首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To improve the low water-solubility of HIV protease inhibitors, we synthesized water-soluble prodrugs of KNI-272 and KNI-279 which are potent HIV-1 protease inhibitors consisting of an Apns–Thz core structure (Apns; allophenylnorstatine, Thz; thiazolidine-4-carboxylic acid) as an inhibitory machinery. The prodrugs, which contained an O-acyl peptidomimetic structure with an ionized amino group leading to the increase of water-solubility, were designed to regenerate the corresponding parent drugs based on the ON intramolecular acyl migration reaction at the -hydroxy-β-amino acid residue, that is allophenylnorstatine. The synthetic prodrugs 3, 4, 6, and 7 improved the water-solubility (>300 mg/mL) more than 4000-fold in comparison with the parent compounds, which is the practically acceptable value as water-soluble drugs. These prodrugs were stable as an HCl salt and in a strongly acidic solution corresponding to gastric juice (pH 2.0), and could be converted to the parent compounds promptly in the aqueous condition from slightly acidic to basic pH at 37 °C, with the suitable migration rate, via a five-membered ring intermediate. Using a similar method, we synthesized a prodrug (12) of ritonavir, a clinically useful HIV-1 protease inhibitor as an anti-AIDS drug. In contrast to the prodrugs 3, 4, 6, and 7, the prodrug 12 was very slowly converted to ritonavir probably through a six-membered ring intermediate, with the t1/2 value of 32 h that may not be suitable for practical use.  相似文献   

2.
To improve the low water-solubility of HIV protease inhibitors, we synthesized water-soluble prodrugs of KNI-727, a potent small-sized dipeptide-type HIV-1 protease inhibitor consisting of an Apns-Dmt core (Apns; allophenylnorstatine, Dmt; (R)-5,5-dimethyl-1,3-thiazolidine-4-carboxylic acid) as inhibitory machinery. These prodrugs contained an O-acyl peptidomimetic structure with an ionized amino group leading to an increase in water-solubility, and were designed to regenerate the corresponding parent drugs based on the O-->N intramolecular acyl migration reaction via a five-membered ring intermediate at the alpha-hydroxy-beta-amino acid residue, that is Apns. The synthetic prodrug 3a improved the water-solubility (13 mg/mL) more than 8000-fold in comparison with the parent compound, which is the practically acceptable value as water-soluble drug. Furthermore, to understand the structural effects of the O-acyl moiety on the migration rate, we evaluated several phenylacetyl-type and benzoyl-type prodrugs. These prodrugs were stable as an HCl salt and in a strongly acidic solution corresponding to gastric juice (pH 2.0), and could be converted to the parent compounds promptly under aqueous conditions from slightly acidic to basic pH at 37 degrees C.  相似文献   

3.
We have developed a new approach to prodrugs, which utilizes a pH-induced intramolecular O-->N migration of an acyloxy group in carbonate moiety to a free amino moiety at neutral pH. This method is exemplified by facile rearrangement of highly water-soluble prodrug 3 to carbamate 4, a close analogue of HIV-1 protease inhibitor Amprenavir. The O-->N acyloxy migration is unprecedented in the context of prodrugs and it enables a high atom economy due to recycling of the 'pro' moiety.  相似文献   

4.
We synthesized a highly water-soluble canadensol prodrug 6 that formed canadensol 3 by a simple pH-dependent chemical mechanism via the O–N intramolecular acyl migration of the isobutyryl group. This prodrug, a 2′-O-isobutyryl isoform of 3, has no additional functional auxiliaries released during the conversion to 3. This is a significant advantage in toxicology and medical economics, since the potential side effects of reported water-soluble auxiliaries and the use of detergent for solubilization can be avoided. The solubility of 6 was 2.26 mg mL−1 and only the parent drug 3 was released under physiological conditions (pH=7.4) while, in acidic medium, the release of 3 slowed until migration was completely obstructed at pH=2. In further consideration of this strategy, we elucidated the use of an ‘O–N acyl-like’ migration reaction of the Boc group in the design of a docetaxel prodrug. Both O–N migration and undesired hydrolysis of the Boc group occurred under physiological conditions, although no oxazolidinone formation was observed, suggesting the limitation of our water-soluble prodrug strategy to docetaxel.  相似文献   

