首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mutant of Saccharomyces cerevisiae defective in the cell wall beta-glucan structure was obtained. The mutant cells are extremely sensitive to (beta 1-3)-glucanase digestion and mild alkali treatment. Structural analysis revealed that the alkali-insoluble, skeletal glucan from wild type cells contains two components, a (beta 1-3) linked glucan with a laminated structure, and a highly branched glucan containing predominantly (beta 1-6) linkages. The mutant cells lack the latter component.  相似文献   

2.
3.
Electrophoretic karyotypes of two strains of Saccharomyces cerevisiae, a haploid laboratory strain and a wild strain known to be at least diploid, have been checked during vegetative growth. The karyotype of the haploid strain was very stable; however, the diploid strain underwent frequent modifications. In most cases the number of bands was reduced, but occasionally we observed one band splitting into two. In one case, chromosomal rearrangements took place between differently sized copies of chromosomes I and VI. We concluded that the chromosome length polymorphism observed among wild strains of S. cerevisiae could be explained partly by chromosomal structure reorganization occurring during mitosis.  相似文献   

4.
Rates of phosphate uptake were approximately twice as great for Saccharomyces cerevisiae single-cell phenotypic isolates exposed to space parameters as for the wild-type ground control. Quantitative determination of 32P was performed by liquid scintillation spectrometry utilizing Cerenkov radiation counting techniques.  相似文献   

5.
Rates of phosphate uptake were approximately twice as great for Saccharomyces cerevisiae single-cell phenotypic isolates exposed to space parameters as for the wild-type ground control. Quantitative determination of 32P was performed by liquid scintillation spectrometry utilizing Cerenkov radiation counting techniques.  相似文献   

6.
NMR analysis of a cell division cycle mutant of Saccharomyces cerevisiae   总被引:2,自引:0,他引:2  
cdc 19.1 is a temperature-sensitive lesion in the genome of Saccharomyces cerevisiae. The phenotype of this mutant is a cell cycle specific arrest in G1, which is expressed at 37 degrees C. In the present study, 31P- and 13C-NMR spectroscopy were used to analyze the metabolism of the mutant at the permissive and restrictive temperatures. Our results confirm previous findings which have indicated that cdc 19.1 contains temperature-sensitive pyruvate kinase activity. In contrast to previous findings, however, the present investigation demonstrates that restriction of pyruvate kinase activity in vivo takes as long as 24 h to be fully expressed. In addition, analysis by NMR has allowed us to assess the metabolic consequences of pyruvate kinase restriction which may contribute to the arrest of cell growth in the early G1 phase of the cell division cycle.  相似文献   

7.
To establish the molecular bases for development of a microbiological system approaching excretive fermentation of useful lipids, a mutant strain that accumulates lipids in the medium was isolated from the laboratory yeast Saccharomyces cerevisiae. Following the mutagenesis to strain YP1, a long chain fatty acid utilizer with ethylmethane sulfonate, the mutant strain, STG1, was selected from about 80,000 colonies. The analysis of extracellular lipids and the monitoring of leakage of intracellular proteins indicated that strain STG1 secreted lipids containing triacylglycerols into the extracellular space without cell lysis. Genetic studies clarified that this mutation was recessive and was complemented by wild-type genomic DNA fragments. STG1 was considered to be a good tool for elucidation of the molecular mechanism for transmembrane lipid transport.  相似文献   

8.
9.
We characterized a trifluoroleucine-resistant mutant of Saccharomyces cerevisiae, TFL20, that has a mutation in the LEU4 gene. We monitored the concentration of extracellular i-AmOH and intracellular amino acids, and compared the ratios of gene expression in TFL20 with the wild-type strain, K30. We found that the LEU1, LEU2, and BAT1 genes were up-regulated in TFL20 for metabolism, and that TFL20 simultaneously produced as much i-AmOH and leucine as K30 does.  相似文献   

10.
M Bard  T D Ingolia 《Gene》1984,28(2):195-199
Recombinant plasmids able to complement the Saccharomyces cerevisiae ole3 mutation were isolated. The nucleotide sequence responsible for complementation was localized to a 3.5-kb region. The level of delta-aminolevulinate (ALV) synthase activity in wild-type cells was six-fold lower than in plasmid-transformed ole3 mutant cells. Certain clones secreted a compound that supported growth of a lawn of adjacent ole3 mutant cells.  相似文献   

11.
The study of free nucleoside Y metabolism in a mutant strain of Saccharomyces cerevisiae seems to indicate that this component is not only provided by t-RNA Phe turnover. A peculiar physiologic activity-mitogenic type - may be connected with this observation.  相似文献   

