首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
C3与C4植物的环境调控   总被引:9,自引:2,他引:9  
环境条件决定着不同光合类型植物的地理分布范围和区域 ,一般来说 ,C4 植物分布于高温、强光的环境而 C3植物分布于阴凉、湿润的环境 ,且 C4 比 C3植物光合速率高。但环境条件影响着不同光合类型植物的光合潜能的发挥 ,C4 植物在高温、强光、干旱条件下所表现出来的优势在其它环境条件下未必就显现出来。环境条件甚至可以引起 C3、C4 光合途径间的相互转化 ,这使得目前几种鉴别植物光合类型的方法出现不一致的结果。因此 ,在判断植物的光合类型时 ,要注意多种手段的综合利用 ,同时注意植物所处环境条件的影响。  相似文献   

2.
Reaction of [Mo2O2(μ-S)2(H2O)6]2+ with Mo(CO)6 or metallic Mo under hydrothermal conditions (140 °C, 4 M HCl) gives oxido-sulfido cluster aqua complex [Mo33-S)(μ-O)2(μ-S)(H2O)9]4+ (1). Similarly, [W33-S)(μ-O)2(μ-S)(H2O)9]4+ (2) is obtained from [W2O2(μ-S)2(H2O)6]2+ and W(CO)6. While reaction of [Mo2O2(μ-S)2(H2O)6]2+ with W(CO)6 mainly proceeds as simple reduction to give 1, [W2O2(μ-S)2(H2O)6]2+ with Mo(CO)6 produces new mixed-metal cluster [W2Mo(μ3-S)(μ-O)2(μ-S)(H2O)9]4+ (3) as main product. From solutions of 1 in HCl supramolecular adduct with cucurbit[6]uril (CB[6]) {[Mo3O2S2(H2O)6Cl3]2CB[6]}Cl2⋅18H2O (4) was isolated and structurally characterized. The aqua complexes were converted into acetylacetonates [M3O2S2(acac)3(py)3]PF6 (M3 = Mo3, W3, W2Mo; 5a-c), which were characterized by X-ray single crystal analysis, electrospray ionization mass spectrometry and 1H NMR spectroscopy. Crystal structure of (H5O2)(Me4N)4[W33-S)(μ2-S)(μ2-O)2(NCS)9] (6), obtained from 2, is also reported.  相似文献   

3.
The transformation of 23,24-bisnorchol-4-en-3-one-22-ol into 6β,11α,22-trihydroxy-23,24-bisnorchol-4-en-3-one by the fungus Rhizopus arrhizus has been shown to be dependent on the composition of the culture medium, with respect to yield of the triol. The transformation of the 22-alcohol to 6β,11α-dihydroxy-pregn-4-ene-3,20-dione is also reported.  相似文献   

4.
Magnetic Fe3O4-chitosan nanoparticles are prepared by the coagulation of an aqueous solution of chitosan with Fe3O4 nanoparticles. The characterization of Fe3O4-chitosan is analyzed by FTIR, FESEM, and SQUID magnetometry. The Fe3O4-chitosan nanoparticles are used for the covalent immobilization of lipase from Candida rugosa using N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide (EDC) and N-hydroxysuccinimide (NHS) as coupling agents. The response surface methodology (RSM) was employed to search the optimal immobilization conditions and understand the significance of the factors affecting the immobilized lipase activity. Based on the ridge max analysis, the optimum immobilization conditions were immobilization time 2.14 h, pH 6.37, and enzyme/support ratio 0.73 (w/w); the highest activity obtained was 20 U/g Fe3O4-chitosan. After twenty repeated uses, the immobilized lipase retains over 83% of its original activity. The immobilized lipase shows better operational stability, including wider thermal and pH ranges, and remains stable after 13 days of storage at 25 °C.  相似文献   

