首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A gastrin receptor, identified in crude membrane preparations of rat oxyntic gland mucosa, has an equilibrium dissociation constant (Kd) of approx. 4 . 10(-10)M and a binding capacity of 4 fmol/mg protein. The binding capacity was significantly lower after 2 days of fasting, parallel with a significant drop in serum gastrin levels; there was no change in Kd. In order to verify Scatchard analysis and to determine if there was a coincident alteration in the association (k+1) and dissociation (k-1) rates in the fasted rat, a kinetics study was performed. Under our conditions, there appeared to be a single set of binding sites and the binding reaction obeyed first-order dissociation, and second-order association rate kinetics. Second-order association rate kinetics were validated by demonstrating the independence of the rate constants when there were alterations in the concentrations of reactants. The average k+1 was determined to be 2 . 10(6) M-1 . s-1. The average k-1 was determined to be 1 . 10(-3) s-1. There was no significant change in the k+1 and k-1 in fed and fasted rats. Fasting decreased the number of gastrin receptors without altering the affinity of the receptor for the hormone.  相似文献   

2.
Kinetics of ligand binding to the type 1 Fc epsilon receptor on mast cells   总被引:2,自引:0,他引:2  
Rates of association and dissociation of several specific monovalent ligands to and from the type I Fc epsilon receptor (Fc epsilon RI) were measured on live mucosal type mast cells of the rat line RBL-2H3. The ligands employed were a monoclonal murine IgE and Fab fragments prepared from three different, Fc epsilon RI-specific monoclonal IgG class antibodies. These monoclonals (designated H10, J17, and F4) were shown previously to trigger mediator secretion by RBL-2H3 mast cells upon binding to and dimerization of the Fc epsilon RI. Analysis of the kinetics shows that the minimal mechanism to which all data can be fitted involves two consecutive steps: namely, ligand binding to a low-affinity state of the receptor, followed by a conformational transition into a second, higher affinity state h of the receptor-ligand complex. These results resolve the recently noted discrepancy between the affinity of IgE binding to the Fc epsilon RI as determined by means of binding equilibrium measurements [Ortega et al. (1988) EMBO J. 7, 4101] and the respective parameter derived from the ratio of the rate constant of rat IgE dissociation and the initial rate of rat IgE association [Wank et al. (1983) Biochemistry 22, 954]. The probability of undergoing the conformational transition differs for the four different Fc epsilon RI-ligand complexes: while binding of Fab-H10 and IgE favors the h state, binding of Fab-J17 and Fab-F4 preferentially maintains the low-affinity 1 state (at 25 degrees C). The temperature dependence of the ligand interaction kinetics with the Fc epsilon RI shows that the activation barrier for ligand association is determined by positive enthalpic and entropic contributions. The activation barrier of the 1----h transition, however, has negative enthalpic contributions counteracted by a decrease in activation entropy. The h----1 transition encounters a barrier that is predominantly entropic and similar for all ligands employed, thus suggesting that the Fc epsilon RI undergoes a similar conformational transition upon binding any of the ligands.  相似文献   

3.
The kinetics of the reaction between human chorionic gonadotropin (hCG) and specific gonadotropin receptors in the rat testis were determined at 24 and 37 degrees, over a wide range of hormone concentrations. Hormone concentrations were corrected for the binding activity of the (-125I)hCG tracer preparations. Analysis of the experimental data was performed with an interactive nonlinear curve fitting program, based upon the second-order chemical kinetic differential equation. The mean values for the association rate constant (k1) were 4.7 x 10-7 M-1 min-1 at 24 degrees, and 11.0 x 10-7 M-1 min-1 at 37 degrees. At both temperatures, the values of kl were independent of hormone concentration. Initial dissociation rates were consistent with first order kinetics, with dissociation rate constant (k2) of 1.7 x 10 minus -3 and 4.6 x 10 minus -3 min minus -1 at 24 and 37 degrees, respectively. When studied over longer periods at 24 degrees, the dissociation process appeared to be multiexponential. The kinetics of degradation of (-125I)hCG and receptors were determined at both temperatures, and a mathematical model was developed by modification of the second-order chemical kinetic differential equation to take these factors into account. The application of such a model to hCG kinetic binding data demonstrated that reactant degradation had little significant effect on the derivation of the association rate constant (k1), but caused significant overestimation of the dissociation rate constant (k2) values derived from association experiments. The model was also applied by computer simulation to a theoretical analysis of the effects of degradation of free hormone and receptor sites upon kinetic and steadystate binding data. By this method, the initial velocities of hormone binding were shown to be less affected by degradation than the steady-state levels of hormone-receptor complex. Also, reactant degradation in simulated steady-state experiments caused an underestimate of the apparent equilibrium association constant, but had relatively less effect on the determination of binding site concentration.  相似文献   

