首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two high-Mr forms of cathepsin B have been described previously, both of which are stable at alkaline pH, in contrast with the lysosomal proteinase. One form is latent and activated by pepsin treatment; the other form is active as measured with synthetic substrates. In the present study it was shown that the two forms are indistinguishable on the basis of molecular size as determined by gel-filtration chromatography or sodium dodecyl sulphate/polyacrylamide-gel electrophoresis followed by immunoblotting. Both forms lose their alkali-stability upon exposure to Hg2+, and after Hg2+ treatment the latent form becomes immuneprecipitable by an antiserum that reacts only with denatured cathepsin B. Lysosomal cathepsin B is bound by the plasma proteinase inhibitor alpha 2-macroglobulin, a process that requires proteolytic cleavage of the inhibitor. In contrast, the stable active form of cathepsin B is not bound by this inhibitor unless this enzyme is first destabilized by Hg2+ treatment. These results indicate that cathepsin B exists in three different states of activity, completely latent, partially active and fully proteolytically active. To exhibit true endopeptidase activity it seems that the enzyme must be in an alkali-unstable form.  相似文献   

2.
Binding and degradation of alpha 2-macroglobulin by cultured fibroblasts   总被引:1,自引:0,他引:1  
We studied the interactions of alpha 2-macroglobulin, a major protease inhibitor of plasma and of serum-containing culture medium, with cultured fibroblasts. Iodinated human alpha 2-macroglobulin bound specifically to washed cell layers of cultured human fibroblasts. At 0--4 degrees C, binding was saturated at a concentration of 10--20 micrograms/ml. At 37 degrees C, radiolabel appeared in the medium in a form soluble in 10% trichloroacetic acid. Sodium dodecyl sulfate polyacrylamide gel electrophoresis indicated that ingested iodinated alpha 2-macroglobulin transiently forms a complex with a trypsin-like protease. Indirect immunofluorescence demonstrated alpha 2-macroglobulin in vacuoles of fibroblasts grown in 10% human serum or incubated with purified alpha 2-macroglobulin. Fibroblasts transformed by SV-40 (VA-13 cells) bound and degraded less 125I-labeled alpha 2-macroglobulin than non-transformed fibroblasts and had fewer vacuoles containing alpha 2-macroglobulin. These observations indicate that cultured fibroblasts bind, take up by endocytosis, and degrade alpha 2-macroglobulin. Binding and endocytosis of alpha 2-macroglobulin by a cell may be a means of modulating proteases in the microenvironment of the cell and during endocytosis.  相似文献   

3.
The ability of benzyloxycarbonyl-(125I)Tyr-Ala-CHN2 to label cysteine proteinases in a variety of human tissues was investigated. The inhibitor bound only to cathepsin B in tissues homogenized at pH 5.0. When liver was autolysed at pH 4.0 for up to 4 h, the inhibitor also bound to a protein of Mr 25,000. This was identified immunologically and chromatographically as cathepsin L. Both cathepsins B and L were found primarily in kidney, liver and spleen. In spleen, an additional protein of Mr 25,000 was also labelled. This protein could not be precipitated by antibodies to any of cathepsins B, H and L. This protein has tentatively been identified as human cathepsin S by its tissue distribution, chromatographic properties and molecular size. This work clearly shows that peptidyldiazomethanes are specific probes for cysteine proteinases, and that benzyloxycarbonyl-(125I)Tyr-Ala-CHN2 binds to three such enzymes in human tissues.  相似文献   

4.
The major active forms of cathepsins B and L were identified in Kirsten-virus-transformed mouse fibroblasts by the use of a specific radiolabelled inhibitor, benzyloxycarbonyl-Tyr(-125I)-Ala-CHN2. No other proteins were labelled, demonstrating the specificity of this inhibitor for cysteine proteinases. Cathepsins B and L were distinguished by the use of specific antibodies. One active form of cathepsin B, Mr 33,000-35,000, and two active forms of cathepsin L, Mr 30,000 and 23,000, were identified. The intracellular precursors of these proteins had higher Mr values of 39,000 and 36,000 for cathepsins B and L respectively, as shown by pulse-chase experiments with [35S]methionine-labelled proteins. These did not react with the inhibitor under our culture conditions. The precursor of cathepsin L was secreted whereas the precursor of cathepsin B was not, demonstrating that secretions of the two enzymes are regulated differently. In contrast with results found previously for the purified protein [Mason, Gal & Gottesman (1987) Biochem. J. 248, 449-454], the secreted precursor form of cathepsin L did not react with the inhibitor either, indicating that it is not active and therefore, as such, cannot be directly involved in tumour invasion. The secreted protein did react with the inhibitor when incubated at pH 3.0, showing that the protein can be activated, although this did not occur under our culture conditions.  相似文献   

