首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A T Lee  A Cerami 《Mutation research》1990,238(3):185-191
Reducing sugars such as glucose and glucose 6-phosphate have been shown to nonenzymatically react with the amino groups of proteins. The modification of proteins by reducing sugars can alter both physical characteristics and biological functions. Analogous to the reaction observed with proteins, the amino groups of DNA bases are also able to react nonenzymatically with reducing sugars. The modifications of DNA by reducing sugars result in the time- and sugar-concentration-dependent changes in biological properties. In this communication we review data describing in vitro and in vivo models we have used to investigate the biological consequences of the nonenzymatic glycosylation of DNA.  相似文献   

2.
Glycation or the Maillard reaction in proteins forms advanced glycation end products (AGEs) that contribute to age- and diabetes-associated changes in tissues. Dideoxyosones, which are formed by the long-range carbonyl shift of the Amadori product, are newly discovered intermediates in the process of AGE formation in proteins. They react with o-phenylenediamine (OPD) to produce quinoxalines. We developed a monoclonal antibody against 2-methylquinoxaline-6-carboxylate coupled to keyhole limpet hemocyanin. The antibody reacted strongly with ribose and fructose (+OPD)-modified RNase A and weakly with glucose and ascorbate (+OPD)-modified RNase A. Reaction with substituted quinoxalines indicated that this antibody favored the 2-methyl group on the quinoxaline ring. We used high performance liquid chromatography to isolate and purify three antibody-reactive products from a reaction mixture of N alpha-hippuryl-L-lysine+ribose+OPD. The two most reactive products were identified as diastereoisomers of N1-benzoylglycyl-N6-(2-hydroxy-3-quinoxalin-2-ylpropyl)lysine and the other less reactive product as N1-benzoylglycyl-N6-[2-hydroxy-2-(3-methylquinoxalin-2-yl)ethyl]lysine. Our study confirms that dideoxyosone intermediates form during glycation and offers a new tool for the study of this important pathway in diabetes and aging.  相似文献   

3.
Hyperglycaemia, triose phosphate decomposition and oxidation reactions generate reactive aldehydes in vivo. These compounds react non-enzymatically with protein side chains and N-terminal amino groups to give adducts and cross-links, and hence modified proteins. Previous studies have shown that free or protein-bound carbonyls inactivate glyceraldehyde-3-phosphate dehydrogenase with concomitant loss of thiol groups [Morgan, Dean and Davies (2002) Arch. Biochem. Biophys. 403, 259-269]. It was therefore hypothesized that modification of lysosomal cysteine proteases (and the structurally related enzyme papain) by free and protein-bound carbonyls may modulate the activity of these components of the cellular proteolytic machinery responsible for the removal of modified proteins and thereby contribute to a decreased removal of modified proteins from cells. It is shown that MGX (methylglyoxal), GO (glyoxal) and glycolaldehyde, but not hydroxyacetone and glucose, inhibit catB (cathepsin B), catL (cathepsin L) and catS (cathepsin S) activity in macrophage cell lysates, in a concentration-dependent manner. Protein-bound carbonyls produced similar inhibition with both cell lysates and intact macrophage cells. Inhibition was also observed with papain, with this paralleled by loss of the active site cysteine residue and formation of the adduct species S-carboxymethylcysteine, from GO, in a concentration-dependent manner. Inhibition of autolysis of papain by MGX, along with cross-link formation, was detected by SDS/PAGE. Treatment of papain and catS with the dialdehyde o-phthalaldehyde resulted in enzyme inactivation and an intra-molecular active site cysteine-lysine cross-link. These results demonstrate that reactive aldehydes inhibit cysteine proteases by modification of the active site cysteine residue. This process may contribute to the accumulation of modified proteins in tissues of people with diabetes and age-related pathologies, including atherosclerosis, cataract and Alzheimer's disease.  相似文献   

