首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reduction of disulfide bonds in human melanocortin 1 receptor (hMC1R) with increasing concentrations of DTT (dithiothreitol) resulted in a decrease in the binding of [125I]-ACTH (adrenocorticotropic hormone, L-isomer) in an uniphasic manner and a decrease in [125I]-NDP-MSH ([Nle(4),D-Phe(7)]-alpha-melanocyte stimulating hormone; D-isomer) binding in a biphasic manner. Pretreatment of hMC1R with 10 mM DTT resulted in a 36-fold loss of affinity for alpha-MSH (L-isomer) without affecting the affinity of NDP-MSH (D-isomer). To characterize the role of individual cysteine residues, we employed site-directed mutagenesis to substitute cysteine by glycine at all fourteen positions in hMC1R and analysed wild-type and mutant receptors for ligand binding and cAMP signalling. Single point mutation of four cysteine residues in extracellular loops to glycine (C35G, C267G, C273G, and C275G) resulted in a complete loss of binding for [125I]-NDP-MSH. Moreover, mutants with normal ligand binding, at positions C191G (transmembrane segment 5), C215G (third intracellular loop), and C315G (C-terminal loop) failed to generate cAMP signal in response to both agonists alpha-MSH and NDP-MSH. Mutant at position C78G (with wild-type binding to alpha-MSH as well as NDP-MSH) generated a cAMP signal in response to alpha-MSH (identical to wild-type hMC1R) but interestingly could not be stimulated by NDP-MSH. Moreover, this single amino acid substitution converted NDP-MSH from being an agonist to antagonist at the C78G mutant receptor. These findings demonstrate that (i) alpha-MSH and ACTH (L-isomers) are different from D-isomer NDP-MSH in their sensitivity to DTT for receptor binding, (ii) cysteine residues in N-terminus and extracellular loop three make disulfide bridges and are needed for structural integrity of hMC1R, (iii) cysteine residues in transmembrane segments and intracellular loops are required for receptor-G-protein coupling, (iv) C78 in transmembrane segment two is required for generating a functional response by D-isomer agonist (NDP-MSH) but not by L-isomer agonist (alpha-MSH), and (v) wild-type receptor agonist NDP-MSH is an antagonist at the mutant C78G receptor.  相似文献   

2.
To elucidate the molecular basis for the interaction of ligands with the human melanocortin-4 receptor (hMC4R), agonist structure-activity studies and receptor point mutagenesis were performed. Structure-activity studies of [Nle(4), D-Phe(7)]-alpha-melanocyte stimulating hormone (NDP-MSH) identified D-Phe7-Arg8-Trp9 as the minimal NDP-MSH fragment that possesses full agonist efficacy at the hMC4R. In an effort to identify receptor residues that might interact with amino acids in this tripeptide sequence 24 hMC4R transmembrane (TM) residues were mutated (the rationale for choosing specific receptor residues for mutation is outlined in the Results section). Mutation of TM3 residues D122 and D126 and TM6 residues F261 and H264 decreased the binding affinity of NDP-MSH 5-fold or greater, thereby identifying these receptor residues as sites potentially involved in the sought after ligand-receptor interactions. By examination of the binding affinities and potencies of substituted NDP-MSH peptides at receptor mutants, evidence was found that core melanocortin peptide residue Arg8 interacts at a molecular level with hMC4R TM3 residue D122. TM3 mutations were also observed to decrease the binding of hMC4R antagonists. Notably, mutation of TM3 residue D126 to alanine decreased the binding affinity of AGRP (87-132), a C-terminal derivative of the endogenous melanocortin antagonist, 8-fold, and simultaneous mutations D122A/D126A completely abolished AGRP (87-132) binding. In addition, mutation of TM3 residue D122 or D126 decreased the binding affinity of hMC4R antagonist SHU 9119. These results provide further insight into the molecular determinants of hMC4R ligand binding.  相似文献   