5.
We designed and synthesized a series of highly water-soluble prodrugs of an HIV protease inhibitor, KNI-727 (1), containing tandem-linked two auxiliary units, a solubilizing moiety and a self-cleavable spacer. Prodrugs with an ionized amino group at the solubilizing moiety exhibited a remarkable increase of water-solubility (>10(4) fold) compared to the parent drug 1. These prodrugs released I not enzymatically, but chemically via an intramolecular cyclization-elimination reaction through an imide formation in physiological conditions. Diversified rates of parent drug release were observed when the chemical structure of both the solubilizing and the spacer moieties were modified. This new approach for water-soluble prodrugs will enable to control chemically the release of parent drug as well as to maintain high water-solubility.  相似文献   

6.
Because the human immunodeficiency virus type 1 protease (HIV-1-PR) is an essential enzyme in the viral life cycle, its inhibition can control AIDS. The folding of single-domain proteins, like each of the monomers forming the HIV-1-PR homodimer, is controlled by local elementary structures (LES, folding units stabilized by strongly interacting, highly conserved, as a rule hydrophobic, amino acids). These LES have evolved over myriad generations to recognize and strongly attract each other, so as to make the protein fold fast and be stable in its native conformation. Consequently, peptides displaying a sequence identical to those segments of the monomers associated with LES are expected to act as competitive inhibitors and thus destabilize the native structure of the enzyme. These inhibitors are unlikely to lead to escape mutants as they bind to the protease monomers through highly conserved amino acids, which play an essential role in the folding process. The properties of one of the most promising inhibitors of the folding of the HIV-1-PR monomers found among these peptides are demonstrated with the help of spectrophotometric assays and circular dichroism spectroscopy.  相似文献   

7.
A novel way to inhibit HIV-1 protease by destabilizing its native state is discussed. A simplified protein model is used together with Monte Carlo simulations, to assess the destabilizing effect of peptides displaying the same sequence as specific fragments of the protein which are essential for its stability. Model calculations also show that it is unlikely that the protein can escape the inhibitory peptide by point mutations.  相似文献   

8.
The introduction of human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs) markedly improved the clinical outcome and control of HIV-1 infection. However, cross-resistance among PIs due to a wide spectrum of mutations in viral protease is a major factor limiting their broader clinical use. Here we report on the suppression of PI resistance using a covalent attachment of a phosphonic acid motif to a peptidomimetic inhibitor scaffold. The resulting phosphonate analogs maintain high binding affinity to HIV-1 protease, potent antiretroviral activity, and unlike the parent molecules, display no loss of potency against a panel of clinically important PI-resistant HIV-1 strains. As shown by crystallographic analysis, the phosphonate moiety is highly exposed to solvent with no discernable interactions with any of the enzyme active site or surface residues. We term this effect "solvent anchoring" and demonstrate that it is driven by a favorable change in the inhibitor binding entropy upon the interaction with mutant enzymes. This type of thermodynamic behavior, which was not found with the parent scaffold fully buried in the enzyme active site, is a result of the increased degeneracy of inhibitor binding states, allowing effective molecular adaptation to the expanded cavity volume of mutant proteases. This strategy, which is applicable to various PI scaffolds, should facilitate the design of novel PIs and potentially other antiviral therapeutics.  相似文献   

9.
Crystallographic structures of HIV protease with three different peptide-mimetic inhibitors were subjected to energy minimization using molecular mechanics, the minimized structures analyzed and the inhibitor binding energies calculated. Partial charge assignment for the hydrogen bonded catalytic aspartic acids, Asp25 and -25', was in good agreement with charge calculations using semi-empirical molecular orbital methods. Root mean square deviations on minimization were small and similar for both subunits in the protease dimer. The surface loops, which had the largest B factors, changed most on minimization; the hydrophobic core and the inhibitor binding site showed little change. The distance-dependent dielectric of D(r) = 4r was found to be preferable to D(r) = r. Distance restraints were applied for the intermolecular hydrogen bonds to maintain the conformation of the inhibitor binding site. Using the dielectric of D(r) = 4r, the calculated interaction energy of the three inhibitors with the protease ranged from -53 to -56 kcal/mol. The psi groups of the inhibitors were changed to add or remove a 'transition state analogue' hydroxyl group, and the loss in energy on the removal of this group was calculated to be 0.9-1.7 kcal/mol. This would represent 19-36% of the total measured difference in binding energy between the inhibitors JG365 and MVT-101.  相似文献   