5.
A number of serine proteases, matrix metalloproteases, and cysteine proteases were evaluated for their ability to cleave and inactivate the antiprotease, secretory leucoprotease inhibitor (SLPI). None of the serine proteases or the matrix metalloproteases examined cleaved the SLPI protein. However, incubation with cathepsins B, L, and S resulted in the cleavage and inactivation of SLPI. All three cathepsins initially cleaved SLPI between residues Thr(67) and Tyr(68). The proteolytic cleavage of SLPI by all three cathepsins resulted in the loss of the active site of SLPI and the inactivation of SLPI anti-neutrophil elastase capacity. Cleavage and inactivation were catalytic with respect to the cathepsins, so that the majority of a 400-fold excess of SLPI was inactivated within 15 min by cathepsins L and S. Analysis of epithelial lining fluid samples from individuals with emphysema indicated the presence of cleaved SLPI in these samples whereas only intact SLPI was observed in control epithelial lining fluid samples. Active cathepsin L was shown to be present in emphysema epithelial lining fluid and inhibition of this protease prevented the cleavage of recombinant SLPI added to emphysema epithelial lining fluid. Taken together with previous data that demonstrates that cathepsin L inactivates alpha(1)-antitrypsin, these findings indicate the involvement of cathepsins in the diminution of the lung antiprotease screen possibly leading to lung destruction in emphysema.  相似文献   

6.
P A Roche  S V Pizzo 《Biochemistry》1987,26(2):486-491
When human alpha 2-macroglobulin (alpha 2M) binds proteinases, it undergoes subunit cleavage. Binding of small proteinases such as trypsin results in proteolysis of each of the four subunits of the inhibitor. By contrast, previous studies suggest that reaction of plasmin with alpha 2M results in cleavage of only two or three of the inhibitor subunits. In this paper, we demonstrate that the extent of subunit cleavage of alpha 2M is a function of plasmin concentration. When alpha 2M was incubated with a 2.5-fold excess of plasmin, half of the subunits were cleaved; however, at a 20-fold enzyme to inhibitor ratio, greater than 90% of the subunits were cleaved with no additional plasmin binding. This increased cleavage was catalyzed by free rather than bound plasmin. It is concluded that this "nonproductive" subunit cleavage is dependent upon the molar ratio of proteinase to inhibitor. The consequence of complete subunit cleavage on receptor recognition of alpha 2M-plasmin (alpha 2M-Pm) complexes was studied. Preparations of alpha 2M-Pm with only two cleaved subunits bound to the murine macrophage receptor with a Kd of 0.4 nM and 60 fmol of bound complex/mg of cell protein. When preparations of alpha 2-M-Pm with four cleaved subunits were studied, the Kd was unaltered but ligand binding increased to 140 fmol/mg of cell protein. The receptor binding behavior of the latter preparation is equivalent to that observed when alpha 2M is treated with small proteinases such as trypsin. This study suggests that receptor recognition site exposure is not complete in the alpha 2M-Pm complex with half of the subunits cleaved. Proteolytic cleavage of the remaining subunits of the inhibitor results in a further conformational change exposing the remaining receptor recognition sites.  相似文献   

7.
K Hara  E Kominami  N Katunuma 《FEBS letters》1988,231(1):229-231
The effects of various proteinase inhibitors on the processing of lysosomal cathepsins B, H and L were investigated in cultured rat peritoneal macrophages. The processing of newly synthesized pro-cathepsins B, H and L to the mature single-chain enzymes was sensitive to a metal chelator,1,10-phenanthroline, and a synthetic metalloendopeptidase substrate, Z-Gly-Leu-NH2, and insensitive to inhibitors of serine proteinases, aspartic proteinases and cysteine proteinases. Inhibitors of cysteine proteinases, E-64-d and leupeptin, inhibited the processing of the single-chain forms of cathepsins B, H and L to the two-chain forms. These results suggest that (a) metal endopeptidase(s) is (are) involved in the propeptide processing of cathepsin B, H and L, and that proteolytic cleavages of the mature single-chain cathepsins are accomplished by cysteine proteinases in lysosomes.  相似文献   

