首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myosin phosphatase target subunit 1 (MYPT1), together with catalytic subunit of type1 δ isoform (PP1cδ) and a small 20-kDa regulatory unit (M20), form a heterotrimeric holoenzyme, myosin phosphatase (MP), which is responsible for regulating the extent of myosin light chain phosphorylation. Here we report the identification and characterization of a molecular interaction between Seven in absentia homolog 2 (SIAH2) and MYPT1 that resulted in the proteasomal degradation of the latter in mammalian cells, including neurons and glia. The interaction involved the substrate binding domain of SIAH2 (aa 116-324) and a central region of MYPT1 (aa 445-632) containing a degenerate consensus Siah-binding motif RLAYVAP (aa 493-499) evolutionally conserved from fish to humans. These findings suggest a novel mechanism whereby the ability of MP to modulate myosin light chain might be regulated by the degradation of its targeting subunit MYPT1 through the SIAH2-ubiquitin-proteasomal pathway. In this manner, the turnover of MYPT1 would serve to limit the duration and/or magnitude of MP activity required to achieve a desired physiological effect.  相似文献   

2.
It is clear from several studies that myosin phosphatase (MP) can be inhibited via a pathway that involves RhoA. However, the mechanism of inhibition is not established. These studies were carried out to test the hypothesis that Rho-kinase (Rho-associated kinase) via phosphorylation of the myosin phosphatase target subunit 1 (MYPT1) inhibited MP activity and to identify relevant sites of phosphorylation. Phosphorylation by Rho-kinase inhibited MP activity and this reflected a decrease in V(max). Activity of MP with different substrates also was inhibited by phosphorylation. Two major sites of phosphorylation on MYPT1 were Thr(695) and Thr(850). Various point mutations were designed for these phosphorylation sites. Following thiophosphorylation by Rho-kinase and assays of phosphatase activity it was determined that Thr(695) was responsible for inhibition. A site- and phosphorylation-specific antibody was developed for the sequence flanking Thr(695) and this recognized only phosphorylated Thr(695) in both native and recombinant MYPT1. Using this antibody it was shown that stimulation of serum-starved Swiss 3T3 cells by lysophosphatidic acid, thought to activate RhoA pathways, induced an increase in Thr(695) phosphorylation on MYPT1 and this effect was blocked by a Rho-kinase inhibitor, Y-27632. In summary, these results offer strong support for a physiological role of Rho-kinase in regulation of MP activity.  相似文献   

3.
Myosin phosphatase target subunit: Many roles in cell function   总被引:1,自引:0,他引:1  
Phosphorylation of myosin II is important in many aspects of cell function and involves a myosin kinase, e.g. myosin light chain kinase, and a myosin phosphatase (MP). MP is regulated by the myosin phosphatase target subunit (MYPT1). The domain structure, properties, and genetic analyses of MYPT1 and its isoforms are outlined. MYPT1 binds the catalytic subunit of type 1 phosphatase, delta isoform, and also acts as an interactive platform for many other proteins. A key reaction for MP is with phosphorylated myosin II and the first process shown to be regulated by MP was contractile activity of smooth muscle. In cell division and cell migration myosin II phosphorylation also plays a critical role and these are discussed. However, based on the wide range of partners for MYPT1 it is likely that MP is implicated with substrates other than myosin II. Open questions are whether the diverse functions of MP reflect different cellular locations and/or specific roles for the MYPT1 isoforms.  相似文献   

4.
Myosin phosphatase (MP) holoenzyme is a Ser/Thr specific enzyme, which is the member of protein phosphatase type 1 (PP1) family and composed of a PP1 catalytic subunit (PP1c/PPP1CB) and a myosin phosphatase targeting subunit (MYPT1/PPP1R12A). PP1c is required for the catalytic activity of the holoenzyme, while MYPT1 regulates MP through targeting the holoenzyme to its substrates. Above the well-characterized function of MP, as the major regulator of smooth muscle contractility mediating the dephosphorylation of 20 kDa myosin light chain, accumulating data support its role in other, non-contractile functions. In this review, we summarize the scaffold function of MP holoenzyme and its roles in processes such as cell cycle, development, gene expression regulation and neurotransmitter release. In particular, we highlight novel interacting proteins of MYPT1 and pathophysiological functions of MP relevant to tumorigenesis, insulin resistance and neurodegenerative disorders.This article is part of a Special Issue entitled: Protein Phosphatases as Critical Regulators for Cellular Homeostasis edited by Prof. Peter Ruvolo and Dr. Veerle Janssens.  相似文献   