10.
Water-soluble lignin extracted from natural sources and dehydrogenated polymers of p-coumaric acid and ferulic acid inhibited HIV-1 protease activity. The dehydrogenated polymers, which are thought to be model compounds for lignin, were synthesized and fractionated into four ranges of molecular mass by ultra-filtration: i.e., over 30 kDa, 30-10 kDa, 10-1 kDa and 1 kDa-500 Da. All of these fractions had HIV-1 protease inhibitory activity. The anti-HIV-1 effect of the smallest mass fractions of the dehydrogenated polymers (1 kDa-500 Da) was also tested, and it was found that these fractions inhibited the replication of HIV-1 in MT-4 cells.  相似文献   

11.
12.
A new oxazole scaffold showing great promise in HIV-1 inhibition has been discovered by cell-based screening of an in-house library and scaffold modification. Follow-up SAR study focusing on the 5-aryl substituent of the oxazole core has identified 4k (EC50 = 0.42 μM, TI = 50) as a potent inhibitor. However, the analogues suffered from poor aqueous solubility. To address this issue, we have developed broadly applicable potential prodrugs of indazoles. Among them, N-acyloxymethyl analogue 11b displayed promising results (i.e., increased aqueous solubility and susceptibility to enzymatic hydrolysis). Further studies are warranted to fully evaluate the analogues as the potential prodrugs with improved physiochemical and PK properties  相似文献   

13.
The importance of each side chain of a cross-linked interfacial peptide inhibitor of HIV-1 protease was evaluated using an alanine scanning approach. Whereas the parent inhibitor has an IC50 value of 350 nM, values for the mutations reported here range from 280-9200 nM. The relative importance or each residue was thus assigned and correlated to the solvent accessible surface area (SASA) exposed upon mutation.  相似文献   

14.
A 99-amino acid protein having the deduced sequence of the protease from human immunodeficiency virus type 2 (HIV-2) was synthesized by the solid phase method and tested for specificity. The folded peptide catalyzes specific processing of a recombinant 43-kDa GAG precursor protein (F-16) of HIV-1. Although the protease of HIV-2 shares only 48% amino acid identity with that of HIV-1, the HIV-2 enzyme exhibits the same specificity toward the HIV-1 GAG precursor. Fragments of 34, 32, 24, 10, and 9 kDa were generated from F-16 GAG incubated with the protease. N-terminal amino acid sequence analysis of proteolytic fragments indicate that cleavage sites recognized by HIV-2 protease are identical to those of HIV-1 protease. The verified cleavage sites in F-16 GAG appear to be processed independently, as indicated by the formation of the intermediate fragments P32 and P34 in nearly equal ratios. The site nearest the amino terminus is quite conserved between the two viral GAG proteins (...VSQNY-PIVQN...in HIV-1,...KGGNY-PVQHV...in HIV-2). In contrast, the putative second site (...IPFAA-AQQKG...) of HIV-2 GAG shares minimal sequence identity with site 2 of HIV-1 GAG (...SATIM-MQRGN...). These sequence variations in the substrates suggest higher order structural features that may influence recognition by the proteases. Pepstatin A inhibits HIV-2 protease, whereas 1,10-phenanthroline and phenylmethylsulfonylfluoride do not; these results are in agreement with the finding that proteases of HIV and other retroviruses are aspartyl proteases.  相似文献   

15.

Background

Strategies to control HIV for improving the quality of patient lives have been aided by the Highly Active Anti-Retroviral Therapy (HAART), which consists of a cocktail of inhibitors targeting key viral enzymes. Numerous new drugs have been developed over the past few decades but viral resistances to these drugs in the targeted viral enzymes are increasingly reported. Nonetheless the acquired mutations often reduce viral fitness and infectivity. Viral compensatory secondary-line mutations mitigate this loss of fitness, equipping the virus with a broad spectrum of resistance against these drugs. While structural understanding of the viral protease and its drug resistance mutations have been well established, the interconnectivity and development of structural cross-resistance remain unclear. This paper reports the structural analyses of recent clinical mutations on the drug cross-resistance effects from various protease and protease inhibitors (PIs) complexes.