8.
125I-labelled alpha 2-macroglobulin complexed with thrombin or plasmin bound to hepatocytes in a concentration- and time-dependent manner. The apparent Kd values calculated from displacement experiments were 7.9 X 10(-8) M for alpha 2-macroglobulin-thrombin and 8.5 X 10(-8) M for alpha 2-macroglobulin-plasmin. Association of these complexes was only partially reversible; after a 180 min incubation period, 50-60% of the bound radioactivity was internalized by the cells. alpha 2-Macroglobulin itself bound also to hepatocytes, but the affinity of the alpha 2-macroglobulin complexes was higher than that of the inhibitor alone, and alpha 2-macroglobulin was not internalized, either. 125I-labelled thrombin or plasmin bound to hepatocytes as well. These bindings were also concentration-dependent and could be decreased with an excess of unlabelled ligands. Binding rates and amounts of the bound proteinases were higher than those of their alpha 2-macroglobulin complexes. The alpha 2-macroglobulin-thrombin complex competed with the alpha 2-macroglobulin-plasmin complex in binding to hepatocytes, whereas there was no competition between these complexes and the antithrombin III-thrombin complex. These results suggest that the binding sites of hepatocytes for alpha 2-macroglobulin-proteinase and antithrombin III-proteinase complexes are different.  相似文献   

9.
Procathepsins B and L in the hepatic endoplasmic lumen were identified as having a molecular weight of 39,000 by immunoblot analysis. The proenzymes were then purified to remove the mature enzymes by concanavalin A-Sepharose chromatography. The concanavalin A-adsorbed fractions containing the proenzymes showed no appreciable activities of cathepsins B and L. When those fractions were incubated at pH 3.0, the enzymatic activities markedly increased: the activities of cathepsins B and L after 36 h incubation were 60 and 210 times those of the controls, respectively. Immunoblot analysis showed that after 36 h incubation the proenzymes disappeared and the mature enzymes increased. Thus the proenzymes were processed to the mature enzymes under acidic conditions of pH 3.0. The marked increases of enzymatic activities and the conversion of the proenzymes to the mature forms were completely blocked with pepstatin, which is a potent inhibitor of aspartic proteases. The results strongly suggested that a processing protease for procathepsins B and L might be cathepsin D, a major lysosomal aspartic protease. Indeed, lysosomal cathepsin D could convert microsomal procathepsin B to the mature enzyme in vitro. Therefore, procathepsins B and L seem first to be synthesized as enzymatically inactive forms in endoplasmic reticulum and successively may be converted into active forms by cathepsin D in lysosomal compartments.  相似文献   

10.
The binding of collagenase to both alpha 2-macroglobulin and the tissue inhibitor of metalloproteinases was studied using purified materials. Collagenase bound preferentially to alpha 2-macroglobulin although no transfer of collagenase to alpha 2-macroglobulin occurred if the enzyme was first mixed with the tissue inhibitor of metalloproteinases. The sequences of amino acids in both inhibitors likely to be responsible for the binding of collagenase are discussed and compared to the cleavage site in the collagen molecule.  相似文献   

11.
The binding of trypsin to alpha 2-macroglobulin, the appearance of free beta-cysteinyl thiol groups of the formed complexes, the steady-state kinetics of their enzymic hydrolysis of carbobenzoxy-L-valyl-glycyl-L-arginyl-4-nitroanilide and finally their reactions with soybean trypsin inhibitor leading to the formation of ternary alpha 2-macroglobulin-trypsin-soybean trypsin inhibitor complexes were investigated. Each alpha 2-macroglobulin molecule binds two trypsin tightly; the dissociation constants were found to be unmeasureably small, but the extent of formation of 1:1 and 1:2 complexes at different molar ratios of alpha 2-macroglobulin to trypsin as determined from the appearance of thiol groups clearly indicated that binding of trypsin to alpha 2-macroglobulin shows negative cooperativity. Binding of the first trypsin makes the access of the second less easy. The kinetic results showed a decrease of the kc/Km value of hydrolysis of the tripeptide substrate by approx. 4-fold compared to that of free trypsin for each alpha 2-macroglobulin-bound trypsin. Here no differences were seen between the bound trypsins. The analysis of the reactions between the alpha 2-macroglobulin-trypsin complexes and soybean trypsin inhibitor shows that ternary complexes do form, although slowly, and that two processes occur, not only when 1:2 complexes but also when 1:1 complexes react with soybean trypsin inhibitor. Soybean trypsin inhibitor apparently discriminates between two distinct binding modes of trypsin to alpha 2-macroglobulin, the covalently and the noncovalently alpha 2-macroglobulin-bound trypsins.  相似文献   