4.
Free radicals have been strongly implicated in the pathogenesis of many human diseases. We previously identified the formation of highly reactive gamma-ketoaldehydes, isoketals, in vivo as products of free radical-induced peroxidation of arachidonic acid. Isoketals react with lysine residues on proteins at a rate that far exceeds that of 4-hydroxynonenal and demonstrate a unique proclivity to crosslink proteins. Hydroxynonenal has been shown to react with aminophospholipids, particularly phosphatidylethanolamine. We explored whether isoketals also react with phosphatidylethanolamine. Using liquid chromatography/electrospray mass spectrometry, we found that isoketals form pyrrole and Schiff base adducts with phosphatidylethanolamine. In addition, the ability of isoketals to covalently modify phosphatidylethanolamine is greater than that of 4-hydroxynonenal. These studies identify in vitro novel isoketal adducts. This provides the basis to explore the formation of isoketal-aminophospholipid adducts in vivo and the biological consequences of the formation of these adducts.  相似文献   

5.
The complete reaction sequence of the pentose pathway in vitro was studied by incubating [1-14C] ribose 5-phosphate with rat liver enzyme preparation and assessed by both the rate and extent of formation of the glucose 6-P product. The reactions formed, as intermediates, the 1,8-bisphosphates of D-glycero D-ido octulose (D-g D-i Oct) and D-glycero D-altro octulose, both heavily labelled at C-4 with 14C isotope during the 12h incubation. The formation of the octulose phosphates and the specificity of their isotopic labelling confirms an important prediction of, and contribution by reactions of the L-type pentose phosphate pathway (L-PP) in liver in vitro. Infusion in situ of [6-14C] glucose into the liver of the anaesthetized rabbit resulted in the formation of high specific activity [8-14C] D-g D-i Oct 1,8-P2. The specificity of labelling indicates that the octulose intermediate is formed according to the options of the L-PP mechanism of glucose metabolism in intact liver.  相似文献   

6.
Immunological studies on glucose 6-phosphate dehydrogenase of rat liver   总被引:1,自引:0,他引:1  
Glucose 6-phosphate dehydrogenase (G6PD) was purified from the supernatant fraction of rat liver to a homogeneous preparation by a specific elution with substrate. A specific antibody against the purified enzyme was prepared in rabbits and was shown to completely inhibit the enzyme activity and precipitate the enzyme protein of liver supernatant. With this antiserum, liver supernatants with varying specific G6PD activities obtained under several experimental conditions and supernatants from other tissues examined all formed single precipitin lines, which fused with each other in the Ouchterlony double-diffusion system. Three interconvertible microheterogeneous forms of G6PD in liver, supernatant were immunologically indistinguishable from each other. The G6PDs in participate fractions of liver were, however, distinct from the supernatant enzyme both in inhibition of the enzyme activity and in formation of precipitation by the specific antiserum. Liver supernatant G6PD, which was inactivated with various reagents or by heating, showed a simultaneous loss of ability to form precipitin line. Aggregation and disaggregation of the dehydrogenase to the tetramer and monomer, respectively, also resulted in loss of immunological reactivity. The increase in G6PD activity in the cytoplasm of carbon tetrachloride-treated or glucose casein-refed rat liver was accompanied by a proportional increase in the quantity of immunologically reactive G6PD protein.  相似文献   

7.
Immunochemical detection of advanced glycosylation end products in vivo.   总被引:80,自引:0,他引:80  
Reducing sugars react with protein amino groups to form a diverse group of protein-bound moieties with fluorescent and cross-linking properties. These compounds, called advanced glycosylation end products (AGEs), have been implicated in the structural and functional alterations of proteins that occur during aging and long-term diabetes. Although several AGEs have been identified on the basis of de novo synthesis and tissue isolation procedures, the measurement of AGE compounds in vivo has remained difficult. As an approach to the study of AGE formation in vivo, we prepared polyclonal antiserum to an AGE epitope(s) which forms in vitro after incubation of glucose with ribonuclease (RNase). This antiserum proved suitable for the detection of AGEs which form in vivo. Both diabetic tissue and serum known to contain elevated levels of AGEs readily competed for antibody binding. Cross-reactivity studies revealed the presence of a common AGE epitope(s) which forms after the incubation of diverse proteins with glucose. Cross-reactive epitopes also formed with glucose 6-phosphate or fructose. These data suggest that tissue AGEs which form in vivo appear to contain a common immunological epitope which cross-reacts with AGEs prepared in vitro, supporting the concept that immunologically similar AGE structures form from the incubation of sugars with different proteins (Horiuchi, S., Araki, N., and Morino, Y. (1991) J. Biol. Chem. 266, 7329-7332). None of the known AGEs, such as 4-furanyl-2-furoyl-1H-imidazole, 1-alkyl-2-formyl-3,4-diglycosylpyrrole, pyrraline, carboxymethyllysine, or pentosidine, were found to compete for binding to anti-AGE antibody. These data further suggest that the dominant AGE epitope which forms from the reaction of glucose with proteins under native conditions is immunologically distinct from the structurally defined AGEs described to date.  相似文献   

