首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
H Girardin  M Monod    J P Latg 《Applied microbiology》1995,61(4):1378-1383
The food-borne fungus Neosartorya fischeri, which is phenotypically related to the human opportunistic pathogen Aspergillus fumigatus, causes spoilage of heat-processed fruit products. Genomic methods were used to type N. fischeri strains and identify the genomic relationship between A. fumigatus and N. fischeri and between the different varieties of N. fischeri. EcoRI restriction fragment length polymorphism (RFLP) patterns obtained after ethidium bromide staining could differentiate most of N. fischeri var. glabra and N. fischeri var. spinosa strains. On the contrary, all N. fischeri var. fischeri strains tested exhibit the same RFLP pattern, which was similar to the A. fumigatus pattern. Similarly, Southern hybridization with a ribosomal probe showed some polymorphism between N. fischeri var. glabra and N. fischeri var. spinosa strains but could not distinguish between N. fischeri var. fischeri and A. fumigatus strains. By using the endonucleases EcoRI, HindIII, and BglII to generate Southern blot patterns with a fragment of the A. fumigatus gene coding for a 33-kDa protease, it was possible to differentiate N. fischeri var. fischeri from A. fumigatus. The difference between N. fischeri and A. fumigatus was confirmed by the use of moderately repetitive nonribosomal A. fumigatus sequences. These results are in agreement with previous studies that showed important infraspecific polymorphism within N. fischeri var. glabra and N. fischeri var. spinosa and, in contrast, the homogeneity of N. fischeri var. fischeri strains. A unique Southern blot pattern was seen for each strain of N. fischeri fingerprinted with the A. fumigatus repetitive sequence.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
It was shown that under definite conditions there was competition between natural variants of sea bacteria belonging to V. fischeri. Natural variants of V. fischeri, strain 6 differed in their resistance to streptomycin and had different growth rates under conditions of limited aeration. Morphologically all the variants were identical. V. fischeri P-0, V. fischeri P-1 and V. fischeri P-2 were studied. The study revealed that V. fischeri P-0 produced a non-dialysing thermostable trypsin-sensitive substance inhibiting the growth of V. fischeri P-1 and V. fischeri P-2. The maximum activity of the antibacterial substance was observed when V. fischeri P-0 was grown in a liquid medium with peptone and yeast extract without agitation at 26 degrees C. The inhibiting substance was also active against V. fischeri BKM B995 and V. fischeri P-7 isolated as a result of V. fischeri P-0 exposure to ethidium bromide. The substance had no effect on the following bacterial species: Aeromonas liquefaciens 301, Achromobacter liquefaciens, Pseudomonas putida 15, Pseudomonas fluorescence 7, Escherichia coli AH-32 and Staphylococcus aureus.  相似文献   

3.
Repeated attempts to clone the luxI from Vibrio fischeri ATCC 49387 failed to produce a clone carrying a functional LuxI. Sequence data from the clones revealed the presence of a polymorphism when compared with previously published luxI sequences, prompting further characterization of bioluminescence regulation in V. fischeri ATCC 49387. Further investigation of V. fischeri ATCC 49387 revealed that its LuxI protein lacks detectable LuxI activity due to the presence of a glutamine residue at position 125 in the deduced amino acid sequence. Specific bioluminescence in V. fischeri ATCC 49387 increases with increasing cell density, indicative of a typical autoinduction response. However, conditioned medium from this strain does not induce bioluminescence in an ATCC 49387 luxR-plux-based acyl homoserine lactone reporter strain, but does induce bioluminescence in ATCC 49387. It has been previously shown that a V. fischeri MJ-1 luxI mutant exhibits autoinduction of bioluminescence through N-octanoyl-L-homoserine lactone, the product of the AinS autoinducer synthase. However, a bioreporter based on luxR-plux from V. fischeri ATCC 49387 responded poorly to conditioned medium from V. fischeri ATCC 49387 and also responded poorly to authentic N-octanoyl-DL-homoserine lactone. A similar MJ-1-based bioreporter showed significant induction under the same conditions. A putative ainS gene cloned from ATCC 49387, unlike luxI from ATCC 49387, expresses V. fischeri autoinducer synthase activity in Escherichia coli. This study suggests that a regulatory mechanism independent of LuxR and LuxI but possibly involving AinS is responsible for the control of autoinduction of bioluminescence in V. fischeri ATCC 49387.  相似文献   