4.
The kinetics of association and dissociation for the ouabain-Na+,K+- dependent ATPase complex have been studied in intact turkey erythrocytes as a function of external Na+ concentration, K+ concentration, and temperature. At free ligand concentrations substantially exceeding the concentration of available binding sites, the association reaction exhibits pseudo-first-order kinetics with an association rate constant (k1) that is conveniently determined over a wide range of temperatures (5-37 degrees C). The dissociation reaction exhibits strict first-order kinetics with a dissociation rate constant (k-1) that has the unusual property, in the turkey cell, of being sufficiently great to permit its direct determination even at temperatures as low as 5 degrees C. Values for the equilibrium binding constant for the ouabain-ATPase complex (KA) predicted from the ratio of the association and dissociation rate constants agree closely with independently measured values of KA determined directly under conditions of equilibrium binding. KA is a sensitive function of the composition of the external ionic environment, rising with increasing Na+ concentration and falling with increasing K+ concentration. These changes in KA are shown to be quantitatively attributable to changes in the rate constant k1, k-1 in contrast being unaffected at any given temperature by even very large changes in Na+ or K+ concentration. Arrhenius plots of k1 and k-1 both yield straight lines over the entire temperature range corresponding to activation energies for association and dissociation of 29.5 and 24.2 kcal/mol, respectively. These observations have made it possible to calculate the following standard values for the ouabain binding reaction in the presence of 150 mM Na+: delta G degree = -9.8 kcal/mol; delta H degree = +5.3 kcal/mol; delta S degree = +48.7 cal/degree/mol. The large positive value of delta S degree presumably reflects a highly ordered configuration of the ouabain-free ATPase molecule that is lost upon ouabain binding and that "drives" the reaction despite the positive value of delta H degree.  相似文献   