8.
The pathogenesis of transaldolase deficiency   总被引:2,自引:0,他引:2  
Perl A 《IUBMB life》2007,59(6):365-373
The signaling networks that mediate cell growth, differentiation, and survival are dependent on complex metabolic and redox pathways. Metabolism of glucose through the pentose phosphate pathway (PPP) fulfills two unique functions: formation of ribose 5-phosphate for the synthesis of nucleotides, RNA, and DNA in support cell growth and formation of NADPH for biosynthetic reactions and neutralization of reactive oxygen intermediates (ROI). Balancing of NADPH and ROI levels by the PPP enzyme transaldolase (TAL) regulates the mitochondrial trans-membrane potential (Deltapsi(m)), a critical checkpoint of ATP synthesis and cell survival. While complete deficiency of glucose 6-phosphate dehydrogenase (G6PD) or transketolase (TK) is lethal, TAL-deficient mice developed normally with the exception of male sterility due to structural and functional damage of sperm cell mitochondria. Recently, two cases of complete TAL deficiency have been reported in patients with liver cirrhosis which results from increased cell death of hepatocytes. Delineation of the cell type-specific role that TAL plays in the PPP and cell death signal processing will be critical for understanding the pathogenesis of TAL deficiency.  相似文献   

9.
Reaction of radicals in the presence of O2, and singlet oxygen, with some amino acids, peptides, and proteins yields hydroperoxides. These species are key intermediates in chain reactions and protein damage. Previously we have shown that peptide and protein hydroperoxides react rapidly with thiols, and that this can result in inactivation of thiol-dependent enzymes. The major route for the cellular removal of damaged proteins is via catabolism mediated by proteosomal and lysosomal pathways; cysteine proteases (cathepsins) play a key role in the latter system. We hypothesized that inactivation of cysteine proteases by hydroperoxide-containing oxidised proteins may contribute to the accumulation of modified proteins within cells. We show here that thiol-dependent cathepsins, either isolated or in cell lysates, are rapidly and efficiently inactivated by amino acid, peptide, and protein hydroperoxides in a time- and concentration-dependent manner; this occurs with similar efficacy to equimolar H2O2. Inactivation involves reaction of the hydroperoxide with Cys residues as evidenced by thiol loss and formation of sulfenic acid intermediates. Structurally related, non-thiol-dependent cathepsins are less readily inactivated by these hydroperoxides. This inhibition, by oxidized proteins, of the system designed to remove modified proteins, may contribute to the accumulation of damaged proteins in cells subject to oxidative stress.  相似文献   