5.
Characterization of cardiac MYPT2 (an isoform of the smooth muscle phosphatase [MP] target subunit, MYPT1) is described. Several features of MYPT2 and MYPT1 were similar, including: a specific interaction with the catalytic subunit of type 1 phosphatase, delta isoform (PP1cdelta); interaction of MYPT2 with the small heart-specific MP subunit; interaction of the C-terminal region of MYPT2 with the active form of RhoA; phosphorylation by Rho-kinase at an inhibitory site, Thr646 and thiophosphorylation at Thr646 inhibited activity of the MYPT2-PP1cdelta complex. MYPT2 activated PP1cdelta activity, using light chains from smooth and cardiac muscle, by reducing K(m) and increasing k(cat). The extent of activation (k(cat)) was greater than for MYPT1 and could reflect distinct N-terminal sequences in the two MYPT isoforms. Adenovirus-mediated gene transfer of MYPT2 and PP1cdelta reduced the phosphorylation level of cardiac light chains following stimulation with A23187. Overexpression of MYPT2 and PP1cdelta blocked the angiotensin II-induced sarcomere organization in cultured cardiomyocytes. Electron microscopy indicated locations of MYPTs, at, or close to, the Z-line, the A band and mitochondria. Similarity of the two MYPT isoforms suggests common enzymatic mechanisms and regulation. Cardiac myosin is a substrate for the MYPT2 holoenzyme, but the Z-line location raises the possibility of other substrates.  相似文献   

6.
Phosphorylation of myosin II plays an important role in many cell functions, including smooth muscle contraction. The level of myosin II phosphorylation is determined by activities of myosin light chain kinase and myosin phosphatase (MP). MP is composed of 3 subunits: a catalytic subunit of type 1 phosphatase, PPlc; a targeting subunit, termed myosin phosphatase target subunit, MYPT; and a smaller subunit, M20, of unknown function. Most of the properties of MP are due to MYPT and include binding of PP1c and substrate. Other interactions are discussed. A recent discovery is the existence of an MYPT family and members include, MYPT1, MYPT2, MBS85, MYPT3 and TIMAP. Characteristics of each are outlined. An important discovery was that the activity of MP could be regulated and both activation and inhibition were reported. Activation occurs in response to elevated cyclic nucleotide levels and various mechanisms are presented. Inhibition of MP is a major component of Ca2+-sensitization in smooth muscle and various molecular mechanisms are discussed. Two mechanisms are cited frequently: (1) Phosphorylation of an inhibitory site on MYPT1, Thr696 (human isoform) and resulting inhibition of PP1c activity. Several kinases can phosphorylate Thr696, including Rho-kinase that serves an important role in smooth muscle function; and (2) Inhibition of MP by the protein kinase C-potentiated inhibitor protein of 17 kDa (CPI-17). Examples where these mechanisms are implicated in smooth muscle function are presented. The critical role of RhoA/Rho-kinase signaling in various systems is discussed, in particular those vascular smooth muscle disorders involving hypercontractility.  相似文献   