12.
It is shown that in the temperature-sensitive yeast mutant (Saccharomyces cerevisiae) spo 11 at the restrictive temperature of 34 degrees C. (1) premeiotic DNA synthesis is nearly completely blocked; (2) the nucleus enters meiotic prophase indicated by the formation of axial cores and polysynaptonemal complexes; (3) the kinetic apparatus functions normally at meiosis I and II; (4) early spore formation occurs in nearly all cells but it is variable and all spores eventually degenerate. It is concluded that chromosome replication is not a prerequisite for the functions listed above. The apomictic yeast strain 4117 produces 2 diploid spores. It is shown that a diploid which produces 2-spored asci, synthesized from 4117, no. 5, and an adenine requiring strain (1) has a normal meiotic prophase with abundant synaptonemal complexes; (2) has only one meiotic spindle; (3) has spores which form red clones more frequently than normal or u.v.-treated vegetative cells form ade/ade red sectors through mitotic recombination. It is concluded that this apomictic yeast has maintained meiotic prophase, but that one of the two meiotic divisions is suppressed.  相似文献   

13.
The ambient temperature is a drawback in industrial ethanol production in Jaffna due to heat killing of yeast during fermentation. Thus a search was initiated for thermotolerant organisms suitable for fermentation in hot climates. The screening of the best wild-type organisms was undertaken as the first step. Thermotolerant strains were selected from environments where there are chances of organisms being exposed to high temperature. The samples were enriched and screened for thermotolerant organisms which survived at 45 °C for 15 h. Among the yeast strains selected from different sources, thermotolerant strains with the capacity to withstand 45 °C for 15 h were found in samples collected from the compost heap and distillery environments. Three colonies from the distillery environment were selected for further studies and named p1, p2 and p3. Exponential phase (18 h) cultures of p1, p2 and p3 were subjected to 15 temperature treatment cycles (at 50 °C each for 3 h) and thermally adapted strains pt1, pt2 and pt3 were obtained, showing 100, 30 and 20% viability at 50 °C for 30 min respectively. The initial round of thermal adaptation cycles increased the duration of 100% viability from 20 h (p1) to 68 h (pt1) when incubated at 40 °C. Very little benefit was obtained when pt1 was treated with u.v. and ethyl methanesulphonate. The selected strain was identified and designated as Saccharomyces cerevisiae S1. The ethanol produced from 100 g glucose l–1 by S. cerevisiae S1 was 46 g l–1 (36 h), 38 g l–1 (48 h) and 26 g l–1 (48 h) at 40, 43 and 45 °C respectively in rich nutrient medium.  相似文献   

14.
Adenosine kinase-deficient mutant of Saccharomyces cerevisiae   总被引:1,自引:0,他引:1  
Abstract A cordycepin-resistant mutant strain of Saccharomyces cerevisiae (CD-R2) was found to be deficient in adenosine kinase. This mutant accumulated S-adenosylhomocysteine during growth in the presence of exogenous adenosine and it grew in a pseudohyphal manner in the presence of this nucleotide.  相似文献   

15.
An oversecreting mutant of Saccharomyces cerevisiae was obtained from about 400 meiotic segregants derived from thediploid cells made by crossing the HBsAg-induced mutant NI-C with the wild-type strain Sey6211. When transformed with a plasmid containing mouse alpha-amylase cDNA, the mutant (NI-C-D4) exhibited an increased capacity (up to 13-fold) for the secretion of mouse alpha-amylase, higher than the parental strains and other standard wild-type strains. It was also shown that alpha-amylase secreted by the oversecreting mutant had a higher activity and contained more of the non-glycosylated form than the glycosylated form. This isolated oversecreting, low-glycosylation mutant may prove to be a potential S. cerevisiae host for the production of foreign proteins. Further genetic analysis suggested that the mutation responsible for the mutant's oversecretion was partially dominant and that both the oversecretion and low-glycosylation phenotypes were governed by a single chromosome mutation. These pleiotrophic phenotypes may be attributed to a defect in the synthesis of an ER-resident chaperone.  相似文献   

16.
17.
18.
19.
20.
Whole cells of Saccharomyces cerevisiae analyzed the conversion of benzaldehyde to benzyl alcohol in aqueous-organic biphasic media. Reaction rate increased dramatically as moisture content of the solvent was increased in the range 0% to 2%. The highest biotransformation rates were observed when hexane was used as organic solvent. Benzaldehyde was also converted to benzyl alcohol by a cell-free crude extract in biphasic systems containing hexane, although the rate of product formation was much lower. Mutant strains of S. cerevisiae lacking some or all of the ADH isoenzymes, ADH I, II, and III, manifested similar rates for bioconversion of benzaldehyde to benzyl alcohol in both aqueous and two-phase systems. In general, conversion rates observed in aqueous media were 2 to 3 times higher than those observed in hexane containing 2% moisture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号