Methods

Using the 2015 updated clinical HIV protease mutations, we constructed a structure-based correlation network and a minimum-spanning tree (MST) based on the following features: (i) topology of the PI-binding pocket, (ii) allosteric effects of the mutations, and (iii) protease structural stability.

Results and conclusion

Analyis of the network and the MST of dominant mutations conferring resistance to the seven PIs (Atazanavir-ATV, Darunavir-DRV, Indinavir-IDV, Lopinavir-LPV, Nelfinavir-NFV, Saquinavir-SQV, and Tipranavir-TPV) showed that cross-resistance can develop easily across NFV, SQV, LPV, IDV, and DRV, but not for ATV or TPV. Through estimation of the changes in vibrational entropies caused by each reported mutation, some secondary mutations were found to destabilize protease structure. Our findings provide an insight into the mechanism of PI cross-resistance and may also be useful in guiding the selection of PI in clinical treatment to delay the onset of cross drug resistance.
  相似文献   

16.
M J Todd  E Freire 《Proteins》1999,36(2):147-156
The effects of the peptide inhibitor acetyl pepstatin on the structural stability of the HIV-1 protease have been measured by high sensitivity calorimetric techniques. At 25 degrees C and pH 3.6, acetyl pepstatin binds to HIV-1 protease with an affinity of 1.6 x 10(7 )M-1 and an enthalpy of 7.3 +/- 0.5 kcal/mol, indicating that binding is not favored enthalpically and that the favorable Gibbs energy originates from a large positive entropy. Since the binding of acetyl pepstatin is associated with a negative change in heat capacity (-450 cal/K*mol) the association reaction becomes enthalpically favored at temperatures higher than 40 degrees C. The presence of the inhibitor stabilizes the dimeric structure of the protease in a fashion that can be quantitatively described by a set of thermodynamic linkage equations. The combination of titration and differential scanning calorimetry provides an accurate way of determining binding constants for high affinity inhibitors that cannot be determined by titration calorimetry alone. A structure-based thermodynamic analysis of the binding process indicates that the stabilization effect is not distributed uniformly throughout the protease molecule. The binding of the inhibitor selectively stabilizes those conformational states in which the binding site is formed, triggering a redistribution of the state probabilities in the ensemble of conformations populated under native conditions. As a result, the stability constants for individual residues do not exhibit the same change in magnitude upon inhibitor binding. Residues in certain areas of the protein are affected significantly whereas residues in other areas are not affected at all. In particular, inhibitor binding has a significant effect on those regions that define the binding site, especially the flap region which becomes structurally stable as a result of the additional binding free energy. The induced stabilization propagates to regions not in direct contact with the inhibitor, particularly to the strand between residues Pro9 and Ala22 and the helix between Arg87 and Gly94. On the other hand, the stability of the strand between Asp60 and Leu76 is not significantly affected by inhibitor binding. The structural distribution of binding effects define cooperative pathways within the protease molecule. Proteins 1999;36:147-156.  相似文献   