12.
Cystatin B is unique among cysteine proteinase inhibitors of the cystatin superfamily in having a free Cys in the N-terminal segment of the proteinase binding region. The importance of this residue for inhibition of target proteinases was assessed by studies of the affinity and kinetics of interaction of human and bovine wild-type cystatin B and the Cys 3-to-Ser mutants of the inhibitors with papain and cathepsins L, H, and B. The wild-type forms from the two species had about the same affinity for each proteinase, binding tightly to papain and cathepsin L and more weakly to cathepsins H and B. In general, these affinities were appreciably higher than those reported earlier, perhaps because of irreversible oxidation of Cys 3 in previous work. The Cys-to-Ser mutation resulted in weaker binding of cystatin B to all four proteinases examined, the effect varying with both the proteinase and the species variant of the inhibitor. The affinities of the human inhibitor for papain and cathepsin H were decreased by threefold to fourfold and that for cathepsin B by approximately 20-fold, whereas the reductions in the affinities of the bovine inhibitor for papain and cathepsins H and B were approximately 14-fold, approximately 10-fold and approximately 300-fold, respectively. The decreases in affinity for cathepsin L could not be properly quantified but were greater than threefold. Increased dissociation rate constants were responsible for the weaker binding of both mutants to papain. By contrast, the reduced affinities for cathepsins H and B were due to decreased association rate constants. Cys 3 of both human and bovine cystatin B is thus of appreciable importance for inhibition of cysteine proteinases, in particular cathepsin B.  相似文献   

13.
Gene duplications in rodents have given rise to a family of proteases that are expressed exclusively in placenta. To define the biological role of these enzymes specific inhibitors are needed to differentiate their activities from other more ubiquitously expressed proteases, such as cathepsins B and L. Libraries of peptidyl inhibitors based upon a 4-cyclohexanone pharmacophore were screened for inhibition of cathepsins P, L, and B. The tightest binding dipeptidyl inhibitor for cathepsin P contained Tyr in P(2) and Trp in P(2)('), consistent with the specificity of this enzyme for hydrophobic amino acids at these sites in synthetic substrates. An inhibitor containing Trp in both P(2) and P(2)(') provided better discrimination between cathepsin P and cathepsins B and L. Extension of the inhibitors to include P(3), and P(3)(') amino acids identified an inhibitor with Trp in P(2), P(2)('), and P(3), and Phe in P(3)(') that bound to cathepsin P with a K(i) of 32 nM. This specificity for inhibitors with hydrophobic aromatic amino acids in these four positions is unique among the lysosomal cysteine proteases. This inhibitor bound to cathepsin P an order of magnitude tighter than to mouse and human cathepsin L and two orders of magnitude tighter than to human cathepsin B. Cbz-Trp-Trp-4-cyclohexanone-Trp-Phe-OMe can discriminate cathepsin P from cathepsins B and L and consequently can be used to specifically inhibit and identify cathepsin P in cellular systems.  相似文献   

14.
Cathepsins B, H, and L are representative cysteine proteinases in lysosomes of a large variety of cells. Previous immunochemical studies indicated the presence of these enzymes also in the gastrointestinal wall. Using specific antisera, the cellular and subcellular distribution of cathepsins B, H, and L in rat gastric (oxyntic and pyloric part) and duodenal mucosa was investigated by light and electron microscopical immunocytochemistry. The subtypes of cathepsins were distributed differently in the cellular constituents of the epithelia: Cathepsin B was localized to lysosomes of all cells except goblet cells. Cathepsin H was found predominantly in gastric parietal cells (lysosomes) and in secretion granules of pyloric gastrin and duodenal cholecystokinin cells. Cathepsin L immunoreactivities were weak and restricted to a minority of cells (gastric mucous cells, enterocytes). Interstitial cells of the lamina propria immunoreactive for cathepsins H and L were identified as macrophages. The present findings suggest a dual function of cathepsins in the gastro-duodenal mucosa. They (1) cleave enzymatically proteins and peptides ingested in lysosomes, and (2) they may be involved in the processing of biologically active peptides (enteric hormones) from their precursor proteins.  相似文献   

