首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
周小萍  蒋志根 《生理学报》1992,44(4):347-354
在豚鼠肠系膜下神经节(IMG)及其支配的结肠段联合标本上,对IMG细胞内电位与肠段纵肌或环肌舒缩活动进行了同步记录。实验结果表明:(1)肠段预置张力为零时,约50%IMG细胞有自发的快兴奋性突触后电位(EPSP)活动,切断结肠神经或以筒箭毒(50μmol/L)灌流IMG后消失;(2)筒箭毒或低钙高镁溶液阻断神经节传递时,环肌节律性收缩幅度增大,节律变慢,但对纵肌节律性收缩无明显影响,(3)串刺激节前神经,在IMG细胞引起一串快EPSP或动作电位并常跟随迟慢的EPSP,同时,纵肌在0.1-0.2s潜伏期后出现迅速的、时程基本与动作电位串一致的舒张波,后者在筒箭毒灌流IMG后消失,而环肌运动可见舒张、舒张波延长或收缩波增大。结果提示:IMG不仅中继经典的胆碱能传出功能,还参与以胆碱能传递为中介的肠-肠反射,该反射活动的传出效应主要在于抑制环肌收缩。  相似文献   

2.
电刺激节前纤维,在细胞内可依次记录到四种突触后电位: f-EPSP、s-IPSP、s-EPSP 和 L-s-EPSP. 其中 f-EPSP 代表神经节传递的经典通路.节前神经末梢释放的节 ACh 直接作用于突触后膜的 N 和 M 胆碱受体,分别产生 f-EPSP 和 s-EPSP.s-IPSP 的产生和调节机制,说法不一,本文对此作了重点介绍.L-s-EPSP 表示非胆碱能突触传递,其递质可能为促黄体释放激素或 P 物质.本文还简要介绍了与神经节突触传递有关的其它神经递质或调制物.  相似文献   

3.
电刺激节前纤维,在细胞内可依次记录到四种突触后电位:f-EPSP、s-IPSP、s-EPSP和L-s-EPSP。其中f-EPSP代表神经节传递的经典通路。节前神经末梢释放的ACh直接作用于突触后膜的N和M胆碱受体,分别产生f-EPSP和s-EPSP。s-IPSP的产生和调节机制,说法不一,本文对此作了重点介绍。L-s-EPSP表示非胆碱能突触传递,其递质可能为促黄体释放激素或P物质。本文还简要介绍了与神经节突触传递有关的其它神经递质或调制物。  相似文献   

4.
应用新生大鼠脊髓切片运动神经元(MN)细胞内记录技术,发现5-羟色胺(5-HT)10~100μmol/L灌流可浓度依从地抑制背、腹根刺激在MN诱发的兴奋性突触后电位(EPSP)和抑制性突触后电位,但可增大外源性谷氨酸引起的MN去极化。5-HT对背根性EPSP的抑制无刺激频率依赖性,可为5-HT_(1A)受体激动剂8-OH-DPAT模拟,但不受士的宁、酮色林及MDL 72222的影响。结果表明5-HT可直接激活初级传入纤维末梢5-HT_(1A)受体而抑制MN的突触传递。  相似文献   

5.
自从1975年(Hughes et al. 1975)发现脑啡肽以来,经多方面研究已认为脑啡肽可能是一种神经递质,它具有多种生理功能(范少光、汤健,1978)。据新近文献报道,脑啡肽与催产素及加压素三者具有共同存在的并存关系(Martin and Voigt。1981)。 已经证明,刺激迷走神经向中端,可引起脑内释放乙酰胆硷,从而促使神经垂体释放压加素和催产素,肾上腺释放肾上腺素(Chang, et al. 1937;1961,1964;吕运明等1965,1977;唐正荣1981)。但是,刺激迷走神经向中端,是否也能引起脑内脑啡肽的释放,迷走神经传入纤维与脑内脑啡肽能神经原之间,是否存有机能上的联系?关于这个  相似文献   