5.
外施Ca^2+,ABA及H3PO4对盐碱胁迫的缓解效应   总被引:8,自引:0,他引:8  
分别对300mmol  相似文献   

6.
Immediate export in leaves of C3‐C4 intermediates were compared with their C3 and C4 relatives within the Panicum and Flaveria genera. At 35 Pa CO2, photosynthesis and export were highest in C4 species in each genera. Within the Panicum, photosynthesis and export in ‘type I’ C3‐C4 intermediates were greater than those in C3 species. However, ‘type I’ C3‐C4 intermediates exported a similar proportion of newly fixed 14C as did C4 species. Within the Flaveria, ‘type II’ C3‐C4 intermediate species had the lowest export rather than the C3 species. At ambient CO2, immediate export was strongly correlated with photosynthesis. However, at 90 Pa CO2, when photosynthesis and immediate export increased in all C3 and C3‐C4 intermediate species, proportionally less C was exported in all photosynthetic types than that at ambient CO2. All species accumulated starch and sugars at both CO2 levels. There was no correlation between immediate export and the pattern of 14C‐labelling into sugars and starch among the photosynthetic types within each genus. However, during CO2 enrichment, C4Panicum species accumulated sugars above the level of sugars and starch normally made at ambient CO2, whereas the C4Flaveria species accumulated only additional starch.  相似文献   

7.
Attempts are being made to introduce C4 photosynthetic characteristics into C3 crop plants by genetic manipulation. This research has focused on engineering single‐celled C4‐type CO2 concentrating mechanisms into C3 plants such as rice. Herein the pros and cons of such approaches are discussed with a focus on CO2 diffusion, utilizing a mathematical model of single‐cell C4 photosynthesis. It is shown that a high bundle sheath resistance to CO2 diffusion is an essential feature of energy‐efficient C4 photosynthesis. The large chloroplast surface area appressed to the intercellular airspace in C3 leaves generates low internal resistance to CO2 diffusion, thereby limiting the energy efficiency of a single‐cell C4 concentrating mechanism, which relies on concentrating CO2 within chloroplasts of C3 leaves. Nevertheless the model demonstrates that the drop in CO2 partial pressure, pCO2, that exists between intercellular airspace and chloroplasts in C3 leaves at high photosynthetic rates, can be reversed under high irradiance when energy is not limiting. The model shows that this is particularly effective at lower intercellular pCO2. Such a system may therefore be of benefit in water‐limited conditions when stomata are closed and low intercellular pCO2 increases photorespiration.  相似文献   

8.
Comparative ecophysiology of C3 and C4 plants   总被引:2,自引:3,他引:2  
Abstract. In this review we relate the physiological significance of C4 photosynthesis to plant performance in nature. We begin with an examination of the physiological consequences of the C4 pathway on photosynthesis, then discuss the ecophysiological performance of C4 plants in contrasting environments. We then compare the performance of C3 and C4 plants when they occur together in similar habitats, and finally discuss the distribution of C4 photosynthesis with respect to the physical environment, phylogeny, and life form.  相似文献   

9.
蛹虫草是一种药食两用真菌,具有与冬虫夏草相似的功能,且富硒能力较强。本研究通过大量的人工栽培试验,旨在探究不同浓度Na_2SeO_4对新疆本地蛹虫草子实体生长的影响。试验表明,质量浓度为20 mg/L的Na_2SeO_4对蛹虫草的生长不产生显著影响,但蛹虫草各项生物学指标均随着培养基中外源Na_2SeO_4浓度的增加而呈下降趋势,说明随着外源Na_2SeO_4浓度的增加会对蛹虫草的生长产生抑制效应,当外源Na_2SeO_4质量浓度达到200 mg/L时,生产的蛹虫草已不具备商品价值。由此可见,20 mg/L的质量浓度是以Na_2SeO_4为硒源进行蛹虫草富硒研究的安全浓度。该研究为富硒产品开发寻找新的硒源开辟了新思路,为新疆地区进一步大规模栽培富硒蛹虫草提供一定的参考,但是对以Na_2SeO_4为硒源的最佳富硒浓度还有待于进一步研究。  相似文献   

10.
Etiolated potato sprouts convert administered cholesterol-4-14C to radioactive 26-hydroxycholesterol and cholest-4-en-3-one. These two steroids must be the first products of cholesterol metabolism in potato plants.  相似文献   