7.
Reversible phosphorylation of the retinoblastoma protein (pRb) is an important regulatory mechanism in cell cycle progression. The role of protein phosphatases is less understood in this process, especially concerning the regulatory/targeting subunits involved. It is shown that pretreatment of THP-1 leukemic cells with calyculin-A (CL-A), a cell-permeable phosphatase inhibitor, attenuated daunorubicin (DNR)-induced cell death and resulted in increased pRb phosphorylation and protection against proteolytic degradation. Protein phosphatase-1 catalytic subunits (PP1c) dephosphorylated the phosphorylated C-terminal fragment of pRb (pRb-C) slightly, whereas when PP1c was complexed to myosin phosphatase target subunit-1 (MYPT1) in myosin phosphatase (MP) holoenzyme dephosphorylation was stimulated. The pRb-C phosphatase activity of MP was partially inhibited by anti-MYPT1(1-296) implicating MYPT1 in targeting PP1c to pRb. MYPT1 became phosphorylated on both inhibitory sites (Thr695 and Thr850) upon CL-A treatment of THP-1 cells resulting in the inhibition of MP activity. MYPT1 and pRb coprecipitated from cell lysates by immunoprecipitation with either anti-MYPT1 or anti-pRb antibodies implying that pRb-MYPT1 interaction occurred at cellular levels. Surface plasmon resonance-based experiments confirmed binding of pRb-C to both PP1c and MYPT1. In control and DNR-treated cells, MYPT1 and pRb were predominantly localized in the nucleus exhibiting partial colocalization as revealed by immunofluorescence using confocal microscopy. Upon CL-A treatment, nucleo-cytoplasmic shuttling of both MYPT1 and pRb, but not PP1c, was observed. The above data imply that MP, with the targeting role of MYPT1, may regulate the phosphorylation level of pRb, thereby it may be involved in the control of cell cycle progression and in the mediation of chemoresistance of leukemic cells.  相似文献   

8.
Myosin phosphatase (MP) is a key regulator of myosin light chain (LC20) phosphorylation, a process essential for motility, apoptosis, and smooth muscle contractility. Although MP inhibition is well studied, little is known about MP activation. We have recently demonstrated that prostate apoptosis response (Par)-4 modulates vascular smooth muscle contractility. Here, we test the hypothesis that Par-4 regulates MP activity directly. We show, by proximity ligation assays, surface plasmon resonance and coimmunoprecipitation, that Par-4 interacts with the targeting subunit of MP, MYPT1. Binding is mediated by the leucine zippers of MYPT1 and Par-4 and reduced by Par-4 phosphorylation. Overexpression of Par-4 leads to increased phosphatase activity of immunoprecipitated MP, whereas small interfering RNA knockdown of endogenous Par-4 significantly decreases MP activity and increases MYPT1 phosphorylation. LC20 phosphorylation assays demonstrate that overexpression of Par-4 reduces LC20 phosphorylation. In contrast, a phosphorylation site mutant, but not wild-type Par-4, interferes with zipper-interacting protein kinase (ZIPK)-mediated MP inhibition. We conclude from our results Par-4 operates through a “padlock” model in which binding of Par-4 to MYPT1 activates MP by blocking access to the inhibitory phosphorylation sites, and inhibitory phosphorylation of MYPT1 by ZIPK requires “unlocking” of Par-4 by phosphorylation and displacement of Par-4 from the MP complex.  相似文献   

9.
Cyclic GMP-dependent protein kinase (PKG) phosphorylated, in vitro, the large (MYPT1) and small (M20) regulatory subunits of myosin phosphatase (MP) with maximum stoichiometries of 1.8 and 0.6 mol of phosphate/mol subunit, respectively. The phosphorylation of these subunits by PKG did not affect the phosphatase activity towards the 20 kDa myosin light chain. However, phosphorylation of the MP holoenzyme decreased the binding of MP to phospholipid. The phosphorylation of the serine residue of the C-terminal part of MYPT1 was crucial for these interactions. These results suggest that the phosphorylation of MP by PKG is not a direct mechanism in activating MP activity, and that other indirect mechanisms, including the interaction between MP and phospholipids, might be candidates for Ca2+ desensitization via cGMP in smooth muscle.  相似文献   

10.
Myosin II association with actin, which triggers contraction, is regulated by orchestrated waves of phosphorylation/dephosphorylation of the myosin regulatory light chain. Blocking myosin regulatory light chain phosphorylation with small molecule inhibitors alters the shape, adhesion, and migration of many types of smooth muscle and cancer cells. Dephosphorylation is mediated by myosin phosphatase (MP), a complex that consists of a catalytic subunit (protein phosphatase 1c, PP1c), a large subunit (myosin phosphatase targeting subunit, MYPT), and a small subunit of unknown function. MYPT functions by targeting PP1c onto its substrate, phosphorylated myosin II. Using RNA interference, we show here that stability of PP1c β and MYPT1 is interdependent; knocking down one of the subunits decreases the expression level of the other. Associated changes in cell shape also occur, characterized by flattening and spreading accompanied by increased cortical actin, and cell numbers decrease secondary to apoptosis. Of the three highly conserved isoforms of PP1c, we show that MYPT1 binding is restricted to PP1c β, and, using chimeric analysis and site-directed mutations, that the central region of PP1c β confers the isoform-specific binding. This finding was unexpected because the MP crystal structure has been solved and was reported to identify the variable, C-terminal domain of PP1c β as being the region key for isoform-specific interaction with MYPT1. These findings suggest a potential screening strategy for cardiovascular and cancer therapeutic agents based on destabilizing MP complex formation and function.  相似文献   