15.
Recent studies have shown that the bovine cysteine proteinase inhibitor, cystatin C, is synthesized as a preprotein containing a 118-residue mature protein. However, the forms of the inhibitor isolated previously from bovine tissues had shorter N-terminal regions than expected from these results, and also lower affinity for proteinases than human cystatin C. In this work, we report the properties of recombinant, full-length bovine cystatin C having a complete N-terminal region. The general characteristics of this form of the inhibitor, as reflected by the isoelectric point, the far-ultraviolet circular dichroism spectrum, the thermal stability and the changes of tryptophan fluorescence on interaction with papain, resembled those of human cystatin C. The affinity and kinetics of inhibition of papain and cathepsins B, H and L by the bovine inhibitor were also comparable with those of the human inhibitor, although certain differences were apparent. Notably, the affinity of bovine cystatin C for cathepsin H was somewhat weaker than that of human cystatin C, and bovine cystatin C bound to cathepsin L with about a four-fold higher association rate constant than the human inhibitor. This rate constant is comparable with the highest values reported previously for cystatin-cysteine proteinase reactions. The full-length, recombinant bovine cystatin C bound appreciably more tightly to proteinases than the shorter form characterized previously. Digestion of the recombinant inhibitor with neutrophil elastase resulted in forms with truncated N-terminal regions and appreciably decreased affinity for papain, consistent with the forms of bovine cystatin C isolated previously having arisen by proteolytic cleavage of a mature, full-length inhibitor.  相似文献   

16.
BACKGROUND INFORMATION: Chronic inflammation and tissue remodelling result from an imbalance between proteolytic enzymes and their inhibitors in the lungs in favour of proteolysis. While many studies have examined serine proteases (e.g. cathepsin G and neutrophil elastase) and matrix metalloproteases, little is known about the role of papain-like CPs (cysteine proteases). The present study focuses on the thiol-dependent cathepsins (CPs) and their specific cystatin-like inhibitors [CPIs (CP inhibitors)] in human inflammatory BALFs (BAL fluids, where BAL stands for broncho-alveolar lavage). RESULTS: Cathepsins B, K and S found were mostly zymogens, whereas cathepsins H and L were predominantly in their mature forms. Little immunoreactive cystatin C was found and the high- and low-molecular-mass ('weight') kininogens were extensively degraded. The BALF procathepsins B and L could be activated autocatalytically, indicating that alveolar fluid pro-CPs are reservoirs of mature enzymes. Hydrolysis patterns of 7-amino-4-methylcoumarin-derived peptide substrates showed that extracellular alveolar CPs remain proteolytically active, and that cathepsins B and L are the most abundant thiol-dependent endoproteases. The CP/CPI balance was significantly tipped in favour of cathepsins (3- or 5-fold), as confirmed by the extensive CP-dependent degradation of exogenous kininogens by BALFs. CONCLUSIONS: Although their importance for inflammation remains to be clarified, the presence of active cathepsins L, K and S suggests that they contribute to the extracellular breakdown of the extracellular matrix.  相似文献   

17.
The cathepsins B, H and L, lysosomal cysteine proteinases, play a major role in intracellular protein degradation. These proteinase activities and expressions were examined in a Ca2+ regulated epidermal culture system which consists of two morphological cell types: undifferentiated cells grown in low Ca2+ (0.1 mM concentration) and differentiated cells grown in high Ca2+ (1.8 mM concentration), respectively. Cathepsin B and L activities of the differentiated cells showed a several-fold increase compared to that of the undifferentiated cells. In addition, by using CM-cellulose column chromatography, cathepsin B and L were separated and the level of cathepsin L activity increased significantly. Cathepsin B, L and H were also detected by using an immunoblotting procedure in which their bands were expressed after differentiation was induced by the increasing calcium concentration. Cathepsin L activity and immunostaining intensity reached a maximum at 1 or 2 days of differentiation. In contrast, cystatin alpha (an endogenous inhibitor of cysteine-dependent cathepsins) appeared in the final stage of differentiation. These results indicate that the expression of epidermal cathepsins and their endogenous inhibitor are involved in part of the program of cell differentiation and the terminal differentiation process in cultured rat keratinocytes.  相似文献   