4.
Previous studies of the Euprymna scolopes-Vibrio fischeri symbiosis have demonstrated that, during colonization, the hatchling host secretes mucus in which gram-negative environmental bacteria amass in dense aggregations outside the sites of infection. In this study, experiments with green fluorescent protein-labeled symbiotic and nonsymbiotic species of gram-negative bacteria were used to characterize the behavior of cells in the aggregates. When hatchling animals were exposed to 10(3) to 10(6) V. fischeri cells/ml added to natural seawater, which contains a mix of approximately 10(6) nonspecific bacterial cells/ml, V. fischeri cells were the principal bacterial cells present in the aggregations. Furthermore, when animals were exposed to equal cell numbers of V. fischeri (either a motile or a nonmotile strain) and either Vibrio parahaemolyticus or Photobacterium leiognathi, phylogenetically related gram-negative bacteria that also occur in the host's habitat, the symbiont cells were dominant in the aggregations. The presence of V. fischeri did not compromise the viability of these other species in the aggregations, and no significant growth of V. fischeri cells was detected. These findings suggested that dominance results from the ability of V. fischeri either to accumulate or to be retained more effectively within the mucus. Viability of the V. fischeri cells was required for both the formation of tight aggregates and their dominance in the mucus. Neither of the V. fischeri quorum-sensing compounds accumulated in the aggregations, which suggested that the effects of these small signal molecules are not critical to V. fischeri dominance. Taken together, these data provide evidence that the specificity of the squid-vibrio symbiosis begins early in the interaction, in the mucus where the symbionts aggregate outside of the light organ.  相似文献   

5.
Dilute acid extraction of Aspergillus fischeri mycelia contained two distinct antigens that were purified and separated by ethanol fractionation, concanavalin A precipitation, and chromatography on a Sephadex G-100 column. One antigen which emerges from the column among the early fractions contained 66% hexose determined as galactose and mannose but no demonstrable protein. The second antigen contained mannose as the sole hexose, was inactivated by pronase, and had a molecular weight of approximately 8000.

Fungi of the genus Aspergillus are ubiquitous saprophytes capable of causing debilitating disease under certain conditions. Although aspergilli can attack any part of the body, they are most often encountered as respiratory pathogens. Aspergillus fumigatus is the species most frequently responsible for infection.

Aspergillus fischeri is an ascosporic species within the aspergilli group, closely related to A. fumigatus This organism grows on Czapek's agar at 25 and 37°C and at 37°C it produces abundant conidia indistinguishable from A. fumigatus. Aspergillus fischeri is worldwide in distribution and can be readily isolated from the soil. Only rarely has it been associated with disease in man and it is generally considered a nonpathogen. However, A. fischeri has been shown by Biguet et al. to have at least eight antigens in common with A_. fumigatus. Aspergillus fischeri has been neglected in serological studies of the aspergilli, probably because of its noted nonpathogenicity. However, the obvious morphological similarity of these two aspergilli led us to study the antigens shared by the two species.  相似文献   

6.
A study was made of the refolding of bacterial luciferases of Vibrio fischeri, V. harveyi, Photobacterium phosphoreum, and Photorhabdus luminescens. By reaction rate, luciferases were divided into two groups. The reaction rate constants of fast luciferases of V. fischeri and Ph. phosphoreum were about tenfold higher than those of slow luciferases of Ph. luminescens and V. harveyi. The order of increasing luciferase thermostability was Ph. phosphoreum, V. fischeri, V. harveyi, and Ph. luminescens. The refolding of thermoinactivated luciferases completely depended on the active DnaK-DnaJ-GrpE chaperone system. Thermolabile fast luciferases of V. fischeri and Ph. phosphoreum showed highly efficient rapid refolding. Slower and less efficient refolding was characteristic of thermostable slow luciferases of V. harveyi and Ph. luminescens. Chaperones of the Clp family were tested for effect on the efficiency of DnaK-dependent refolding of bacterial luciferases in Escherichia coli cells. The rate and extent of refolding were considerably lower in the clpB mutant than in wild-type cells. In E. coli cells with mutant clpA, clpP, of clpX showed a substantially lower luciferase refolding after heat shock.  相似文献   