5.
S Pazhanisamy  R F Pratt 《Biochemistry》1989,28(17):6870-6875
The steady-state kinetics of the Enterobacter cloacae P99 beta-lactamase-catalyzed aminolysis of the depsipeptide m-[[(phenylacetyl)glycyl]oxy]benzoic acid by D-phenylalanine were consistent with an ordered sequential mechanism with D-phenylalanine binding first [Pazhanisamy, S., Govardhan, C. P., & Pratt, R. F. (1989) Biochemistry (first of three papers in this issue)]. In terms of this mechanism, the kinetics data required that in 20 mM MOPS buffer, pH 7.5, the dissociation constant of the initially formed enzyme/D-phenylalanine complex be around 1.3 mM; at pH 9.0 in 0.1 M carbonate buffer, the complex should be somewhat more stable. Attempts to detect this complex in a binary mixture by spectroscopic methods (fluorescence, circular dichroic, and nuclear magnetic resonance spectra) failed. Kinetic methods were also unsuccessful--the presence of 20 mM D-phenylalanine did not appear to affect beta-lactamase activity nor inhibition of the enzyme by phenylmethanesulfonyl fluoride, phenylboronic acid, or (3-dansylamidophenyl)boronic acid. Equilibrium dialysis experiments appeared to indicate that the dissociation constant of any binary enzyme/D-phenylalanine complex must be somewhat higher than the kinetics allowed (greater than 2 mM). Since the kinetics also required that, at high depsipeptide concentrations, and again with the assumption of the ordered sequential mechanism, the reaction of the enzyme/D-phenylalanine complex to aminolysis products be faster than its reversion to enzyme and D-phenylalanine, a double-label isotope-trapping experiment was performed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The alpha 2 adrenergic receptor (AR) inhibits adenylate cyclase via an interaction with Ni, a guanine nucleotide binding protein. The early steps involved in the activation of the alpha 2 AR by agonists and the subsequent interaction with Ni are poorly understood. In order to better characterize these processes, we have studied the kinetics of ligand binding to the alpha 2 AR in human platelet membranes on the second time scale. Binding of the alpha 2 antagonist [3H]yohimbine was formally consistent with a simple bimolecular reaction mechanism with an association rate constant of 2.5 X 10(5) M-1 s-1 and a dissociation rate constant of 1.11 X 10(-3) s-1. The low association rate constant suggests that this is not a diffusion-limited reaction. Equilibrium binding of the alpha 2 adrenergic full agonist [3H]UK 14,304 was characterized by two binding affinities: Kd1 = 0.3-0.6 nM and Kd2 = 10 nM. The high-affinity binding corresponds to approximately 65% and the low-affinity binding to 35% of the total binding. The kinetics of binding of [3H]UK 14,304 were complex and not consistent with a mass action interaction at one or more independent binding sites. The dependence of the kinetics on [3H]UK 14,304 concentration revealed a fast phase with an apparent bimolecular reaction constant kappa + of 5 X 10(6) M-1 s-1. The rate constants and amplitudes of the slow phase of agonist binding were relatively independent of ligand concentration. These results were analyzed quantitatively according to several variants of the "ternary complex" binding mechanism. In the model which best accounted for the data, (1) approximately one-third of the alpha 2 adrenergic receptor binds agonist with low affinity and is unable to couple with a guanine nucleotide binding protein (N protein), (2) approximately one-third is coupled to the N protein prior to agonist binding, and (3) the remainder interacts by a diffusional coupling of the alpha 2 AR with the N protein or a slow, ligand-independent conformational change of the alpha 2 AR-N protein complex. The rates of interaction of liganded and unliganded receptor with N protein are estimated.  相似文献   

7.
Ligand-receptor interactions within the plane of the plasma membrane play a pivotal role for transmembrane signaling. The biophysical principles of protein-protein interactions on lipid bilayers, though, have hardly been experimentally addressed. We have dissected the interactions involved in ternary complex formation by ligand-induced cross-linking of the subunits of the type I interferon (IFN) receptors ifnar1 and ifnar2 in vitro. The extracellular domains ifnar1-ectodomain (EC) and ifnar2-EC were tethered in an oriented manner on solid-supported lipid bilayers. The interactions of IFNalpha2 and several mutants, which exhibit different association and dissociation rate constants toward ifnar1-EC and ifnar2-EC, were monitored by simultaneous label-free detection and surface-sensitive fluorescence spectroscopy. Surface dissociation rate constants were determined by measuring ligand exchange kinetics, and by measuring receptor exchange on the surface by fluorescence resonance energy transfer. Strikingly, approximately three-times lower dissociation rate constants were observed for both receptor subunits compared to the dissociation in solution. Based on these directly determined surface-dissociation rate constants, the surface-association rate constants were assessed by probing ligand dissociation at different relative surface concentrations of the receptor subunits. In contrast to the interaction in solution, the association rate constants depended on the orientation of the receptor components. Furthermore, the large differences in association kinetics observed in solution were not detectable on the surface. Based on these results, the key roles of orientation and lateral diffusion on the kinetics of protein interactions in plane of the membrane are discussed.  相似文献   