17.
N-Ointramolecular acyl migration in Ser- or Thr-containing peptides is a well-known side reaction in peptide chemistry. It results in the mutual conversion of ester and amide bonds. Our medicinal chemistry study focused on the fact that the O-acyl product can be readily converted to the original N-acyl form under neutral or slightly basic conditions in an aqueous buffer and the liberated ionized amino group enhances the water solubility of O-acyl products. Because of this, we have developed a novel class of "O-N intramolecular acyl migration"-type water-soluble prodrugs of HIV-1 protease inhibitors. These prodrugs released the parent drugs via a simple chemical mechanism with no side reaction. In this study, we applied this strategy to important cancer chemotherapeutic agents, paclitaxel and its derivatives, to develop water-soluble taxoid prodrugs, and found that these prodrugs, 2'-O-isoform of taxoids, showed promising results with higher water solubility and proper kinetics in their parent drug formation by a simple pH-dependent chemical mechanism with O-N intramolecular acyl migration. These results suggest that this strategy would be useful in toxicology and medical economics. After the successful application of O-N intramolecular acyl migration in medicinal chemistry, this concept was recently used in peptide chemistry for the synthesis of "difficult sequence-containing peptides." The strategy was based on hydrophilic O-acyl isopeptide synthesis followed by the O-N intramolecular acyl migration reaction, leading to the desired peptide. In a model study with small, difficult sequence-containing peptides, synthesized "O-acyl isopeptides" not only improved the solubility in various media and efficiently performed the high performance liquid chromatography purification, but also altered the nature of the difficult sequence during SPPS, resulting in the efficient synthesis of O-acyl isopeptides with no complications. The subsequent O-N intramolecular acyl migration of purified O-acyl isopeptides afforded the desired peptides as precipitates with high yield and purity. Further study of the synthesis of a larger difficult sequence-containing peptide, Alzheimer's disease-related peptide (A beta 1-42), surprisingly showed that only one insertion of the O-acyl group drastically improved the unfavorable nature of the difficult sequence in A beta 1-42, and achieved efficient synthesis of 26-O-acyl isoA beta 1-42 and subsequent complete conversion to A beta 1-42 via the O-N intramolecular acyl migration reaction of 26-O-acyl isoA beta 1-42. This suggests that our new method based on O-N intramolecular acyl migration is an important method for the synthesis of difficult sequence-containing bioactive peptides.  相似文献   

18.
HIV-1 protease is an important target for treatment of AIDS, and efficient drugs have been developed. However, the resistance and negative side effects of the current drugs has necessitated the development of new compounds with different binding patterns. In this study, nine C-terminally duplicated HIV-1 protease inhibitors were cocrystallised with the enzyme, the crystal structures analysed at 1.8-2.3 A resolution, and the inhibitory activity of the compounds characterized in order to evaluate the effects of the individual modifications. These compounds comprise two central hydroxy groups that mimic the geminal hydroxy groups of a cleavage-reaction intermediate. One of the hydroxy groups is located between the delta-oxygen atoms of the two catalytic aspartic acid residues, and the other in the gauche position relative to the first. The asymmetric binding of the two central inhibitory hydroxyls induced a small deviation from exact C2 symmetry in the whole enzyme-inhibitor complex. The study shows that the protease molecule could accommodate its structure to different sizes of the P2/P2' groups. The structural alterations were, however, relatively conservative and limited. The binding capacity of the S3/S3' sites was exploited by elongation of the compounds with groups in the P3/P3' positions or by extension of the P1/P1' groups. Furthermore, water molecules were shown to be important binding links between the protease and the inhibitors. This study produced a number of inhibitors with Ki values in the 100 picomolar range.  相似文献   

19.
Many patterns of mutations selected by HIV-1 protease inhibitors have been described, but in most cases isolates with these patterns have been obtained from pre-clinical studies or after failures of monotherapies. We compared genotype and phenotype in HIV-1 infected patients who have failed more than one PI-including regimen. Phenotypic resistance could arise also in the absence of specific primary mutations and in the presence of different substitutions among those known to confer resistance to ritonavir, indinavir or nelfinavir. The number of secondary mutations was significantly associated with phenotypic resistance for each protease inhibitor. Thus, more study of mutational patterns in heavily pretreated patients is warranted; in the mean time treatment choices might be optimized if phenotyping could integrate genotyping within this setting.  相似文献   

20.
Affinity purification of the HIV-1 protease   总被引:5,自引:0,他引:5  
An inhibitor of the HIV-1 protease has been employed in the generation of a resin which allows the rapid purification of this enzyme. A peptide substrate analogue, H2N-Ser-Gln-Asn-(Phe-psi[CH2N]-Pro)-Ile-Val-Gln-OH, was coupled to agarose resin. The HIV-1 protease was expressed in E. coli and the supernatant from lysed cells was passed through the affinity resin. Active HIV-1 protease was then eluted with a buffer change to pH 10 and 2 M NaCl. Final purification to a homogeneous preparation, capable of crystallization, was achieved with hydrophobic interaction chromatography. Solutions containing HIV-1 protease bound to competitive inhibitors do not bind to the column.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号