10.
d-Arabinose is a major sugar in the cell wall polysaccharides of Mycobacterium tuberculosis and other mycobacterial species. The reactions involved in the biosynthesis and activation of d-arabinose represent excellent potential sites for drug intervention since d-arabinose is not found in mammalian cells, and the cell wall arabinomannan and/or arabinogalactan appear to be essential for cell survival. Since the pathway involved in conversion of d-glucose to d-arabinose is unknown, we incubated cells of Mycobacterium smegmatis individually with [1-(14)C]glucose, [3,4-(14)C]glucose, and [6-(14)C]glucose and compared the specific activities of the cell wall-bound arabinose. Although the specific activity of the arabinose was about 25% lower with [6-(14)C]glucose than with other labels, there did not appear to be selective loss of either carbon 1 or carbon 6, suggesting that arabinose was not formed by loss of carbon 1 of glucose via the oxidative step of the pentose phosphate pathway, or by loss of carbon 6 in the uronic acid pathway. Similar labeling patterns were observed with ribose isolated from the nucleic acid fraction. Since these results suggested an unusual pathway of pentose formation, labeling studies were also done with [1-(13)C]glucose, [2-(13)C]glucose, and [6-(13)C]glucose and the cell wall arabinose was examined by NMR analysis. This method allows one to determine the relative (13)C content in each carbon of the arabinose. The labeling patterns suggested that the most likely pathway was condensation of carbons 1 and 2 of fructose 6-phosphate produced by the transaldolase reaction with carbons 4, 5, and 6 (i.e., glyceraldehyde 3-phosphate) formed by fructose-1,6 bisphosphate aldolase. Cell-free enzyme extracts of M. smegmatis were incubated with ribose 5-phosphate, xylulose 5-phosphate, and d-arabinose 5-phosphate under a variety of experimental conditions. Although the ribose 5-phosphate and xylulose 5-phosphate were converted to other pentoses and hexoses, no arabinose 5-phosphate (or free arabinose) was detected in any of these reactions. In addition, these enzyme extracts did not convert arabinose 5-phosphate to any other pentose or hexose. In addition, incubation of [(14)C]glucose 6-phosphate and various nucleoside triphosphates (ATP, CTP, GTP, TTP, and UTP) with cytosolic or membrane fractions from the mycobacterial cells did not result in formation of a nucleotide form of arabinose, although other radioactive sugars including rhamnose and galactose were found in the nucleotide fraction. Furthermore, no radioactive arabinose was found in the nucleotide fraction isolated from M. smegmatis cells grown in [(3)H]glucose, nor was arabinose detected in a large-scale extraction of the sugar nucleotide fraction from 300 g of cells. The logical conclusion from these studies is that d-arabinose is probably produced from d-ribose by epimerization of carbon 2 of the ribose moiety of polyprenylphosphate-ribose to form polyprenylphosphate-arabinose, which is then used as the precursor for formation of arabinosyl polymers.  相似文献   

11.
D-Glyceraldehyde (D-GLYC) is usually considered to be a stimulator of insulin secretion but theoretically can also form reactive oxygen species (ROS), which can inhibit beta cell function. We examined the time- and concentration-dependent effects of D-GLYC on insulin secretion, insulin content, and formation of ROS. We observed that a 2-h exposure to 0.05-2 mM D-GLYC potentiated glucose-stimulated insulin secretion (GSIS) in isolated Wistar rat islets but that higher concentrations inhibited GSIS. A 24-h exposure to 2 mm D-GLYC inhibited GSIS, decreased insulin content, and increased intracellular peroxide levels (2.14 +/- 0.31-fold increase, n = 4, p < 0.05). N-Acetylcysteine (10 mM) prevented the increase in intracellular peroxides and the adverse effects of d-GLYC on GSIS. In the presence of 11.1 but not 3.0 mm glucose, koningic acid (10 microM), a specific glyceraldehyde-3-phosphate dehydrogenase inhibitor, increased intracellular peroxide levels (1.88 +/- 0.30-fold increase, n = 9, p < 0.01) and inhibited GSIS (control GSIS = p < 0.001; koningic acid GSIS, not significant). To determine whether oxidative phosphorylation was the source of ROS formation, we cultured rat islets with mitochondrial inhibitors. Neither rotenone or myxothiazol prevented D-GLYC-induced increases in islet ROS. Adenoviral overexpression of manganese superoxide dismutase also failed to prevent the effect of D-GLYC to increase ROS levels. These observations indicate that exposure to excess D-GLYC increases reactive oxygen species in the islet via non-mitochondrial pathways and suggest the hypothesis that the oxidative stress associated with elevated D-GLYC levels could be a mechanism for glucose toxicity in beta cells exposed chronically to high glucose concentrations.  相似文献   

12.
Modification of pyridoxal-reconstituted phosphorylase b with two arginine-directed reagents, butanedione and [14C]phenylglyoxal, has been investigated and compared with the results obtained on the active and inactive conformations of the native enzyme; the reactivity of the various arginine residues has been directly described using autoradiography of chymotryptic maps derived from [14C]phenylglyoxal-labelled phosphorylase. In the native enzyme this method demonstrates that the same arginine residue (568) is reactive on both activated phosphorylase a and b, non-reactive on inactive forms of phosphorylase and protected by glucose 1-phosphate. Another residue is reactive, but its reactivity does not drastically depend upon phosphorylase conformation; it interacts with glucose 1-phosphate. In the pyridoxal-reconstituted phosphorylase, the residue Arg-568 is reactive. This reactivity does not correlated in a simple manner with the ionisation state of the coenzyme, since it is high when this group is either absent or in a dianionic form, and low when it is monoanionic. The reactivity of Arg-568 rather correlates with the quaternary structure of the enzyme. The protection offered by glucose 1-phosphate, pyrophosphate and phosphite on this pyridoxal-reconstituted phosphorylase also provides information about the relative disposition of the substrate, the coenzyme and this particular arginine residue.  相似文献   