6.
刺激迷走神经引起的鲫鱼Mauthner细胞顺向激活   总被引:1,自引:0,他引:1  
目的 :研究迷走神经感觉传入信息对Mauthner细胞 (M细胞 )兴奋性的影响。方法 :刺激鲫鱼迷走神经 ,并运用微电极穿刺技术记录鲫鱼M细胞胞内电位变化。结果 :在M细胞胞内记录到分级的、复合的兴奋性突触后电位(EPSP) ,分为第一成分和第二成分。随着刺激强度的增大 ,EPSP的幅度增大 ,反应持续时间延长。当刺激强度足够大时 ,在第一成分或第二成分的基础上可爆发动作电位。结论 :①刺激迷走神经可引起M细胞顺向激活 ,这与以往的观点不同 ;②从迷走神经到M细胞的感觉传入通路可能由含有兴奋性和抑制性成分的不同种类的神经链构成 ,M细胞的兴奋性取决于兴奋和抑制之间的相互关系  相似文献   

7.
最近发现,在哺乳动物,不仅在肌间神经丛,而且在游离的胃平滑肌细胞上,也存在特异性的有高度亲和力的鸦片受体。最近美国Bitar和Makhlouf发现,将新鲜分散的豚鼠胃平滑肌细胞分别置于几种一定浓度的鸦片肽类及吗啡溶液中,可引起平滑肌细胞收缩,与乙酰胆硷、八肽胆囊收缩素和胃泌素引起的收缩现象很相似,其最大收缩反应为30~34%。按照D_(50),五种鸦片肽类的作用强度顺序为:强啡肽>甲硫脑啡肽>D-丙氨酸~2-甲硫脑啡肽(D-ala~2-Met-Eukephalin)>吗啡>亮啡肽。纳络酮可使鸦片肽类引起平滑肌细胞收缩的剂量  相似文献   

8.
大鼠颈上交感神经节节前神经经液氮冻伤后,4天时节前纤维末梢完全溃变,3周时神经节内已重新出现胆碱能神经末梢,半年时末梢计数达对照值的54.2%,其后直至一年无明显进展。这一结果表明,交感节前神经再生过程至少包含两个阶段:一是初期快速再生阶段;一是后期缓慢持续阶段。实验证明,交感节前神经的再生是不完全的,其发展过程与中枢及其它外周神经有异。  相似文献   

9.
目的 槲皮素是一种广泛分布于药用植物中的黄酮类化合物,传统被认为具有神经保护作用。本研究利用位于大鼠脑干花萼状突触的突触前神经末梢进行膜片钳记录,研究槲皮素调控突触传递和可塑性的突触前机制。方法 利用全细胞膜片钳结合膜电容记录,在突触后记录微小兴奋性突触后电流(m EPSC),在突触前神经末梢记录钙內流和神经囊泡的释放、回收以及可立即释放库(RRP)的恢复动力学。并且利用纤维刺激在轴突给予5~200 Hz的刺激,诱发突触后EPSC,记录突触后短时程抑制(STD)。结果 100μmol/L槲皮素不影响突触后m EPSC的振幅、频率以及AMPA受体的动力学特征。在突触前神经末梢,槲皮素不改变钙内流或囊泡的释放,但显著抑制胞吐后网格蛋白依赖的慢速胞吞。抑制胞吞会导致突触前囊泡动员的减慢,降低RRP的补充速率,并且增强高频刺激下的短时程可塑性STD。结论 本研究为槲皮素调控中枢神经突触传递提供全新的突触前神经机制,槲皮素有助于抑制中枢神经过度兴奋,进而发挥神经保护作用。  相似文献   

10.
脑啡肽-干扰素融合蛋白具有外周镇痛作用   总被引:1,自引:0,他引:1  
研究干扰素-脑啡肽融合蛋白的外周镇痛作用和机制.对小鼠进行热损伤诱导,采用经典热板法测定小鼠后肢脚趾外周涂抹干扰素、脑啡肽融合蛋白的痛阈变化,并用阿片选择性拮抗剂纳曲酮、纳络酮及干扰素单抗进行阻断试验.与干扰素母体相比,融合蛋白具有较强的外周镇痛作用,这种作用可被纳络酮、干扰素单抗逆转或阻断.融合蛋白具有较强镇痛功能,可作为外用镇痛候选药物,其作用机理与干扰素受体、阿片μ受体有关.  相似文献   