7.
The effects of potassium sorbate, sodium benzoate, sulphur dioxide and citric, malic and tartaric acids on growth and fumitremorgin production by a heat-resistant mould, Neosartorya fischeri , cultured on Czapek yeast autolysate agar (CYA) were studied over a 32-day incubation period. Colonies were examined, and extracts of agar and mycelia were analyzed for mycotoxin content using high performance liquid chromatography (HPLC). Growth of N. fischeri always resulted in production of the fumitremorgins verruculogen and fumitremorgin A and C. Growth on CYA (pH 3.5) was highly repressed by potassium sorbate and sodium benzoate; 75 mg/1 completely inhibited germination of ascospores. Sulphur dioxide was less inhibitory; growth occurred on CYA containing 100 but not 200 mg/1. Growth of N. fischeri was significantly reduced when the pH of CYA was reduced from 7.0 to 4.5 to 3.5 to 2.5. Citric, malic and tartaric acids promoted growth and fumitremorgin production when supplemented to CYA (pH 2.5). These observations indicate that growth and fumitremorgin production by N. fischeri are influenced by pH and type of acid present and can be controlled by small amounts of preservatives.  相似文献   

8.
The symbiosis between marine bioluminescent Vibrio bacteria and the sepiolid squid Euprymna is a model for studying animal-bacterial Interactions. Vibrio symbionts native to particular Euprymna species are competitively dominant, capable of outcompeting foreign Vibrio strains from other Euprymna host species. Despite competitive dominance, secondary colonization events by invading nonnative Vibrio fischeri have occurred. Competitive dominance can be offset through superior nonnative numbers and advantage of early start host colonization by nonnatives, granting nonnative vibrios an opportunity to establish beachheads in foreign Euprymna hosts. Here, we show that nonnative V. fischeri are capable of rapid adaptation to novel sepiolid squid hosts by serially passaging V. fischeri JRM200 (native to Hawaiian Euprymna scolopes) lines through the novel Australian squid host E. tasmanica for 500 generations. These experiments were complemented by a temporal population genetics survey of V. fischeri, collected from E. tasmanica over a decade, which provided a perspective from the natural history of V. fischeri evolution over 15,000-20,000 generations in E. tasmanica. No symbiont anagenic evolution within squids was observed, as competitive dominance does not purge V. fischeri genetic diversity through time. Instead, abiotic factors affecting abundance of V. fischeri variants in the planktonic phase sustain temporal symbiont diversity, a property itself of ecological constraints imposed by V. fischeri host adaptation.  相似文献   

9.
10.
11.
李翔  潘力  王斌 《微生物学报》2011,51(12):1669-1674
[目的]探讨黄曲霉毒素对一种发光细菌——费氏弧菌发光的抑制效应.[方法]黄曲霉毒素或产黄曲霉毒素的菌株培养液对费氏弧菌进行处理后,利用多功能酶标仪检测费氏弧菌的发光强度,研究黄曲霉毒素对费氏弧菌发光的影响.[结果]黄曲霉毒素浓度的对数值与费氏弧菌发光的抑制率呈线性关系,依据所得的回归方程可以快速准确地检测不同微生物产毒素的情况:6株不同来源的黄曲霉菌株均能够产毒素,以黄曲霉毒素含量表示的毒素量在14.94 - 46.45mg/L之间,1株米曲霉不产毒素.[结论]费氏弧菌发光强度的改变可以较准确地反映微生物产毒素的能力,尤其是微生物产黄曲霉毒素的能力,为在工农业生产中快速检测黄曲霉毒素提供了新的线索,有望发展成为一种检测黄曲霉毒素的新技术.  相似文献   

12.
The luminous bacterium Vibrio fischeri colonizes a specialized light-emitting organ within its squid host, Euprymna scolopes. Newly hatched juvenile squid must acquire their symbiont from ambient seawater, where the bacteria are present at low concentrations. To understand the population dynamics of V. fischeri during colonization more fully, we used mini-Tn7 transposons to mark bacteria with antibiotic resistance so that the growth of their progeny could be monitored. When grown in culture, there was no detectable metabolic burden on V. fischeri cells carrying the transposon, which inserts in single copy in a specific intergenic region of the V. fischeri genome. Strains marked with mini-Tn7 also appeared to be equivalent to the wild type in their ability to infect and multiply within the host during coinoculation experiments. Studies of the early stages of colonization suggested that only a few bacteria became associated with symbiotic tissue when animals were exposed for a discrete period (3 h) to an inoculum of V. fischeri cells equivalent to natural population levels; nevertheless, all these hosts became infected. When three differentially marked strains of V. fischeri were coincubated with juvenile squid, the number of strains recovered from an individual symbiotic organ was directly dependent on the size of the inoculum. Further, these results indicated that, when exposed to low numbers of V. fischeri, the host may become colonized by only one or a few bacterial cells, suggesting that symbiotic infection is highly efficient.  相似文献   