3.
The melanocortin-2 receptor (MC2R), also known as the adrenocorticotropic hormone (ACTH) receptor, plays an important role in regulating and maintaining adrenocortical function, specifically steroidogenesis. Mutations of the human MC2R (hMC2R) gene have also been identified in humans with familial glucocorticoid deficiency; however, the molecular basis responsible for hMC2R ligand binding and signaling remains unclear. In this study, both truncated ACTH peptides and site-directed mutagenesis studies were used to determine molecular mechanisms of hMC2R binding ACTH and signaling. Our results indicate that ACTH1-16 is the minimal peptide required for hMC2R binding and signaling. Mutations of common melanocortin receptor family amino acid residues E80 in transmembrane domain 2 (TM2), D107 in TM3, F178 in TM4, F235 and H238 in TM6, and F258 in TM7 significantly reduced ACTH-binding affinity and signaling. Furthermore, mutations of unique amino acids D104 and F108 in TM3 and F168 and F178 in TM4 significantly decreased ACTH binding and signaling. In conclusion, our results suggest that the residues in TM2, TM3, and TM6 of hMC2R share similar binding sites with other MCRs but the residues identified in TM4 and TM7 of hMC2R are unique and required for ACTH selectivity. Our study suggests that hMC2R may have a broad binding pocket in which both conserved and unique amino acid residues are required, which may be the reason why alpha-MSH was not able to bind hMC2R.  相似文献   

4.
We have investigated receptor structural components of the melanocortin-4 receptor (MC4R) responsible for ligand-dependent inverse agonism. We utilized agouti-related protein (AGRP), an inverse agonist which reduces MC4R basal cAMP production, as a tool to determine the molecular mechanism. We tested a series of chimeric receptors and utilized MC4R and MC1R as templates, in which AGRP is an inverse agonist for MC4R but not for MC1R. Our results indicate that replacements of the extracellular loops 1, 2 and 3 of MC4R with the corresponding regions of MC1R did not affect AGRP inverse agonist activity. However, replacement of the N terminus of MC4R with the same region of MC1R decreases AGRP inverse agonism. Replacement of transmembrane domains 3, 4, 5 and 6 of MC4R with the corresponding regions of MC1R did not affect AGRP inverse agonist activity but mutation of D90A in transmembrane 2 (TM2) and D298A in TM7 abolished AGRP inverse activity. Deletion of the distal MC4R C terminus fails to maintain AGRP mediated reduction in basal cAMP production although it maintains NDP-MSH mediated cAMP production. In conclusion, our results indicate that the N terminus and the distal C terminus of MC4R do appear to play important roles in AGRP inverse agonism but not NDP-MSH mediated receptor activation. Our results also indicate that the residues D90 in TM2 and D298 in TM7 of hMC4R are involved in not only NDP-MSH mediated receptor activation but also AGRP mediated inverse agonism.  相似文献   

5.
Melanocortin-3 receptor (MC3R), primarily expressed in the hypothalamus, plays an important role in the regulation of energy homeostasis. MC3R-deficient (MC3R(-)(/)(-)) mice demonstrate increased fat mass, higher feeding efficiency, hyperleptinaemia, and mild hyperinsulinism. At least one specific mutation of MC3R has been identified to be associated with human obesity. Functional analysis of this altered MC3R (I183N) has indicated that the mutation completely abolishes agonist-mediated receptor activation. However, the specific molecular determinants of MC3R responsible for ligand binding and receptor signaling are currently unknown. The present study is to determine the structural aspects of MC3R responsible for ligand binding and receptor signaling. On the basis of our theoretical model for MC1R, using mutagenesis, we have examined 19 transmembrane domain amino acids selected for these potential roles in ligand binding and receptor signaling. Our results indicate that (i) substitutions of charged amino acid residues E131 in transmembrane domain 2 (TM2), D154 and D158 in TM3, and H298 in TM6 with alanine dramatically reduced NDP-MSH binding affinity and receptor signaling, (ii) substitutions of aromatic amino acids F295 and F296 in TM6 with alanine also significantly decreased NDP-MSH binding and receptor activity, (iii) substitutions of D121in TM2 and D332 in TM7 with alanine resulted in the complete loss of ligand binding, ligand induced receptor activation, and cell surface protein expression, and (iv) interestingly, substitution of L165 in TM3 with methionine or alanine switched antagonist SHU9119 into a receptor agonist. In conclusion: Our results suggest that TM3 and TM6 are important for NDP-MSH binding, while D121 in TM2 and D332 in TM7 are crucial for receptor activity and signaling. Importantly, L165 in TM3 is critical for agonist or antagonist selectivity. These results provide important information about the molecular determinants of hMC3R responsible for ligand binding and receptor signaling.  相似文献   