11.
目的:探讨辣椒素对肠系膜下神经诱发动作电位的影响。方法:对大鼠肠系膜下神经节施加不同浓度(分别为2.5、5、10g/L)的辣椒素或其载体(对照)后,在其中枢端给予能引起反应的方波刺激,记录节后神经外周端的动作电位。结果:虽然实验动物存在个体差异,且辣椒素对其神经作用的阈值也有所不同,但在大多数情况下,当辣椒素浓度为2.5~5g/L、作用3min后,即可使神经的敏感性降低;并表现出了较为明显的剂量相关性,即随着辣椒素浓度的升高,其对神经的脱敏作用也逐渐增强。结论:辣椒素对肠系膜下神经节内的交感和副交感神经均具有抑制作用。  相似文献   

12.
蛋白质I是一种集中在突触部位的神经元特有的蛋白质,存在于绝大多数(也可能是全部)突触前神经末梢中。它是一种cAMP和Ca~(2+)/钙调制素依赖式蛋白激酶。为测定冲动传导能否调节蛋白质I的磷酸化,作者用新西兰白兔颈上神经节进行了蛋白质I磷酸化的定量研究。实验以兔一侧神经节为“实验”神经节,另一侧为对照神经节。在未受刺激时,两侧颈上神经节中含有几乎等量的脱磷酸蛋白质I。当以频率为10Hz(生理频率)持续30秒的刺激施于实验神经节节前纤维,与  相似文献   

13.
盆神经和阴部神经传入在大鼠腰骶髓的相互作用   总被引:8,自引:0,他引:8  
Wang RP  Li QJ  Lu GW 《生理学报》2000,52(2):115-118
应用条件-检验刺激技术观察时间依赖性抑制现象是研究传入信息相互作用的方式之一。用1.5-3倍阈刺激强度的电脉冲交替刺激麻醉、麻痹的盆神经(Pe)和阴部神经(Pu),以玻璃微电极在L6-S1节段脊髓背角会聚神经元上记录细胞外放电。条件输入可对深层(>300μm)单位的检验反应产生时间依赖性抑制效应,产生抑制的刺激间期为1-360ms,Pe为条件刺激时较长。浅层细胞(<300μm)发生抑制的间期为1-  相似文献   

14.
电刺激麻醉家免延髓头端腹外侧区(rVLM)能诱发心外膜电图ST段明显抬高。刺激腓深神经能抑制这种反应。P5平面横断脑干、双侧电解损毁中脑中央灰质腹侧部(vPAG)或在双侧rVLM微量注射脑啡肽抗体后,均能明显减弱腓深神经的抑制作用。以上结果提示腓深神经能够抑制由rVLM诱发的心肌缺血反应。腓深神经的这种抑制效应可能有赖于中脑头端以上某些区域脑结构的完整,vPAG可能是这种抑制效应的中枢环节之一,延髓水平的脑啡肽可能参与这种抑制过程。  相似文献   

15.
躯体传入冲动对丘脑腹后外侧核单位电活动的影响   总被引:1,自引:0,他引:1  
实验在筒箭毒制动和人工呼吸维持下的清醒家兔上进行.用玻璃微电极在丘脑腹后外侧核(VPL)记录正中神经和腓神经刺激所引起的单位反应。Ⅰ、Ⅱ、Ⅲ、Ⅳ类纤维的传入冲动能特异地分别激活VPL内不同的神经元;这四类纤维的传入冲动能非特异地激活另一些神经元—R神经元。能被Ⅱ类纤维激活的14个βγ神经元和R神经元的活动不受对侧同名神经Ⅱ和Ⅳ类纤维条件刺激的影响;但对侧同名神经Ⅱ和Ⅳ类纤维的条件刺激对那些能被Ⅳ类纤维激活的C神经元和R神经元的活动有显著的抑制作用,使其长潜伏期的第二串放电的频率和时程减低。  相似文献   