13.
1. Methods are described for the extraction and assay of acetyl-CoA and of total acid-soluble and total acid-insoluble CoA derivatives in rat epididymal adipose tissue. 2. The concentration ranges of the CoA derivatives in fat pads incubated in vitro under various conditions were: total acid-soluble CoA, 0.20-0.59mm; total acid-insoluble CoA, 0.08-0.23mm; acetyl-CoA, 0.03-0.14mm. 3. An investigation was made of some postulated mechanisms of control of fatty acid and triglyceride synthesis in rat epididymal fat pads incubated in vitro. The concentrations of intermediates of possible regulatory significance were measured at various rates of fatty acid and triglyceride synthesis produced by the addition to the incubation medium (Krebs bicarbonate buffer containing glucose) of insulin, adrenaline, albumin, palmitate or acetate. 4. The whole-tissue concentrations of glucose 6-phosphate, l-glycerol 3-phosphate, citrate, acetyl-CoA, total acid-soluble CoA and total acid-insoluble CoA were assayed after 30 or 60min. incubation. The rates of fatty acid and triglyceride synthesis, calculated from the incorporation of [U-(14)C]glucose into fatty acids and glyceride glycerol respectively, and the rates of glucose uptake, lactate plus pyruvate output and glycerol output were measured over a 60min. incubation. 5. The rate of triglyceride synthesis could not be correlated with the concentrations of either l-glycerol 3-phosphate or long-chain fatty acyl-CoA (measured as total acid-insoluble CoA). Factor(s) other than the whole-tissue concentrations of these recognized precursors appear to be involved in the determination of the rate of triglyceride synthesis. 6. No relationship was found between the rate of fatty acid synthesis and the whole-tissue concentrations of the intermediates, citrate or acetyl-CoA, or with the two proposed effectors of acetyl-CoA carboxylase, citrate (as activator) or long-chain fatty acyl-CoA (as inhibitor). The control of fatty acid synthesis appears to reside in additional or alternative factors.  相似文献   

14.
Initial studies demonstrated the loss of lysine and simultaneous appearance of glucitollysine in intracellular proteins following incubation with sugar. For example, when a crude nervous tissue cytoskeletal preparation was incubated in 100 mM glucose for 10 days, > 60% of the lysine residues were modified. Over 20% of the lysyl residues in a spinal cord neurofilament preparation are susceptible to Schiff base formation after one day and over 30% following five days of incubation with 100 mM glucose. When incubated with 100 mM galactose, F- and G-actin were found to be significantly modified in as few as 15 h, with > 70% of the lysyl residues lost. After 45 h of incubation, > 90% of the residues had been modified. These data also indicate that many of the lysyl residues in F- and G-actin are exposed and very susceptible to modification by sugar. This rapid and extensive modification of lysine in actin in vitro suggest that it may be modified in diabetic nervous tissue.  相似文献   