6.
The hypothalamic melanocortin-4 receptor (MC4R), a seven transmembrane G-protein-coupled receptor, plays an important role in the regulation of body weight. The synthetic melanocortin analog SHU9119 has been widely used to characterize the physiological role of MC4R in feeding behavior and energy homeostasis. Previous studies indicated that SHU9119 is an agonist at the melanocortin-1 receptor (MC1R) but an antagonist at the MC4R. However, the molecular basis of the interaction between hMC4R and SHU9119 has not been clearly defined. To gain insight into the molecular determinants of hMC4R in the selectivity of SHU9119 chimeras and mutants hMC1R and hMC4R were expressed in cell lines and pharmacologically analyzed. A region of receptor containing the third transmembrane of hMC4R was found to be required for selective SHU9119 antagonism. Further mutagenesis studies of this region of hMC4R demonstrated that the amino acid residue leucine 133 in the third transmembrane was critical for the selective antagonist activity of SHU9119. The single substitution of leucine 133 to methionine did not affect SHU9119 binding to hMC4R. However, this substitution did convert SHU9119 from an antagonist to an agonist. Conversely, exchange of Met(128) in hMC1R to Leu, the homologous residue 133 of hMC4R, displayed a reduction in SHU9119 binding affinity and potency. This report provides the details of the molecular recognition of SHU9119 antagonism at hMC4R and shows that amino acid Leu(133) of hMC4R plays a key role in melanocortin receptor subtype specificity.  相似文献   

7.
Yang Y  Chen M  McPherson D  Mishra V  Harmon CM 《Peptides》2011,32(12):2377-2383
Melanocortin-3 receptor (MC3R), expressed in the hypothalamus and limbic systems of the brain, as well as by peripheral sites, plays an important role in the regulation of energy homeostasis and other physiological functions. Past work shows that MC3R-deficiency resulted in fat mass increase, feeding efficiency increase, hyperleptinemia and mild hyperinsulinemia in mice and human. MC3R belongs to G-protein coupled receptor (GPCR) family and many studies indicate that some cysteine residues in GPCR play key roles in maintaining receptor tertiary structure and function. In this study, we examined the role of cysteine residues in MC3R on receptor function. Human MC3R (hMC3R) has eighteen cysteine residues where they are located in the extracellular loops (ELs), the transmembrane domains (TMs) and the intracellular loops (ILs). We replaced these cysteines with serine and expressed these receptors in HEK-293 cells which lack endogenous MC3R. Our results indicate that five cysteines in eighteen of the hMC3R are important for hMC3R function. Mutations, C305S, C311S, and C313S in EL3, resulted in significant decrease in receptor expression and receptor function while two other mutations C115S and C162S in TM3 significantly decreased NDP-MSH binding affinity and potency. These results suggest that extracellular cysteine residue 305, 311 and 313 are crucial for receptor expression and the transmembrane cysteine residue, C115 and 162 are important for ligand binding and signaling. These findings provide important insights into the importance of cysteine residues of hMC3R on receptor tertiary structure and function.  相似文献   

8.
A three-dimensional structure of the human melanocortin 4 receptor (hMC4R) is constructed in this study using a computer-aided molecular modeling approach. Human melanocortin 4 receptor is a G Protein-Coupled Receptor (GPCR). We structurally aligned transmembrane helices with bovine rhodopsin transmembrane domains, simulated both intracellular and extracellular loop domains on homologous loop regions in other proteins of known 3D structure and modeled the C terminus on the corresponding part of bovine rhodopsin. Then tandem minimization and dynamics calculations were run to refine the crude structure. The simulative model was tested by docking with a triplet peptide (RFF) ligand. It was found that the ligand is located among transmembrane regions TM3, TM4, TM5, and TM6 of hMC4R. In consistence with mutational and biochemical data, binding site is mainly formed as a hydrophobic and negatively charged pocket. The model constructed here might provide a structural framework for making rational predictions in relevant fields.  相似文献   