8.
Information about ligand binding, dissociation, internalization, and intracellular processing and about receptor turnover, processing, and insertion into the membrane is contained in the time-dependent changes in concentrations of membrane-associated and internalized ligand. Single experiments similar in design to those typically performed for Scatchard analyses of binding data conducted at physiological temperature and in the absence of inhibitors of ligand-receptor complex internalization and degradation can provide kinetic data sufficient to permit derivation of all the respective rate constants by numerical methods. We developed an analytical solution of the kinetic model which assumes that all of these processes follow first order kinetics. The model represents interactions of surface receptors (R)s, the surface ligand-receptor complex (LR)s and internalized receptor-ligand complex (LR)I: d[R]S/dt = Vr - kt[R]S - ka[L] [R]S + kd [LR]S; d[LR]S/dt = ka[L] [R]S - kd[LR]S - ke[LR]S; d[LR]I/dt = ke[LR]S - kh[LR]I; Vr is the constant rate of insertion of receptors into the membrane, kt is the internalization rate constant for free receptors, ka and kd are association and dissociation rate constants for ligand-surface receptor interaction, ke is the internalization rate constant for ligand-receptor complexes, and kh is the intracellular ligand decomposition rate constant. The interaction of radioiodinated human recombinant interferon-alpha 2a with the human alveolar lung carcinoma cell line, A549, was adequately accounted for by the model. The rate constants, numerically derived from time-dependent concentrations of surface-bound and internalized ligand of other systems taken from the literature, were in agreement with values of these rate constants individually measured by steady-state experiments. In cases where the fate of internalized radioactivity was more complex than assumed by the model, the parameters ka, kt, (kd + ke) and Vr could be derived from the time dependence of [LR]S.  相似文献   

9.
Microchlorination of 1,4,9[3H]dibenzofuran gave several polychlorinated dibenzofuran (PCDF) products and 2,3,7,8-[3H]tetrachlorodibenzofuran (TCDF), 1,2,3,7,8-[3H]pentachlorodibenzofuran (PeCDF), and 1,2,3,6,7,8-/1,2,3,4,7,8-hexachlorodibenzofuran (HCDF) of high specific activity (57, 34, and 32.5 Ci/mmol, respectively) were purified by preparative high-pressure liquid chromatography. These compounds were investigated as radioligands for the rat liver cytosolic aryl hydrocarbon (Ah) receptor protein. Like 2,3,7,8-[3H]tetrachlorodibenzo-p-dioxin (TCDD), the radiolabeled PCDF congeners exhibited saturable binding with the receptor protein and sucrose density gradient analysis of the radiolabeled ligand-receptor complexes gave specific binding peaks with comparable sedimentation profiles. The rank order of radioligand binding affinities (Kd values) was 2,3,7,8-TCDD greater than 2,3,7,8-TCDF greater than 1,2,3,6,7,8-HCDF greater than 1,2,3,7,8-PeCDF and the maximum difference in Kd values for the four radioligands was less than 13-fold (0.44-5.9 nM). The interactions of the PCDF radioligands with the cytosolic receptor all exhibited saturable binding curves and linear Scatchard plots and the slopes of their Hill plots were in the range 1.0-1.1, thus indicating that cooperativity was not a factor in these binding interactions. The relative stabilities and dissociation kinetics of the radioligand-receptor complexes were highly dependent on the structure of the radioligand. The dissociation curves of the 2,3,7,8-[3H]TCDD and PCDF receptor complexes were biphasic and this suggests that there may be a temporal shift in ligand binding affinities. However, the rates of dissociation did not correlate with the rank order of ligand binding affinities. The stabilities of the radioligand-receptor complexes were also dependent on the structures of the radioligands; for example, the 2,3,7,8-[3H]TCDD-receptor complex degraded more rapidly than the PCDF-receptor complex and these relative stabilities were clearly not related to the Kd values or the relative in vivo or in vitro biologic potencies of these halogenated aryl hydrocarbons.  相似文献   

10.
A ubiquitous, low molecular weight, heat-stable component of cytosol stabilizes the glucocorticoid receptor in its untransformed state in association with hsp90. This heat-stable factor mimics molybdate in its effects on receptor function, and it has the heat stability, charge, and chelation properties of a metal oxyanion [Meshinchi, S., Grippo, J.F., Sanchez, E.R., Bresnick, E.H., & Pratt, W.B. (1988) J. Biol. Chem. 263, 16809-16817]. In this paper, we describe the further purification of the endogenous factor from rat liver cytosol by anion-exchange HPLC (Ion-110) after prepurification by molecular sieving, cation absorption, and charcoal absorption. Elution of the factor with an isocratic gradient of ammonium bicarbonate results in recovery of all of the bioactivity in a single peak which coelutes with inorganic phosphate and contains all of the endogenous molybdenum. The bioactivity can be separated from inorganic phosphate by chromatography of the partially purified endogenous factor on a metal-chelating column of Chelex-100. The chelating procedure results in complete loss of bioactivity with recovery of 98% of the inorganic phosphate in both the column drop-through and a subsequent 1 M NaCl wash. The factor preparation purified through the Ion-110 HPLC step inhibits temperature-mediated dissociation of the immunopurified glucocorticoid receptor-hsp90 complex, but it is considerably more effective at stabilizing the unpurified receptor-hsp90 complex in a Chelex-treated cytosol system that has been depleted of metal components. These observations support the proposal that an endogenous metal can stabilize the binding of hsp90 to the receptor but it is likely that other cytosolic components that are not present in the immunopurified complex must contribute to the stability of the soluble protein-protein complex in cytosol.  相似文献   