13.
S Zenno  K Saigo 《Journal of bacteriology》1994,176(12):3544-3551
Genes encoding NAD(P)H-flavin oxidoreductases (flavin reductases) similar in both size and sequence to Fre, the most abundant flavin reductase in Escherichia coli, were identified in four species of luminous bacteria, Photorhabdus luminescens (ATCC 29999), Vibrio fischeri (ATCC 7744), Vibrio harveyi (ATCC 33843), and Vibrio orientalis (ATCC 33934). Nucleotide sequence analysis showed Fre-like flavin reductases in P. luminescens and V. fischeri to consist of 233 and 236 amino acids, respectively. As in E. coli Fre, Fre-like enzymes in luminous bacteria preferably used riboflavin as an electron acceptor when NADPH was used as an electron donor. These enzymes also were good suppliers of reduced flavin mononucleotide (FMNH2) to the bioluminescence reaction. In V. fischeri, the Fre-like enzyme is a minor flavin reductase representing < 10% of the total FMN reductase. That the V. fischeri Fre-like enzyme has no appreciable homology in amino acid sequence to the major flavin reductase in V. fischeri, FRase I, indicates that at least two different types of flavin reductases supply FMNH2 to the luminescence system in V. fischeri. Although Fre-like flavin reductases are highly similar in sequence to luxG gene products (LuxGs), Fre-like flavin reductases and LuxGs appear to constitute two separate groups of flavin-associated proteins.  相似文献   

14.
15.
The enhancement of the multi-channel continuous toxicity monitoring system developed previously was studied. To achieve better and more stable results from the system, the use of thermo-lux fusion strains that express the luxCDABE genes from Xenorhabdus luminescens was evaluated. A total of six recombinant Escherichia coli strains with the promoters from three oxidative-stress responsive genes, i.e. the katG, sodA and pqi-5 genes, fused to either the lux genes from Vibrio fischeri or X. luminescens were characterized and their responses to different chemicals compared. It was found that the basal level bioluminescence (BL) from the thermo-lux fusion strains was always higher while that of the V. fischeri lux strains were always near or below the lower limit of detection of the system. For example, the katG::V. fischeri lux strain, DPD2511, gave no discernible response due to its low level expression while a fusion of the katG promoter with the X. luminescens lux operon was clearly responsive and capable of detecting hydrogen peroxide down to about 1 ppm. The use of the thermo-lux strains found them to be as sensitive as the V. fischeri lux strains while providing a brighter, more stable basal level bioluminescence, making the analysis and monitoring of water-borne toxicity more reliable.  相似文献   

16.
17.
Genetically altered or tagged Vibrio fischeri strains can be observed in association with their mutualistic host Euprymna scolopes, providing powerful experimental approaches for studying this symbiosis. Two limitations to such in situ analyses are the lack of suitably stable plasmids and the need for a fluorescent tag that can be used in tandem with green fluorescent protein (GFP). Vectors previously used in V. fischeri contain the p15A replication origin; however, we found that this replicon is not stable during growth in the host and is retained by fewer than 20% of symbionts within a day after infection. In contrast, derivatives of V. fischeri plasmid pES213 were retained by approximately 99% of symbionts even 3 days after infection. We therefore constructed pES213-derived shuttle vectors with a variety of selectable and visual markers. To include a visual tag that can be used in conjunction with GFP, we compared seven variants of the DsRed2 red fluorescent protein (RFP): mRFP1, tdimer2(12), DsRed.T3, DsRed.T4, DsRed.M1, DsRed.T3_S4T, and DsRed.T3(DNT). The last variant was brightest, displaying >20-fold more fluorescence than DsRed2 in V. fischeri. RFP expression did not detectably affect the fitness of V. fischeri, and cells were readily visualized in combination with GFP-expressing cells in mixed infections. Interestingly, even when inocula were dense enough that most E. scolopes hatchlings were infected by two strains, there was little mixing of the strains in the light organ crypts. We also used constitutive RFP in combination with the luxICDABEG promoter driving expression of GFP to visualize the spatial and temporal induction of this bioluminescence operon during symbiotic infection. Our results demonstrate the utility of pES213-based vectors and RFP for in situ experimental approaches in studies of the V. fischeri-E. scolopes symbiosis.  相似文献   