9.
10.
The melanocortin pathway, specifically the melanocortin-4 receptor and the cognate endogenous agonist and antagonist ligands, have been strongly implicated in the regulation of energy homeostasis and satiety. Genetic studies of morbidly obese human patients and normal weight control patients have resulted in the discovery of over 70 human melanocortin-4 receptor (MC4R) polymorphisms observed as both heterozygous and homozygous forms. A number of laboratories have been studying these hMC4R polymorphisms attempting to understand the molecular mechanism(s) that might explain the obese human phenotype. Herein, we have studied 13 polymorphic hMC4Rs that have been identified to possess statistically significant decreased endogenous agonist potency with synthetic peptides and small molecules attempting to identify ligands that can pharmacologically rescue the hMC4R polymorphic agonist response. The ligands examined in this study include NDP-MSH, MTII, Ac-His-DPhe-Arg-Trp-NH2 (JRH887-9), Ac-Anc-DPhe-Arg-Trp-NH2 (amino-2-naphtylcarboxylic acid, Anc, JRH420-12), Ac-His-(pI)DPhe-Arg-Trp-NH2 (JRH322-18), chimeric AGRP-melanocortin based ligands (Tyr-c[Cys-His-DPhe-Arg-Trp-Asn-Ala-Phe-Cys]-Tyr-NH2, AMW3-130 and Ac-mini-(His-DPhe-Arg-Trp)-hAGRP-NH2, AMW3-106), and the small molecules JB25 and THIQ. The hMC4R polymorphisms included in this study are S58C, N97D, I102S, L106P, S127L, T150I, R165Q, R165W, L250Q, G252S, C271Y, Y287Stop, and I301T. These studies resulted in the NDP-MSH, MTII, AMW3-130, THIQ, and AMW3-106 ligands possessing nanomolar to subnanomolar agonist potency at the hMC4R polymorphisms examined in this study. Thus, these ligands could generically rescue the potency and stimulatory response of the abnormally functioning hMC4Rs studied and may provide tools to further clarify the molecular mechanism(s) involving these receptor modifications.  相似文献   

11.
The ACTH receptor, also known as the melanocortin-2 receptor (MC2R), is critical for ACTH-mediated adrenal glucocorticoid release. Human MC2R (hMC2R) has 10 cysteine residues, which are located in extracellular loops (ELs), transmembrane domains (TMs), and intracellular loops (ILs). In this study, we examined the importance of these cysteine residues in receptor function and determined their involvement in disulfide bond formation. We replaced these cysteines with serine and expressed the mutated receptors in adrenal OS3 cells, which lack endogenous MC2R. Our results indicate that four mutations, C21S in NH(2) terminus, C245S, C251S, and C253S in EL3, resulted in significant decrease both in receptor expression and receptor function. Mutation of cysteine 231 in TM6 significantly decreased ACTH binding affinity and potency. In contrast, the five other mutated receptors (C64S, C158S, C191S, C267S, and C293S) did not significantly alter ACTH binding affinity and potency. These results suggest that extracellular cysteine residue 21, 245, 251, and 253, as well as transmembrane cysteine residue 231 are crucial for ACTH binding and signaling. Further experiments suggest that a disulfide bond exists between the residue C245 and C251 in EL3. These findings provide important insights into the importance of cysteine residues of hMC2R for receptor function.  相似文献   

12.
Among the melanocortins alpha-MSH is known to be involved in feeding behavior. These hormones mediate their effects through G protein-coupled receptors by stimulating adenylate cyclase. In this study, we have developed an in vitro expression model for human melanocortin 3 receptor (hMC3R) tagged at its C terminus with EGFP. The corresponding chimeric cDNA was stably expressed in HEK293 cells. The selected clones expressing the hMC3R-EGFP exhibited cell surface fluorescence and responded to NDP-MSH stimulation by producing cAMP in a dose-dependent manner (EC(50): 0.3 nM). Binding studies revealed a single class of binding sites with a K(D) of 2.24 nM. Moreover, Agouti-related protein was also demonstrated to be an antagonist of the hMC3R-EGFP. Thus, the hMC3R tagged with EGFP stably expressed in HEK293 cells, exhibiting the same characteristics than the wild-type hMC3R, is the only model of expression of this receptor allowing its direct localization inside living cells.  相似文献   