11.
Dramatic and vascular bed-specific hemodynamic changes occur in pregnancy and hypertension of pregnancy (HtP). Because myosin phosphatase (MP) is the primary effector of smooth muscle relaxation and a key target of signaling pathways that regulate vascular tone, we hypothesized that MP expression would be altered in these conditions. The abundance of the targeting/regulatory subunit of MP (MYPT1) mRNA and protein was increased 1.7- to 2.0-fold specifically in the uterine arteries (UAs) of late-pregnant rats without isoform switching. In a model of HtP in which nitric oxide (NO) synthesis is blocked by the chronic administration of N(omega)-nitro-L-arginine methyl ester, MYPT1 was downregulated and switched to the splice variant isoform that codes for the COOH-terminal leucine zipper motif. This was associated with increased sensitivity of the main UA and its subbranches to the vasorelaxant effects of the NO donor drug sodium nitroprusside. This difference was abolished by pretreatment with the phosphatase inhibitor tautomycetin. The sensitivity of relaxation to the NO second messenger cGMP was also increased under calcium-clamp conditions in permeabilized UAs, indicating heightened activation of MP. The changes in MP expression in HtP were largely prevented by treatment with the antihypertensive medicine hydralazine. We propose that MYPT1 isoform switching is an adaptive response to reduce vascular resistance and maintain uterine blood flow in the setting of hypertension-triggered inward remodeling of the UAs in hypertension of pregnancy.  相似文献   

12.
Myosin light chain phosphatase with its regulatory subunit, myosin phosphatase target subunit 1 (MYPT1) modulates Ca2+-dependent phosphorylation of myosin light chain by myosin light chain kinase, which is essential for smooth muscle contraction. The role of MYPT1 in vascular smooth muscle was investigated in adult MYPT1 smooth muscle specific knock-out mice. MYPT1 deletion enhanced phosphorylation of myosin regulatory light chain and contractile force in isolated mesenteric arteries treated with KCl and various vascular agonists. The contractile responses of arteries from knock-out mice to norepinephrine were inhibited by Rho-associated kinase (ROCK) and protein kinase C inhibitors and were associated with inhibition of phosphorylation of the myosin light chain phosphatase inhibitor CPI-17. Additionally, stimulation of the NO/cGMP/protein kinase G (PKG) signaling pathway still resulted in relaxation of MYPT1-deficient mesenteric arteries, indicating phosphorylation of MYPT1 by PKG is not a major contributor to the relaxation response. Thus, MYPT1 enhances myosin light chain phosphatase activity sufficient for blood pressure maintenance. Rho-associated kinase phosphorylation of CPI-17 plays a significant role in enhancing vascular contractile responses, whereas phosphorylation of MYPT1 in the NO/cGMP/PKG signaling module is not necessary for relaxation.  相似文献   

13.
It was determined that the myosin phosphatase (MP) activity and content of myosin phosphatase target subunit 1 (MYPT1) were correlated in subcellular fractions of human hepatocarcinoma (HepG2) cells. In control cells MYPT1 was localized in the cytoplasm and in the nucleus, as determined by confocal microscopy. Treatment of HepG2 cells with 50 nM okadaic acid (OA), a cell-permeable phosphatase inhibitor, induced several changes: 1) a marked redistribution of MYPT1 to the plasma membrane associated with an increased level of phosphorylation of MYPT1 at Thr695. Both effects showed only a slight influence with the Rho-kinase inhibitor, Y-27632; 2) an increase in phosphorylation of MYPT1 at Thr850 associated with its accumulation in the perinuclear region and nucleus. These effects were markedly reduced by Y-27632; 3) an increased phosphorylation of the 20 kDa myosin II light chain at Ser19 associated with an increased location of myosin II at the cell center. These effects were partially counteracted by Y-27632; 4) an increase in stress fiber formation and a decrease in cell migration, both OA-induced effects were blocked by Y-27632. In HepG2 lysates, OA (5-100 nM) did not affect MP activity but inhibited PP2A activity. These results indicate that OA induces differential phosphorylation and translocation of MYPT1, dependent on PP2A and, to varying extents, on ROK. These changes are associated with an increased level of myosin II phosphorylation and attenuation of hepatic cell migration.  相似文献   