18.
Cathepsin E is an intracellular aspartic proteinase of the pepsin family predominantly expressed in cells of the immune system and believed to contribute to homeostasis by participating in host defense mechanisms. Studies on its enzymatic properties, however, have been limited by a lack of sensitive and selective substrates. For a better understanding of the importance of this enzyme in vivo, we designed and synthesized a highly sensitive peptide substrate for cathepsin E based on the sequence of the specific cleavage site of alpha2-macroglobulin. The substrate constructed, MOCAc-Gly-Ser-Pro-Ala-Phe-Leu-Ala-Lys(Dnp)-D-Arg-NH2 [where MOCAc is (7-methoxycoumarin-4-yl)acetyl and Dnp is dinitrophenyl], derived from the cleavage site sequence of human alpha2-macroglobulin, was the most sensitive and selective for cathepsin E, with k(cat)/K(m) values of 8-11 microM(-1) s(-1), whereas it was resistant to hydrolysis by the analogous aspartic proteinases cathepsin D and pepsin, as well as the lysosomal cysteine proteinases cathepsins B, L, and H. The assay allows the detection of a few fmol of cathepsin E, even in the presence of plasma and cell lysate, and gives accurate results over a wide enzyme concentration range. This substrate might represent a useful tool for monitoring and accurately quantifying cathepsin E, even in crude enzyme preparations.  相似文献   

19.
Summary Cathepsins B, H, and L are representative cysteine proteinases in lysosomes of a large variety of cells. Previous immunochemical studies indicated the presence of these enzymes also in the gastrointestinal wall. Using specific antisera, the cellular and subcellular distribution of cathepsins B, H, and L in rat gastric (oxyntic and pyloric part) and duodenal mucosa was investigated by light and electron microscopical immunocytochemistry. The subtypes of cathepsins were distributed differently in the cellular constituents of the epithelia: Cathepsin B was localized to lysosomes of all cells except goblet cells. Cathepsin H was found predominantly in gastric parietal cells (lysosomes) and in secretion granules of pyloric gastrin and duodenal cholecystokinin cells. Cathepsin L immunoreactivities were weak and restricted to a minority of cells (gastric mucous cells, enterocytes). Interstitial cells of the lamina propria immunoreactive for cathepsins H and L were identified as macrophages. The present findings suggest a dual function of cathepsins in the gastro-duodenal mucosa. They (1) cleave enzymatically proteins and peptides ingested in lysosomes, and (2) they may be involved in the processing of biologically active peptides (enteric hormones) from their precursor proteins.  相似文献   

20.
Biosynthesis of lysosomal cathepsins B and H in cultured rat hepatocytes   总被引:1,自引:0,他引:1  
The biosynthesis of lysosomal cysteine proteases, cathepsins B and H, was investigated by using pulse-chase experiments in vivo in primary cultures of rat hepatocytes. Cathepsins B and H were isolated from either total cell extracts or culture medium labeled with [35S]methionine by immunoprecipitation and analyzed for their molecular forms. Within 60 min of chase, cellular proforms of cathepsins B of 39 kDa and H of 41 kDa were converted to single-chain form cathepsins B of 29 kDa and H of 28 kDa, respectively, and persisted as these forms even after 12-h chase periods. The proforms of cathepsins B and H derived from pulse-labeling experiments showed complete susceptibility to endoglycosidase H treatment, indicating that these proenzymes bear high-mannose-type oligosaccharides at the stage of initial events of biosynthesis. In the presence of tunicamycin, unglycosylated proenzymes of cathepsins B of 35 kDa and H of 34 kDa were found to be secreted into the extracellular medium without undergoing proteolytic processing. Furthermore, in the presence of swainsonine, a potent inhibitor of Golgi mannosidase II, considerable amounts of the proenzymes were secreted and accumulated in the medium during chasing periods. These results suggest that the oligosaccharide moiety of these enzymes would be necessary for the intracellular sorting mechanism. In monensin-treated cells, the conversion of intracellular proenzymes to mature enzymes was significantly inhibited and the proenzymes were secreted into the medium. In the presence of chloroquine or ammonium chloride, proteolytic processing of the proenzymes was completely prevented and the enhanced secretion of proenzymes was observed. These results suggest that in the presence of lysosomotropic amines the intracellular sorting of proenzymes might not occur properly during biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号