15.
Cigarette smoke induces a multitude of bulky/aromatic DNA adducts in vivo as revealed by 32P-postlabeling assay. The formation of such adducts is thought to involve metabolic activation of aromatic chemicals especially polycyclic aromatic hydrocarbons (PAHs) present in tumor-initiating cigarette tar fractions, via cytochrome P450-associated monooxygenases. Because radicals are present in both the gas and particulate (tar) phase of cigarette smoke and in aqueous extracts of cigarette smoke condensate (CSC), we addressed the question as to whether cytochrome P450-independent, possibly free radical-mediated reactions may contribute, also, to formation of cigarette smoke-associated bulky DNA adducts. Rat-lung DNA was incubated with aqueous extracts of CSC in the absence of microsomes under various conditions and analyzed by 32P-postlabeling. Radioactively labeled bulky reaction products were found to accumulate in a time- and CSC concentration-dependent manner. The resulting chromatographic profiles resembled cigarette smoke-associated DNA-adduct patterns observed in vivo. Pretreatment of aqueous CSC extract with radical scavengers/reducing agents (ascorbic acid, glutathione) diminished adduct formation in a concentration-dependent manner. Adduct formation in vitro may involve oxygen-free radicals, which are known to be present in aqueous CSC extracts and could (i) attack DNA directly to produce bulky adducts, (ii) induce radical sites on DNA covalently binding CSC components, or (iii) convert CSC components to DNA-reactive electrophiles. In addition, DNA may react with direct-acting mutagens in CSC. Adduct fractions derived from in vitro and in vivo experiments showed similar chromatographic behavior, suggesting that metabolic activation as well as processes not involving metabolism lead to formation of smoking-induced bulky DNA adducts in vivo.  相似文献   

16.
Reactive carbonyl compounds are formed during autoxidation of carbohydrates and peroxidation of lipids. These compounds are intermediates in the formation of advanced glycation end products (AGE) and advanced lipoxidation end products (ALE) in tissue proteins during aging and in chronic disease. We studied the reaction of carbonyl compounds glyoxal (GO) and glycolaldehyde (GLA) with pyridoxamine (PM), a potent post-Amadori inhibitor of AGE formation in vitro and of development of renal and retinal pathology in diabetic animals. PM reacted rapidly with GO and GLA in neutral, aqueous buffer, forming a Schiff base intermediate that cyclized to a hemiaminal adduct by intramolecular reaction with the phenolic hydroxyl group of PM. This bicyclic intermediate dimerized to form a five-ring compound with a central piperazine ring, which was characterized by electrospray ionization-liquid chromatography/mass spectrometry, NMR, and x-ray crystallography. PM also inhibited the modification of lysine residues and loss of enzymatic activity of RNase in the presence of GO and GLA and inhibited formation of the AGE/ALE N(epsilon)-(carboxymethyl)lysine during reaction of GO and GLA with bovine serum albumin. Our data suggest that the AGE/ALE inhibitory activity and the therapeutic effects of PM observed in diabetic animal models depend, at least in part, on its ability to trap reactive carbonyl intermediates in AGE/ALE formation, thereby inhibiting the chemical modification of tissue proteins.  相似文献   

17.
To understand the hapten-protein complex formation in the context of skin contact allergy to p-amino aromatic derivatives, 2,5-dimethyl-p-benzoquinonediimine was used as a model compound to study the reactivity of p-benzoquinonediimines, first oxidation intermediates of allergenic p-amino aromatic compounds, toward a model peptide containing naturally occurring and potential reactive amino acids. LC-MS analysis, together with electrospray ionization MS/MS, was used for the determination of amino acid selectivity by studying the chemical modifications induced on the peptide due to covalent binding of the p-benzoquinonediimine. Results reported in this paper indicated that 2,5-dimethyl-p-benzoquinonediimine reacted with the epsilon-NH(2) group of lysine to first form a covalent adduct of the Schiff's base kind. Besides, an oxido-reduction process started that induced an oxidative deamination of lysine to form a peptidyl alpha-aminoadipic-delta-semialdehyde, by a mechanism similar to the one known for several enzymatic quinonoid co-factors, followed by an intramolecular cyclization of the peptide. From these results it could be concluded that lysine must be considered as an important amino acid for the hapten-protein complex formation in the case of p-benzoquinonediimines and that, in addition to direct covalent binding, further degradation of the peptide can be produced.  相似文献   