18.
The sepiolid squid Euprymna scolopes forms a bioluminescent mutualism with the luminous bacterium Vibrio fischeri, harboring V. fischeri cells in a complex ventral light organ and using the bacterial light in predator avoidance. To characterize the contribution of V. fischeri to the growth and development of E. scolopes and to define the long-term effects of bacterial colonization on light organ morphogenesis, we developed a mariculture system for the culture of E. scolopes from hatching to adulthood, employing artificial seawater, lighting that mimicked that of the natural environment, and provision of prey sized to match the developmental stage of E. scolopes. Animals colonized by V. fischeri and animals cultured in the absence of V. fischeri (aposymbiotic) grew and survived equally well, developed similarly, and reached sexual maturity at a similar age. Development of the light organ accessory tissues (lens, reflectors, and ink sac) was similar in colonized and aposymbiotic animals with no obvious morphometric or histological differences. Colonization by V. fischeri influenced regression of the ciliated epithelial appendages (CEAs), the long-term growth of the light organ epithelial tubules, and the appearance of the cells composing the ciliated ducts, which exhibit characteristics of secretory tissue. In certain cases, aposymbiotic animals retained the CEAs in a partially regressed state and remained competent to initiate symbiosis with V. fischeri into adulthood. In other cases, the CEAs regressed fully in aposymbiotic animals, and these animals were not colonizable. The results demonstrate that V. fischeri is not required for normal growth and development of the animal or for development of the accessory light organ tissues and that morphogenesis of only those tissues coming in contact with the bacteria (CEAs, ciliated ducts, and light organ epithelium) is altered by bacterial colonization of the light organ. Therefore, V. fischeri apparently makes no major metabolic contribution to E. scolopes beyond light production, and post-embryonic development of the light organ is essentially symbiont independent. J. Exp. Zool. 286:280-296, 2000.  相似文献   

19.
Vibrio fischeri, a luminescent marine bacterium, specifically colonizes the light organ of its symbiotic partner, the Hawaiian squid Euprymna scolopes. In a screen for V. fischeri colonization mutants, we identified a strain that exhibited on average a 10-fold decrease in colonization levels relative to that achieved by wild-type V. fischeri. Further characterization revealed that this defect did not result from reduced luminescence or motility, two processes required for normal colonization. We determined that the transposon in this mutant disrupted a gene with high sequence identity to the pgm (phosphoglucomutase) gene of Escherichia coli, which encodes an enzyme that functions in both galactose metabolism and the synthesis of UDP-glucose. The V. fischeri mutant grew poorly with galactose as a sole carbon source and was defective for phosphoglucomutase activity, suggesting functional identity between E. coli Pgm and the product of the V. fischeri gene, which was therefore designated pgm. In addition, lipopolysaccharide profiles of the mutant were distinct from that of the parent strain and the mutant exhibited increased sensitivity to various cationic agents and detergents. Chromosomal complementation with the wild-type pgm allele restored the colonization ability to the mutant and also complemented the other noted defects. Unlike the pgm mutant, a galactose-utilization mutant (galK) of V. fischeri colonized juvenile squid to wild-type levels, indicating that the symbiotic defect of the pgm mutant is not due to an inability to catabolize galactose. Thus, pgm represents a new gene required for promoting colonization of E. scolopes by V. fischeri.  相似文献   

20.
To achieve functional bioluminescence, the developing light organ of newly hatched juveniles of the Hawaiian squid Euprymna scolopes must become colonized by luminous, symbiosis-competent Vibrio fischeri present in the ambient seawater. This benign infection occurs rapidly in animals placed in seawater from the host's natural habitat. Therefore, it was surprising that colony hybridization studies with a V. fischeri-specific luxA gene probe indicated the presence of only about 2 CFU of V. fischeri per ml of this infective seawater. To examine this paradox, we estimated the total concentration of V. fischeri cells present in seawater from the host's habitat in two additional ways. In the first approach, the total bacterial assemblage in samples of seawater was collected on polycarbonate membrane filters and used as a source of both a crude cell lysate and purified DNA. These preparations were then assayed by quantitative DNA-DNA hybridization with the luxA gene probe. The results suggested the presence of between 200 and 400 cells of V. fischeri per ml of natural seawater, a concentration more than 100 times that revealed by colony hybridization. In the second approach, we amplified V. fischeri-specific luxA sequences from microliter volumes of natural seawater by PCR. Most-probable-number analyses of the frequency of positive PCR results from cell lysates in these small volumes gave an estimate of the concentration of V. fischeri luxA gene targets of between 130 and 1,680 copies per ml. From these measurements, we conclude that in their natural seawater environment, the majority of V. fischeri cells become nonculturable while remaining viable and symbiotically infective. Experimental studies indicated that V. fischeri cells suspended in natural Hawaiian seawater enter such a state within a few days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号