16.
杀虫环对黑胸大蠊神经突触传递的阻遏作用   总被引:2,自引:2,他引:2  
用电生理糖间隙法研究杀虫环对黑胸大蠊神经突触传递的作用,并以α-银环蛇毒素作比较。结果证明:1)杀虫环阈浓度1×10-5M即显著地抑制兴奋性突触后电位(EPSP)。作用开始使之阈值递增,此时只有增加刺激强度方可诱出EPSP。2)(虫非)蠊第Ⅵ腹神经节是胆碱能的。已知突触后阻遏剂如α-银环蛇毒素的作用是N型乙酰胆碱受体(n-AchR)的专一性配基,与杀虫环阻遏神经突触的传递颇为相似,二者均不影响突触后神经元的静息电位和动作电位的传导;而杀虫环对非胆磁能的神经肌肉接头则无影响。3)自发突触后电位随杀虫环处理时间的不同而变化。开始自发释放电位的振幅、频率逐渐增加,继之产生持续期较长的阵发性高频发放,以后又逐渐消失。  相似文献   

17.
中枢胆硷能系统结构和功能研究的一些进展   总被引:1,自引:0,他引:1  
近十年来中枢胆硷能系统结构和功能的研究进展比较迅速。现已确证,在中枢神经系统的广泛区域(如运动和感觉系统、脑干网状结构上行激动系统、边缘系统以及大脑皮层等)都分布着大量的胆硷能神经元、胆硷敏感神经原及胆硷能神经束;此外,关于中枢胆硷能系统促进学习记忆、激活脑电、维持觉醒、意识及快波睡眠等重要生理功能也得到了进一步的阐明。  相似文献   

18.
外侧隔—海马CA1通路电生理分析   总被引:1,自引:0,他引:1  
解夏平  王福庄 《生理学报》1991,43(2):113-119
电刺激外侧隔区可在海马 CA1区锥体细胞层记录到群锋电位,在 CA1辐射层顶树突记录到兴奋性突触后电位(EPSP)。侧脑室注射微量海人酸损毁海马 CA3-CA4区锥体细胞后,电刺激外侧隔区在 CA1顶树突不再诱发 EPSP,由此认为外侧隔-CA1顶树突的神经联系是通过同侧海马 CA3锥体细胞侧支实现的。但 CA3-CA4损毁后,电刺激外侧隔区在海马 CA1起层锥体细胞底树突仍可记录到 EPSP。这一在正常情况下被掩盖的外侧隔-CA1底树突神经联系及其来源尚有待探讨。  相似文献   

19.
目的 槲皮素是一种广泛分布于药用植物中的黄酮类化合物,传统被认为具有神经保护作用。在本研究中,我们利用位于大鼠脑干的花萼状突触的突触前神经末梢的进行膜片钳记录,研究槲皮素调控突触传递和可塑性的突触前机制。方法 利用全细胞膜片钳结合膜电容记录,在突触后记录微小兴奋性突触后电流(mEPSC),在突触前神经末梢记录钙內流和神经囊泡的释放、回收以及可立即释放库(RRP)的恢复动力学。并且利用纤维刺激在轴突给予5~200 Hz的刺激,诱发突触后EPSC,记录突触后短时程抑制(STD)。结果 100 μmol/L槲皮素不影响突触后mEPSC的振幅、频率以及AMPA受体的动力学特征。在突触前神经末梢,槲皮素不改变钙内流或囊泡的释放,但显著抑制胞吐后的网格蛋白依赖的慢速胞吞。抑制胞吞会导致突触前囊泡动员的减慢,降低RRP的补充速率,并且增强高频刺激下的短时程可塑性STD。结论 本研究为槲皮素调控中枢神经突触传递提供全新的突触前神经机制,槲皮素有助于抑制中枢神经过度兴奋,进而发挥神经保护作用。  相似文献   

20.
运用玻璃微电极细胞内记录技术,观察豚鼠(Cavia porcellus)离体肠系膜下神经节(IMG)细胞非胆碱能迟慢兴奋性突触后电位(Is—EPSP)与蛙皮素(BOM)、P物质(SP)的关系,以探讨肽类神经递质在外周神经系统中的作用。结果显示,SP去极化、BOM去极化与Is—EPSP具有相关性;SP受体脱敏使SP敏感细胞的Is—EPSP减弱或消失,但不影响BOM引起的去极化;BOM受体脱敏使BOM敏感细胞的Is—EPSP减弱或消失,但不影响SP引起的去极化。大部分Is—EPSP阳性细胞对SP、BOM敏感,而对SP、BOM均不敏感的细胞多数不出现Is—EPSP。结果提示,BOM、SP通过IMG细胞膜上相应受体参与了Is-EPSP的形成,受体间无交互脱敏现象。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号