18.
Two novel procedures have been used to regulate, in vivo, the formation of phosphoenolpyruvate (PEP) from glycolysis in Streptococcus lactis ML3. In the first procedure, glucose metabolism was specifically inhibited by p-chloromercuribenzoate. Autoradiographic and enzymatic analyses showed that the cells contained glucose 6-phosphate, fructose 6-phosphate, fructose-1,6-diphosphate, and triose phosphates.Dithiothreitol reversed the p-chloromercuribenzoate inhibition, and these intermediates were rapidly and quantitatively transformed into 3- and 2-phosphoglycerates plus PEP. The three intermediates were not further metabolized and constituted the intracellular PEP potential. The second procedure simply involved starvation of the organisms. The starved cells were devoid of glucose 6-phosphate, fructose 6-phosphate, fructose- 1,6-diphosphate, and triose phosphates but contained high levels of 3- and 2-phosphoglycerates and PEP (ca. 40 mM in total). The capacity to regulate PEP formation in vivo permitted the characterization of glucose and lactose phosphotransferase systems in physiologically intact cells. Evidence has been obtained for "feed forward" activation of pyruvate kinase in vivo by phosphorylated intermediates formed before the glyceraldehyde-3-phosphate dehydrogenase reaction in the glycolytic sequence. The data suggest that pyruvate kinase (an allosteric enzyme) plays a key role in the regulation of glycolysis and phosphotransferase system functions in S. lactis ML3.  相似文献   

19.
1. Ribose 5-phosphate was non-oxidatively synthesized from glucose 6-phosphate and triose phosphate by an enzyme extract prepared from rat liver (RLEP). Analysis of the intermediates by GLC, ion-exchange chromatography and specific enzymatic analysis, revealed the presence of the following intermediates of the L-type pentose pathway: altro-heptulose 1,7-bisphosphate, arabinose 5-phosphate and D-glycero D-ido octulose 8-phosphate. 2. With either [1-14C] or [2-14C]glucose 6-phosphate as diagnostic substrates, the distribution of 14C in ribose 5-phosphate was determined. At early time intervals (0.5-8 hr), [1-14C]glucose 6-phosphate introduced 14C into C-1, C-3 and C-5 of ribose 5-phosphate, at 17 hr 14C was confined to C-1. With [2-14C]glucose 6-phosphate as substrate, 14C was confined to C-2, C-3 and C-5 of ribose 5-phosphate during early times (0.5-8 hr), while at 17 hr 14C was located in C-2. 3. The transketolase exchange reaction, [14C]ribose 5-phosphate + altro-heptulose 7-phosphate in equilibrium ribose 5-phosphate + [14C]altro-heptulose 7-phosphate, was demonstrated for the first time using purified transketolase, its activity was measured and it is proposed to play a major role in the relocation of 14C into C-3 and C-5 or ribose 5-phosphate during the prediction labelling experiments. 4. The coupled transketolase-transaldolase reactions, 2 fructose 6-phosphate in equilibrium altro-heptulose 7-phosphate + xylulose 5-phosphate and 2 altro-heptulose 7-phosphate in equilibrium fructose 6-phosphate + D-glycero D-altro octulose 8-phosphate were demonstrated with purified enzymes, but are concluded to play a minor role in the non-oxidative synthesis of pentose 5-phosphate and octulose phosphate by (RLEP). 5. The formation of gem diol and dimers of erythrose 4-phosphate is proposed to account in part for the failure to detect monomeric erythrose 4-phosphate in the carbon balance studies. 6. The equilibrium value for the pentose pathway acting by the reverse mode in vitro was measured and contrasted with the value for the pathway acting in the forward direction. The initial specific rates of the pentose pathway reactions in vitro for the reverse and forward directions are measured. 7. The study which includes carbon balance, time course changes and 14C prediction labelling experiments reports a comprehensive investigation of the mechanism of the pentose pathway acting reversibly.  相似文献   

20.
Glucose-6-phosphate isomerase shows a biphasic decay pattern during red blood cell aging, which is very fast during the first part of cell's life span in circulation. This decay is not due to accumulation of inactive enzyme molecules, as shown by immunological studies, but is accompanied by the formation of secondary isozymes (i.e., chemically modified forms). Electrophoretic and ion-exchange chromatographic experiments show that glucose-6-phosphate isomerase (D-glucose-6-phosphate ketol-isomerase, EC 5.3.1.9) consists of only one isozymic form in young erythrocytes but is present in two components, with different electric charge, in mature and old cells. This secondary isozyme is more stable to heat treatment and is inactivated by IgG anti-glucose-6-phosphate isomerase with a lower affinity than the native isozyme. In vitro incubation of homogeneous human glucose-6-phosphate isomerase under conditions known to produce enzyme deamination does not reproduce the isozymic pattern found in erythrocytes, suggesting that one or more mechanisms other than those previously described to explain glucose-6-phosphate isomerase microheterogeneity occur in the human erythrocyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号