11.
We have studied the kinetics of N epsilon-fluorescein isothiocyanate-lysine-23 cobra alpha-toxin (FITC-toxin) binding to the membrane-associated acetylcholine receptor from the Torpedo californica electric organ. The fluorescent toxin not only enabled us to monitor the binding reaction continuously but also to examine simultaneously the enhancement of ligand fluorescence and the increase in steady state polarization of fluorescence associated with binding of the alpha-toxin. Over the range of concentrations employed, both parameters yielded identical kinetic constants, suggesting that the enhancement of fluorescence of fluorescein and its immobilization are occurring in the same time frame. Both an initial rate analysis and the integrated rate expression showed association to be a simple, reversible bimolecular process. The apparent second-order association rate constant derived from the integrated rate analysis was constant within a factor of 2 over a 40-fold concentration range (6.7 +/- 1.7 X 10(3) M-1 S-1). The unimolecular dissociation rate constant was found to be 3.3 +/- 0.5 X 10(-5) S-1.  相似文献   

12.
We measured the kinetic parameters for interaction of epidermal growth factor (EGF) with fetal rat lung (FRL) cells under two sets of experimental conditions and applied sensitivity analysis to see which parameters were well-defined. In the first set of experiments (method 1), the kinetics of internalization and dissociation of radiolabeled EGF were measured with a temperature-shift protocol in medium initially devoid of free ligand. The initial concentration of radiolabeled EGF bound to the cell surface corresponded to levels of receptor occupancy ranging from approximately 200 receptors per cell to approximately 18,000 receptors per cell, a level at which EGF binding approaches saturation. In the second set of experiments (method 2), carried out at a constant temperature, we began with no surface-bound or internalized ligand. The initial free ligand concentration was varied from 0.2 to 50 ng/mL. In both sets of experiments, we measured surface-bound, internalized, and free 125I-EGF as functions of time and evaluated the parameters of a mathematical model of endocytosis. Sensitivity analysis showed that three rate constants were well-defined in this combination of two experimental approaches: ke, the endocytic rate constant; ka, the association rate constant; and kd, the dissociation rate constant. The endocytic parameter ke was found to be independent of initial surface receptor occupancy (method 1); there was some indication that it increased with initial free ligand concentration in method 2. Neither kd nor ka was found to change with extent of initial surface receptor occupancy or initial free ligand concentration, respectively, a finding of significance, since diffusion theory predicts these parameters will vary with surface receptor occupancy.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
S A Wank  C DeLisi  H Metzger 《Biochemistry》1983,22(4):954-959
Theory predicts that the kinetics of simple interactions between a ligand and a receptor bound on the surface of a cell will be affected by the occupancy of receptors on the same cell. In a diffusion-limited reaction the effect will be on the rate of dissociation but not on the rate of association until the cell is virtually saturated with ligand. If the rate of reaction is not diffusion limited, then the opposite holds; i.e., the forward velocities will be proportional to the concentration of vacant receptors, but the reverse reactions will not be. We examined the kinetics of reaction between immunoglobulin E (IgE) and its receptor and clearly demonstrated that the reaction is not diffusion controlled. The substantial (congruent to 30-fold) increase in the forward rate constant observed for the reaction of IgE with solubilized receptors as opposed to cell-bound receptors is therefore not an artifact of calculation. Since the reverse rate constants show little difference, we postulate that the presence of other surface components (rather than conformational differences in the receptor) affects the reaction with the cells. As an aid to the analysis, the theory has been extended so that not only the rate constants but also the entire course of the reaction of ligand with cell receptors can be predicted for diffusion-limited vs. non-diffusion-limited interactions.  相似文献   