14.
Wound healing is a complex sequence of cellular and molecular processes such as inflammation, cell migration, proliferation and differentiation. ROCK is a widely investigated Ser/Thr kinase with important roles in rearranging the actomyosin cytoskeleton. ROCK inhibitors have already been approved to improve corneal endothelial wound healing. The purpose of this study was to investigate the functions of myosin phosphatase (MP or PPP1CB), a type-1 phospho-Ser/Thr-specific protein phosphatase (PP1), one of the counter enzymes of ROCK, in skin homeostasis and wound healing. To confirm our hypotheses, we applied tautomycin (TM), a selective PP1 inhibitor, on murine skin that caused the arrest of wound closure. TM suppressed scratch closure of HaCaT human keratinocytes without having influence on the survival of the cells. Silencing of, the regulatory subunit of MP (MYPT1 or PPP1R12A), had a negative impact on the migration of keratinocytes and it influenced the cell-cell adhesion properties by decreasing the impedance of HaCaT cells. We assume that MP differentially activates migration and differentiation of keratinocytes and plays a key role in the downregulation of transglutaminase-1 in lower layers of skin where no differentiation is required. MAPK Proteome Profiler analysis on human ex vivo biopsies with MYPT1-silencing indicated that MP contributes to the mediation of wound healing by regulating the Akt signaling pathway. Our findings suggest that MP plays a role in the maintenance of normal homeostasis of skin and the process of wound healing.  相似文献   

15.
TNFα has multiple important cellular functions both in normal cells and in tumor cells. To explore the role of TNFα, we identified NUAK family, SNF1-like kinase 2 (NUAK2), as a TNFα-induced kinase by gene chip analysis. NUAK2 is known to be induced by various cellular stresses and involved in cell mortality, however, its substrate has never been identified. We developed original protocol of de novo screening for kinase substrates using an in vitro kinase assay and high performance liquid chromatography (HPLC). Using this procedure, we identified myosin phosphatase target subunit 1 (MYPT1) as a specific substrate for NUAK2. MYPT1 was phosphorylated at another site(s) by NUAK2, other than known Rho-kinase phosphorylation sites (Thr696 or Thr853) responsible for inhibition of myosin phosphatase activity. These data suggests different phosphorylation and regulation of MYPT1 activity by NUAK2.  相似文献   

16.
In the mitotic exit network of budding yeast, Dbf2 kinase phosphorylates and regulates Cdc14 phosphatase. In contrast, no phosphatase substrates of LATS1/WARTS kinase, the mammalian equivalent of Dbf2, has been reported. To address this discrepancy, we performed phosphoproteomic screening using LATS1 kinase. Screening identified MYPT1 (myosin phosphatase-targeting subunit 1) as a new substrate for LATS1. LATS1 directly and preferentially phosphorylated serine 445 (S445) of MYPT1. An MYPT1 mutant (S445A) failed to dephosphorylate Thr 210 of PLK1 (pololike kinase 1), thereby activating PLK1. This suggests that LATS1 promotes MYPT1 to antagonize PLK1 activity. Consistent with this, LATS1-depleted HeLa cells or fibroblasts from LATS1 knockout mice showed increased PLK1 activity. We also found deoxyribonucleic acid (DNA) damage-induced LATS1 activation caused PLK1 suppression via the phosphorylation of MYPT1 S445. Furthermore, LATS1 knockdown cells showed reduced G2 checkpoint arrest after DNA damage. These results indicate that LATS1 phosphorylates a phosphatase as does the yeast Dbf2 and demonstrate a novel role of LATS1 in controlling PLK1 at the G2 DNA damage checkpoint.  相似文献   

