyme beta-sheet regions that move concertedly on substrate binding and release (Vitagliano et al., Proteins 2002;46:97-104). These motions have been shown to correspond to intrinsic dynamic properties of the native enzyme by molecular dynamics (MD) simulations. To unveil the occurrence of these collective motions in other members of pancreatic-like superfamily, we carried out MD simulations on human angiogenin (Ang). Essential dynamics (ED) analyses performed on the trajectories reveal that Ang exhibits collective motions similar to RNase A, despite the limited sequence identity (33%) of the two proteins. Furthermore, we show that these collective motions are also present in ensembles of experimentally determined structures of both Ang and RNase A. Finally, these subtle concerted beta-sheet motions were also observed for other two members of the pancreatic-like superfamily by comparing the ligand-bound and ligand-free structures of these enzymes. Taken together, these findings suggest that pancreatic-like ribonucleases share an evolutionary conserved dynamic behavior consisting of subtle beta-sheet motions, which are essential for substrate binding and release.  相似文献   

16.
It is well recognized that knowledge of structure alone is not sufficient to understand the fundamental mechanism of biomolecular recognition. Information of dynamics is necessary to describe motions involving relevant conformational states of functional importance. We carried out principal component analysis (PCA) of structural ensemble, derived from 84 crystal structures of human serum albumin (HSA) with different ligands and/or different conditions, to identify the functionally important collective motions, and compared with the motions along the low-frequency modes obtained from normal mode analysis of the elastic network model (ENM) of unliganded HSA. Significant overlap is observed in the collective motions derived from PCA and ENM. PCA and ENM analysis revealed that ligand selects the most favored conformation from accessible equilibrium structures of unliganded HSA. Further, we analyzed dynamic network obtained from molecular dynamics simulations of unliganded HSA and fatty acids- bound HSA. Our results show that fatty acids-bound HSA has more robust community network with several routes to communicate among different parts of the protein. Critical nodes (residues) identified from dynamic network analysis are in good agreement with allosteric residues obtained from sequence-based statistical coupling analysis method. This work underscores the importance of intrinsic structural dynamics of proteins in ligand recognition and can be utilized for the development of novel drugs with optimum activity.  相似文献   

17.
Hinsen K  Kneller GR 《Proteins》2008,70(4):1235-1242
The influence of solvent on the slow internal dynamics of proteins is studied by comparing molecular dynamics simulations of solvated and unsolvated lysozyme. The dynamical trajectories are projected onto the protein's normal modes in order to obtain a separate analysis for each of the associated time scales. The results show that solvent effects are important for the slowest motions (below approximately 1 ps(-1)) but negligible for faster motions. The damping effects seen in the latter show that the principal source of friction in protein dynamics is not the solvent, but the protein itself.  相似文献   

18.
The effect of temperature on the activation of native fluctuation motions during molecular dynamics unfolding simulations of horse heart cytochrome c has been studied. Essential dynamics analysis has been used to analyze the preferred directions of motion along the unfolding trajectories obtained by high temperature simulations. The results of this study have evidenced a clear correlation between the directions of the deformation motions that occur in the first stage of the unfolding process and few specific essential motions characterizing the 300 K dynamics of the protein. In particular, one of those collective motions, involved in the fluctuation of a loop region, is specifically excited in the thermal denaturation process, becoming progressively dominant during the first 500 ps of the unfolding simulations. As further evidence, the essential dynamics sampling performed along this collective motion has shown a tendency of the protein to promptly unfold. According to these results, the mechanism of thermal induced denaturation process involves the selective excitation of one or few specific equilibrium collective motions.  相似文献   

19.
We elucidate the physics of protein dynamical transition via 10-100-ns molecular dynamics simulations at temperatures spanning 160-300 K. By tracking the energy fluctuations, we show that the protein dynamical transition is marked by a crossover from nonstationary to stationary processes that underlie the dynamics of protein motions. A two-timescale function captures the nonexponential character of backbone structural relaxations. One timescale is attributed to the collective segmental motions and the other to local relaxations. The former is well defined by a single-exponential, nanosecond decay, operative at all temperatures. The latter is described by a set of processes that display a distribution of timescales. Although their average remains on the picosecond timescale, the distribution is markedly contracted at the onset of the transition. It is shown that the collective motions impose bounds on timescales spanned by local dynamical processes. The nonstationary character below the transition implicates the presence of a collection of substates whose interactions are restricted. At these temperatures, a wide distribution of local-motion timescales, extending beyond that of nanoseconds, is observed. At physiological temperatures, local motions are confined to timescales faster than nanoseconds. This relatively narrow window makes possible the appearance of multiple channels for the backbone dynamics to operate.  相似文献   

20.
Zhang Z  Shi Y  Liu H 《Biophysical journal》2003,84(6):3583-3593
We present a novel method that uses the collective modes obtained with a coarse-grained model/anisotropic network model to guide the atomic-level simulations. Based on this model, local collective modes can be calculated according to a single configuration in the conformational space of the protein. In the molecular dynamics simulations, the motions along the slowest few modes are coupled to a higher temperature by the weak coupling method to amplify the collective motions. This amplified-collective-motion (ACM) method is applied to two test systems. One is an S-peptide analog. We realized the refolding of the denatured peptide in eight simulations out of 10 using the method. The other system is bacteriophage T4 lysozyme. Much more extensive domain motions between the N-terminal and C-terminal domain of T4 lysozyme are observed in the ACM simulation compared to a conventional simulation. The ACM method allows for extensive sampling in conformational space while still restricting the sampled configurations within low energy areas. The method can be applied in both explicit and implicit solvent simulations, and may be further applied to important biological problems, such as long timescale functional motions, protein folding/unfolding, and structure prediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号