13.
Melanocortin 4 receptor (MC4R) plays an important role in the regulation of food intake and body weight. To determine the molecular basis of human MC4R (hMC4R) responsible for alpha-melanocortin-stimulating hormone (alpha-MSH) binding, in this study, we utilized both receptor domain exchange and site-directed mutagenesis studies to investigate the molecular determinants of hMC4R responsible for alpha-MSH binding and signaling. alpha-MSH is a potent agonist at hMC4R but not at hMC2R. Cassette substitutions of the second, third, fourth, fifth, and sixth transmembrane regions (TM) of the hMC4R with the homologous regions of hMC2R were performed and alpha-MSH binding and signaling were examined. Our results indicate that each chimeric receptor was expressed at the cell surface and the expression levels remain similar to that of the wild-type receptor. The cassette substitutions of the second, fourth, fifth, and sixth TMs of the hMC4R with homologous regions of the hMC2R did not significantly alter alpha-MSH binding affinity and potency except substitution of the TM3 of the hMC4R, suggesting that the conserved residues in TMs of the hMC4R are crucial for alpha-MSH binding and signaling. Further mutagenesis studies indicate that conserved residues Glu(100) in TM2, Asp(122), Asp(126) in TM3 and Trp(258), Phe(261), His(264) in TM6 are involved in alpha-MSH binding and signaling. In conclusion, our results suggest that the conserved residues in the TM2, TM3, and TM6 of the hMC4R are responsible for alpha-MSH binding and signaling.  相似文献   

14.
Fleck BA  Ling N  Chen C 《Biochemistry》2007,46(37):10473-10483
The melanocortin-4 receptor (MC4R) is involved in regulating energy homeostasis and is a potential therapeutic target for obesity and cachexia. Molecular interactions between peptide ligands and MC4R have been studied in detail. Less is known regarding the role of these interactions in the mechanism of MC4R activation. The aim of this study was to investigate the molecular mechanism of human MC4R activation by [Nle4, d-Phe7]alpha-melanocyte-stimulating hormone (NDP-MSH), by first defining the role of the His6-d-Phe7-Arg8-Trp9 residues in receptor activation (Emax for stimulation of cAMP accumulation) using modified peptides, then understanding how their interaction with the receptor modulates activation using site-directed mutagenesis and a molecular model of NDP-MSH bound to the active state of the receptor. Alanine substitution indicated that the d-Phe7, Arg8, and Trp9 side chains contribute binding energy but are not essential for the receptor activation event. Conversely, His6 to Ala6 substitution reduced receptor activation but did not affect affinity. Chlorine substitutions on the d-Phe7 side chain also inhibited receptor activation. F261(6.51)A and F284(7.35)A receptor mutations acted as gain-of-function mutations, restoring efficacy to the His6 and d-Phe7 substituted peptides that had lost efficacy at the wild-type receptor. Based on a model of NDP-MSH and MC4R interaction, the antagonist behavior of these peptides is consistent with the prevention of transmembrane 6 (TM6) rotation. This data supports the hypothesis that increasing the size of d-Phe7 directly interferes with TM6 rotation, preventing receptor activation. We further propose that removing the interaction with the His6 side chain reorients the peptide within the binding pocket, indirectly impeding TM6 rotation by strengthening peptide interaction with F261(6.51) and F284(7.35). These findings refine the molecular basis for the mechanism of ligand-stimulated hMC4R activation and will be useful for the development of hMC4R agonists and antagonists.  相似文献   

15.
Chai B  Li JY  Zhang W  Newman E  Ammori J  Mulholland MW 《Peptides》2006,27(11):2846-2857
The melanocortin-4 receptor (MC4R) is a seven transmembrane member of the melanocortin receptor family. The GT1-1 cell line exhibits endogenous expression of MC4R. In this study, GT1-1 cells were used to study MC4R signaling pathways and to examine the effects of melanocortin receptor agonist NDP-MSH on apoptosis. MC4R mRNA expression was demonstrated by RT-PCR. Functional melanocortin receptor expression was implied by specific binding of NDP-MSH and cAMP production. NDP-MSH-stimulated GnRH release in a dose-dependent manner. Serum deprivation-induced apoptosis in GT1-1 cells, and the NDP-MSH inhibited this effect. The melanocortin receptor antagonist SHU9119 blocked the antiapoptotic actions of NDP-MSH, and the MAP kinase inhibitor PD98059 significantly attenuated the antiapoptotic effect. NDP-MSH-stimulated ERK1/2 phosphorylation in a dose-dependent manner. ERK1/2 phosphorylation could be abolished by SHU9119. In GT1-1 cells, melanocortin receptor activation causes ERK1/2 phosphorylation. In these cells, MC4R activation is also associated with antiapoptotic effects.  相似文献   