11.
Fe3O4 magnetic nanoparticles with different particle sizes were synthesized using two methods, i.e., a co-precipitation process and a polyol process, respectively. The atomic pair distribution analyses from the high-energy X-ray scattering data and TEM observations show that the two kinds of nanoparticles have different sizes and structural distortions. An average particle size of 6–8 nm with a narrow size distribution was observed for the nanoparticles prepared with the co-precipitation method. Magnetic measurements show that those particles are in ferromagnetic state with a saturation magnetization of 74.3 emu g−1. For the particles synthesized with the polyol process, a mean diameter of 18–35 nm was observed with a saturation magnetization of 78.2 emu g−1. Although both kinds of nanoparticles are well crystallized, an obviously higher structural distortion is evidenced for the co-precipitation processed nanoparticles. The synthesized Fe3O4 particles with different mean particle size were used for treating the wastewater contaminated with the metal ions, such as Ni(II), Cu(II), Cd(II) and Cr(VI). It is found that the adsorption capacity of Fe3O4 particles increased with decreasing the particle size or increasing the surface area. While the particle size was decreased to 8 nm, the Fe3O4 particles can absorb almost all of the above-mentioned metal ions in the contaminated water with the adsorption capacity of 34.93 mg/g, which is ∼7 times higher than that using the coarse particles. We attribute the extremely high adsorption capacity to the highly-distorted surface.  相似文献   

12.
The scope of formation and structures of tungsten-iron-sulfur clusters has been explored using reactions based on [(Tp*)WS3]1− (1) as the ultimate precursor. The reaction system 1/FeCl2/NaSEt/S affords the cubane cluster [(Tp*)WFe3S4Cl3]1− (2), which with NaSEt is converted to [(Tp*)WFe3S4(SEt)3]1− (3).Clusters 2 and 3 contain the cubane [WFe33-S)4]3+ core.Complex 1 with FeCl2/NaSEt forms [(Tp*)WFe2S3Cl2(SEt)]1− (4) with the cuboidal [WFe22-S)23-S)(μ2-SR)]2+ core.Treatment of 2 with excess Et3P yields the edge-bridged double [(Tp*)2W2Fe6S8(PEt3)4] (5) with the [W2Fe63-S)64-S)2] core. Reaction of 2 with excess leads a mixture of products, from which [(Tp*)2W2Fe5S9Na(SH)(MeCN)]3−(6) was identified.This cluster, as closely related [(Tp)2Mo2Fe6S9(SH)2]3−, exhibits a core topology [W2Fe5Na(μ2-S)23-S)66-S)] very similar to the PN cluster of nitrogenase. All reactions were carried out in acetonitrile. The structures of 2-6 were established crystallographically as Et4N+ salts. In the cubane series, substitution of tungsten for molybdenum decreases the [MFe3S4]3+/2+ redox potential by ca. 0.20 V but has a negligible effect on electron distribution. This work expands the small set of previously known weak-field W-Fe-S clusters, demonstrates the existence of tungsten-containing edge-bridged double cubanes and clusters with the PN core topology, and introduces a new cuboidal core structure as found in 4 (Tp = hydrotris(pyrazolyl)borate, Tp* = hydrotris(3,5-dimethylpyrazolyl)borate).  相似文献   

13.
Grasses with the C3 photosynthetic pathway are commonly considered to be more nutritious host plants than C4 grasses, but the nutritional quality of C3 grasses is also more greatly impacted by elevated atmospheric CO2 than is that of C4 grasses; C3 grasses produce greater amounts of nonstructural carbohydrates and have greater declines in their nitrogen content than do C4 grasses under elevated CO2. Will C3 grasses remain nutritionally superior to C4 grasses under elevated CO2 levels? We addressed this question by determining whether levels of protein in C3 grasses decline to similar levels as in C4 grasses, and whether total carbohydrate : protein ratios become similar in C3 and C4 grasses under elevated CO2. In addition, we tested the hypothesis that, among the nonstructural carbohydrates in C3 grasses, levels of fructan respond most strongly to elevated CO2. Five C3 and five C4 grass species were grown from seed in outdoor open‐top chambers at ambient (370 ppm) or elevated (740 ppm) CO2 for 2 months. As expected, a significant increase in sugars, starch and fructan in the C3 grasses under elevated CO2 was associated with a significant reduction in their protein levels, while protein levels in most C4 grasses were little affected by elevated CO2. However, this differential response of the two types of grasses was insufficient to reduce protein in C3 grasses to the levels in C4 grasses. Although levels of fructan in the C3 grasses tripled under elevated CO2, the amounts produced remained relatively low, both in absolute terms and as a fraction of the total nonstructural carbohydrates in the C3 grasses. We conclude that C3 grasses will generally remain more nutritious than C4 grasses at elevated CO2 concentrations, having higher levels of protein, nonstructural carbohydrates, and water, but lower levels of fiber and toughness, and lower total carbohydrate : protein ratios than C4 grasses.  相似文献   