17.
Sirtuin 1 (SIRT1) is an NAD-dependent histone deacetylase (HDAC) whose activity is thought to forestall the onset of a variety of age-related diseases. Mice carrying null mutations of the Sirt1 gene suffer high rates of neonatal lethality and those that survive are sterile, growth retarded, lean and their livers express high levels of insulin-like growth factor binding protein-1 (IGFBP1). IGFBP1 binds and regulates the bioavailability of Igfs. Interestingly, Igfbp1 transgenic mice largely phenocopy Sirt1−/− mice, suggesting the possibility that the over-expression of IGFBP1 in Sirt1−/− mice might be responsible for many of their phenotypes. We interbred Sirt1 heterozygote mice to Igfbp1-deficient mice to test the hypothesis that the disruption of one or both alleles of Igfbp1 would rescue the phenotype of Sirt1−/− mice. We report that mono- or bi-allelic disruption of the Igfbp1 gene had no effect on the embryonic and neonatal lethality of Sirt1−/− mice. However, we show that mice lacking at least one allele of both Sirt1 and Igfbp1 genes have a much higher incidence of malocclusion.  相似文献   

18.
19.
黏蛋白1(MUC1)属黏蛋白家族成员,分布于上皮细胞膜表面,由于在免疫炎症反应以及肿瘤发生中的重要作用而日益受到重视.为了进一步深入研究MUC1的生物学功能,构建了Muc1基因敲除小鼠模型.首先,根据小鼠Muc1基因组序列设计基因剔除策略,将2个loxP位点分别插在外显子2和3两侧,构建基因剔除载体Muc1-ABRLFn-pBR322.以电穿孔方法将载体导入胚胎干细胞(ES细胞),用G418和更昔洛韦进行正负筛选获得4个同源重组的ES细胞克隆.挑选其中一个阳性ES克隆行囊胚显微注射,获得16只嵌合率大于50%的雄鼠;其次,利用嵌合雄鼠与C57BL/6J野生型雌鼠交配后获得11只floxP杂合子小鼠(10雄1雌),通过杂合子小鼠回交,并进一步与EⅡa-Cre小鼠交配,最终成功得到Muc1全身敲除小鼠,其中纯合子小鼠未出现胚胎致死现象.初步表型观察未发现Muc1基因敲除相关器官组织结构的异常改变.本研究为MUC1的生物学功能的挖掘,尤其是MUC1在肿瘤发生转移中的作用机制的揭示提供了实验平台.  相似文献   

20.
Mice lacking the stress-signaling kinase SEK1 die from embryonic day 10.5 (E10.5) to E12.5. Although a defect in liver formation is accompanied with the embryonic lethality of sek1(-/-) mice, the mechanism of the liver defect has remained unknown. In the present study, we first produced a monoclonal antibody specifically recognizing murine hepatoblasts for the analysis of liver development and further investigated genetic interaction ofsek1 with tumor necrosis factor-alpha receptor 1 gene (tnfr1) and protooncogene c-jun, which are also responsible for liver formation and cell apoptosis. The defective liver formation in sek1(-/-) embryos was not protected by additionaltnfr1 mutation, which rescues the embryonic lethality of mice lacking NF-kappaB signaling components. There was a progressive increase in the hepatoblast cell numbers of wild-type embryos from E10.5 to E12.5. Instead, impaired hepatoblast proliferation was observed in sek1(-/-) livers from E10.5, though fetal liver-specific gene expression was normal. The impaired phenotype in sek1(-/-) livers was more severe than in c-jun(-/-) embryos, and sek1(-/-) c-jun(-/-) embryos died more rapidly before E8.5. The hepatoblast proliferation required no hematopoiesis, since liver development was not impaired in AML1(-/-) mice that lack hematopoietic functions. Stimulation of stress-activated protein kinase/c-Jun N-terminal kinase by hepatocyte growth factor was attenuated in sek1(-/-) livers. Thus, SEK1 appears to play a crucial role in hepatoblast proliferation and survival in a manner apparently different from NF-kappaB or c-Jun.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号