16.
Truncated glycine receptors that have been found in human patients suffering from the neuromotor disorder hyperekplexia or in spontaneous mouse models resulted in non-functional ion channels. Rescue of function experiments with the lacking protein portion expressed as a separate independent domain demonstrated restoration of glycine receptor functionality in vitro. This construct harbored most of the TM3-4 loop, TM4, and the C terminus and was required for concomitant transport of the truncated α1 and the complementation domain from the endoplasmic reticulum toward the cell surface, thereby enabling complex formation of functional glycine receptors. Here, the complementation domain was stepwise truncated from its N terminus in the TM3-4 loop. Truncation of more than 49 amino acids led again to loss of functionality in the receptor complex expressed from two independent domain constructs. We identified residues 357–418 in the intracellular TM3-4 loop as being required for reconstitution of functional glycine-gated channels. All complementation constructs showed cell surface protein expression and correct orientation according to glycine receptor topology. Moreover, we demonstrated that the truncations did not result in a decreased protein-protein interaction between both glycine receptor domains. Rather, deletions of more than 49 amino acids abolished conformational changes necessary for ion channel opening. When the TM3-4 loop subdomain harboring residues 357–418 was expressed as a third independent construct together with the truncated N-terminal and C-terminal glycine receptor domains, functionality of the glycine receptor was again restored. Thus, residues 357–418 represent an important determinant in the process of conformational rearrangements following ligand binding resulting in channel opening.  相似文献   

17.
In vitro mutagenesis of the mouse melanocortin-4 receptor (mMC4R) has been performed, based upon homology molecular modeling and previous melanocortin receptor mutagenesis studies that identified putative ligand-receptor interactions. Twenty-three mMC4 receptor mutants were generated and pharmacologically characterized using several melanocortin-based ligands [alpha-MSH, NDP-MSH, MTII, DNal (1')(7)-MTII, Nal(2')(7)-MTII, SHU9119, and SHU9005]. Selected mutant receptors possessing significant differences in the melanocortin-based peptide agonist and/or antagonist pharmacology were further evaluated using the endogenous antagonist agouti-related protein fragment hAGRP(83-132) and hAGRP(109-118) molecules. These studies of the mouse MC4R provide further experimental data suggesting that the conserved melanocortin receptor residues Glu92 (TM2), Asp114 (TM3), and Asp118 (TM3) (mouse MC4R numbering) are important for melanocortin-based peptide molecular recognition. Additionally, the Glu92 and Asp118 mMC4R residues are important for molecular recognition and binding of AGRP(83-132). We have identified the Phe176 (TM4), Tyr179 (TM4), Phe254 (TM6), and Phe259 (TM6) receptor residues as putatively interacting with the melanocortin-based ligand Phe(7) by differences between alpha-MSH and NDP-MSH agonist potencies. The Glu92, Asp118, and Phe253 mMC4R receptor residues appear to be critical for hAGRP(83-132) molecular recognition and binding while Phe176 appears to be important for functional antagonism of AGRP(83-132) and AGRP(109-118) but not molecular recognition. The Phe253 mMC4R residue appears to be important for AGRP(83-132) molecular recognition and general mMC4 receptor stimulation. The Phe254 and Phe259 mMC4R amino acids may participate in the differentiation of agonist versus antagonist activity of the melanocortin-based peptide antagonists SHU9119 and SHU9005, but not AGRP(83-132) or AGRP(109-118). The Met192 side chain when mutated to a Phe results in a constitutively active mMC4R that does not effect agonist ligand binding or potency. Melanocortin-based peptides modified at the 7 position of MTII with DPhe, DNal(1'), Nal(2'), and DNal(2') have been pharmacologically characterized at these mutant mouse MC4Rs. These data suggest a revised hypothesis for the mechanism of SHU9119 antagonism at the MC4R which may be attributed to the presence of a "bulky" naphthyl moiety at the 7 position (original hypothesis), and additionally that both the stereochemistry and naphthyl ring position (2' versus 1') are important for positioning of the ligand Arg(8) residue with the corresponding mMC4R amino acids.  相似文献   