14.
Abstract Evidence is drawn from previous studies to argue that C3—C4 intermediate plants are evolutionary intermediates, evolving from fully-expressed C3 plants towards fully-expressed C4 plants. On the basis of this conclusion, C3—C4 intermediates are examined to elucidate possible patterns that have been followed during the evolution of C4 photosynthesis. An hypothesis is proposed that the initial step in C4-evolution was the development of bundle-sheath metabolism that reduced apparent photorespiration by an efficient recycling of CO2 using RuBP carboxylase. The CO2-recycling mechanism appears to involve the differential compartmentation of glycine decarboxylase between mesophyll and bundle-sheath cells, such that most of the activity is in the bundlesheath cells. Subsequently, elevated phosphoenolpyruvate (PEP) carboxylase activities are proposed to have evolved as a means of enhancing the recycling of photorespired CO2. As the activity of PEP carboxylase increased to higher values, other enzymes in the C4-pathway are proposed to have increased in activity to facilitate the processing of the products of C4-assimilation and provide PEP substrate to PEP carboxylase with greater efficiency. Initially, such a ‘C4-cycle’ would not have been differentially compartmentalized between mesophyll and bundlesheath cells as is typical of fully-expressed C4 plants. Such metabolism would have limited benefit in terms of concentrating CO2 at RuBP carboxylase and, therefore, also be of little benefit for improving water- and nitrogen-use efficiencies. However, the development of such a limited C4-cycle would have represented a preadaptation capable of evolving into the leaf biochemistry typical of fully-expressed C4 plants. Thus, during the initial stages of C4-evolution it is proposed that improvements in photorespiratory CO2-loss and their influence on increasing the rate of net CO2 assimilation per unit leaf area represented the evolutionary ‘driving-force’. Improved resourceuse efficiency resulting from an efficient CO2-concentrating mechanism is proposed as the driving force during the later stages.  相似文献   

15.
ZrO2 supported La2O3 catalyst prepared by impregnation method was examined in the transesterification reaction of sunflower oil with methanol to produce biodiesel. It was found that the catalyst with 21 wt% loaded La2O3 and calcined at 600 °C showed the optimum activity. The basic property of the catalyst was studied by CO2-TPD, and the results showed that the fatty acid methyl ester (FAME) yield was related to their basicity. The catalyst was also characterized by TG–DTA, XRD, FTIR, SEM and TEM, and the mechanism for the formation of basic sites was discussed. It was also found that the crystallite size of support ZrO2 decreased by loading of La2O3, and the model of the solid-state reaction on the surface of La2O3/ZrO2 catalyst was proposed. Besides, the influence of various reaction variables on the conversion was investigated.  相似文献   

16.
Abstract Models developed to explain the biphasic response of CO2 compensation concentration to O2 concentration and the C3-like carbon isotope discrimination in C3-C4 intermediate species are used to characterize quantitatively the steps necessary in the evolution of C4 photosynthesis. The evolutionary stages are indicated by model outputs, CO2 compensation concentration and δ13C value. The transition from intermediate plants to C4 plants requires the complete formation of C4 cycle capacity, expressed by the models as transition from C4 cycle limitation by phosphoenolpyruvate (PEP) regeneration rate to limitation by PEP carboxylase activity. Other steps refer to CO2 leakage from bundle sheath cells, to further augmentations of C4 cycle components, to the repression of ribulose-1,5-bisphos-phate carboxylase in the mesophyll cells, and to a decrease in the CO2 affinity of the enzyme. Possibilities of extending the suggested approach to other physiological characteristics, and the adaptive significance of the steps envisaged, are discussed.  相似文献   

17.
The distribution pattern of C3 and C4 grasses was studied in eight sites located between 350 m and 2100 m along an altitudinal gradient in Central Argentina. Of 139 taxa fifty-nine are C3 and eighty C4. Species of the C3 tribes (Stipeae, Poeae, Meliceae, Aveneae, Bromeae and Triticeae) and C3 Paniceae species increase in number at higher elevations; only one C3 species was found below 650 m. C4 Aristideae, Pappophoreae, Eragrostideae, Cynodonteae, Andropogoneae and Paniceae increase at lower altitudes. The floristic crossover point is at about 1500 m; the ground cover cross-over point is at about 1000 m. Analysis of the relationships between % C4 species along the gradient and nine climatic and environmental variables showed the highest correlation with July mean temperature, but all temperature variables show highly significant correlations with % C4. Correlation with annual rainfall is lower but also significant. These results are consistent with previous research showing the relative importance of C4 grasses as temperature increases. C3 species make a high contribution to relative grass coverage below the C3/C4 floristic crossover point but are rare below 1000 m.  相似文献   

18.
Plasma membranes were isolated from green leaves of maize ( Zea mays ), spinach ( Spinacia oleracea ), Setaria viridis and wheat ( Triticum aestivum cv. Omase) by aqueous two-phase partitioning. Carbonic anhydrase activity was detected in these membranes. The activity was inhibited by specific inhibitors for carbonic anhydrase, acetazolamide and ethoxyzolamide. The carbonic anhydrase activity was markedly enhanced by the addition of Triton X-100 to the plasma membranes. The highest activity was obtained in the presence of 0.015% detergent. The activity was scarcely affected when the plasma membrane vesicles were treated with proteinase K, but largely inactivated by the protease after treating the membranes with Triton X-100. These results indicate that carbonic anhydrase faces the cytoplasmic side of the membrane since plasma membranes purified by aqueous two-phase partitioning are tightly sealed vesicles of right side-out orientation (apoplastic side-out). With leaves of C4 plants, 20 to 60% of the total carbonic anhydrase activity was found in the microsomal fraction. By contrast, only 1 to 3% of the activity was found in the microsomal fraction from leaves of C3 plants. Western blot analysis showed that a polypeptide in the spinach plasma membrane cross-reacted with an antiserum raised against spinach chloroplast carbonic anhydrase, and that the molecular mass of the plasma membrane enzyme was higher than that of the chloroplast carbonic anhydrase (28 and 26 kDa, respectively). This indicates the presence of different molecular species of carbonic anhydrase in the chloroplast and the plasma membrane.  相似文献   

19.
以两个甜菜品种‘KWS0143’(耐盐碱性强)和‘Beta464’(耐盐碱性较弱)为对象,设置4个Na2CO3浓度处理[占土壤质量的0%(CK)、0.4%、0.8%和1.2%],采用盆栽方法研究甜菜幼苗时期植株干质量、根际土壤酶活性和微生物数量的变化.结果表明: 与对照相比,0.4%处理的植株干质量明显增加,而0.8%和1.2%处理显著受到抑制,且处理间差异显著. 不同处理下甜菜幼苗根际土壤脲酶、过氧化氢酶和碱性磷酸酶活性表现出相似的变化规律,0.4%处理酶活性较对照有所增加但不显著;0.8%和1.2%处理则显著降低了酶活性,同时‘KWS0143’的土壤酶活性均高于‘Beta464’.与对照相比,0.4%处理土壤微生物群落没有显著变化;0.8%和1.2%处理的根际土壤细菌、真菌和放线菌数量显著减少,且‘KWS0143’的根际微生物数量高于‘Beta464’.两品种植株干质量、土壤酶和土壤微生物之间呈显著正相关;通径分析表明,‘KWS0143’植株干质量决定系数表现为:放线菌>细菌>过氧化氢酶>脲酶>真菌>碱性磷酸酶,‘Beta464’表现为:放线菌>过氧化氢酶>脲酶>真菌>碱性磷酸酶>细菌.  相似文献   

20.
The organotin complex [Ph3SnS(CH2)3SSnPh3] (1) was synthesized by PdCl2 catalyzed reaction between Ph3SnCl and disodium-1,3-propanedithiolate which in turn was prepared from 1,2-propanedithiol and sodium in refluxing THF. Reaction of 1 with Ru3(CO)12 in refluxing THF affords the mononuclear complex trans-[Ru(CO)4(SnPh3)2] (2) and the dinuclear complex [Ru2(CO)6(μ-κ2-SCH2CH2CH2S)] (3) in 20 and 11% yields, respectively, formed by cleavage of Sn-S bond of the ligand and Ru-Ru bonds of the cluster. Treatment of pymSSnPPh3 (pymS = pyrimidine-2-thiolate) with Ru3(CO)12 at 55-60 °C also gives 2 in 38% yield. Both 1 and 2 have been characterized by a combination of spectroscopic data and single crystal X-ray diffraction analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号