18.
Prokineticins are a pair of signal factors involved in many physiological processes by binding to two closely related G-protein-coupled receptors, PKR1 and PKR2. Recently, mutations in prokineticin 2 (PK2) and PKR2 are found to be associated with Kallmann syndrome and/or idiopathic hypogonadotropic hypogonadism, disorders characterized by delayed puberty and infertility. However, little is known how PKRs interact and activate G-proteins to elicit signal transduction. In the present study, we took advantage of one disease-associated mutation (R164Q) located in the second intracellular (IL2) loop of PKR2, to investigate the role of IL2 loop in the cell signaling, G-protein binding and receptor trafficking. R164Q mutant PKR2 showed normal cell surface expression and ligand binding capacity. However, the PKR2 signaling was abolished by R164Q mutation. We demonstrated that R164Q mutation disrupted the interaction of IL2 loop to the Gα(q), Gα(i), and Gα(16)-proteins. A positive-charged amino acid at this position is required for proper function, and the signaling efficacy and potency depend on the net amount of positive charges. We also demonstrated that the interactive partner of Arg-164 may localize in the C-terminal five residues of Gα(q)-protein. A series of mutation analysis indicated that the basic amino acids at the C terminus of IL2 loop may function cooperatively in GPCRs. Furthermore, R164Q mutation also results in minimal ligand-induced endocytosis of PKR2. As many GPCRs share structural homology in the C terminus of IL2 loop, our findings may have general application in understanding structure and function of GPCRs.  相似文献   

19.
The molecular interactions between human melanocortin receptor-1 and -4 (hMC1R and hMC4R) and their endogenous antagonists, agouti signaling protein (ASIP) and agouti-related protein (AGRP), were assessed by studying the effects of site-directed mutations on the binding affinity of (125)I-ASIP[90-132(L89Y)] and (125)I-AGRP(86-132). Mutations of homologous residues from transmembrane helices (TMHs) 3 and 6 and extracellular loop (EL) 3 (D121A, T124A, F257A, and F277M in hMC1R and D126A, I129A F261A, and M281F in hMC4R) impaired binding of both antagonists to hMC4R and binding of the ASIP fragment to hMC1R. However, the mutations in TMH2 (E94A in hMC1R and E100A in hMC4R), TMH7 (F280A in hMC1R and F284A in hMC4R), and EL2 (Y183S, H184S, and D184H in hMC1R) only significantly affected binding of the ASIP fragment. The dependence of agonist binding on the dithiothreitol concentration followed a monophasic curve for wild-type hMC4R and its C40A, C271A, and C279A mutants and a biphasic curve for hMC1R, suggesting the presence of at least one structurally and functionally essential disulfide bond in both wild-type receptors and the hMC4R mutants. Models of complexes of both receptors with the ASIP fragment and hMC4R with the AGRP fragment were calculated using constraints from the experimental structures of rhodopsin and AGRP fragments, a set of deduced hydrogen bonds, supplemented by two proposed disulfide bridges and receptor-ligand contacts, derived from our mutagenesis data. In the models of the ASIP fragment complexed with both receptors, the core ligand tripeptide, Arg-Phe-Phe, positioned between TMHs 3 and 6, is shifted toward TMHs 2 and 7 relative to its position in the AGRP-hMC4R model, while the N-terminal loop and two central disulfides of the antagonists interact with EL2 of the receptors.  相似文献   

20.
The MC3R and MC4R proteins comprise two melanocortin receptor subtypes that are involved in obesity, with each protein displaying a unique mechanism of action. To enable the design of a selective drug candidate, the solution structures of four peptidyl analogues of the melanocyte stimulating hormones, NDP-MSH, NDP-MSH(4-10) and two cyclic forms ([C5,C10]NDP-MSH(5-10), [C5,C10]NDP-MSH(5-11)), were characterized by two-dimensional nuclear magnetic resonance (NMR) spectroscopy and simulated annealing calculations. Using data from c-AMP assays in combination with structural analysis of melanocortin receptor/ligand models, we conclude that a lysine residue at the C-terminus of the His-Phe-Arg-Trp core sequence of melanocortin hormone is an important determinant for receptor selectivity in the both cyclic and linear MSH analogues. Our results suggest that side-chain orientation and charge-charge interactions with the ligand molecule play critical roles in receptor selectivity, whereas the overall backbone conformation or turn type contributes mainly to receptor binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号