14.
The kinetics of the binding reaction of MS2 phage to free F pili, which were highly purified from Escherichia coli, has been studied using a membrane filter assay. The rate of dissociation (kd) of the MS2-phage--F-pilus complex is very slow and follows first-order kinetics with a half-life of 4.2 h at 30 degrees C in the standard buffer. The dissociation rate is rather insensitive to temperature, but becomes more rapid at high ionic strength or at basic pH. In a 0.25 M ionic strength buffer, the half-life of the complex is about 1.0 min. The rate of association is very fast and follows second-order kinetics with the rate constant for association (ka) being 8 x 10(7) M-1 s-1 at 30 degrees C in the standard buffer. The rate of association is almost insensitive to ionic strength but slightly sensitive to pH or temperature. Monovalent cations can also promote the binding reaction as well as divalent cations but the complex formed with monovalent cation is unstable. A study of the kinetics of dissociation suggests that there are two types of interaction between MS2 phage and F pilus; one is a strong interaction formed with divalent cations and the other is a weak one formed with monovalent cations. The physical nature of the bonds involved in the former and the latter seems to be mainly electrostatic and non-electrostatic respectively. The mechanism of the binding reaction is discussed.  相似文献   

15.
The kinetics of binding of glucocorticoids to the soluble, specific binding protein of mouse fibroblasts has been examined. The rate at which both potent and weak glucocorticoids achieve binding equilibrium is very slow. Second order rate constants of association range from 3 times 10-5 M- minus 1 min- minus 1 for cortisol to 6.7 times 10-5 M- minus 1 min- minus 1 for triamcinolone acetonide. Studies of the rates of binding at high steroid concentrations suggest that the slow rate of binding may be explained by a two-step mechanism. Active glucocorticoids, regardless of their potency, bind initially in a rapid manner to form a weak complex with the binding protein. The dissociation constant for the weak binding reaction is 0.87 times 10- minus 7 M for triamcinolone acetonide and 2.4 times 10- minus 7 M for cortisol. The weak binding complex becomes converted slowly to a tight complex. The first order rate constants for this conversion and the rate constants of dissociation from the tight complex have been determined for cortisol, dexamethasone and triamcinolone acetonide. The binding affinity of steroids of different biological potency is correlated with their rate of dissociation from this second tight binding state.  相似文献   

16.
Using BIAcore surface plasmon resonance technology, we found that the real-time association kinetics of Fabs specific for hen egg-white lysozyme did not conform to a 1:1 Langmuir association model. Heterogeneity of the components is not the source of the complex kinetics. Informed by independent structural data suggesting conformational flexibility differences among these antibodies, we chose global mathematical analysis based on a two-phase model, consistent with the encounter-docking view of protein-protein associations. Experimental association times (T(a)) from 2 to 250 min revealed that initial dissociation rates decreased with increasing T(a), confirming a multiphasic association. The relationship between observed dissociation rate and T(a) is characteristic of each antibody-antigen complex. We define a new parameter, T(50), the time at which the encounter and final complexes are of equimolar concentration. The observed T(50) is a function of analyte concentration and the encounter and docking rate constants. Simulations showed that when the ligand is saturated at high analyte concentrations, T(50) reaches a minimum value, T(50)(MIN), which can be used to compare antigen-antibody complexes. For high-affinity complexes with rapid rearrangement to a stable complex, T(50)(MIN) approaches T(1/2) of the rearrangement forward rate constant. We conclude that experiments with a range of T(a) are essential to assess the nature of the kinetics, regardless of whether a two-state or 1:1 model is applicable. We suggest this strategy because each T(a) potentially reveals a different distribution of molecular states; for two-step analysis, a range of T(a) that brackets T(50) is optimal.  相似文献   

17.
We have examined the rate of dissociation of internalized 125I-asialo-orosomucoid-receptor complexes in freshly isolated rat hepatocytes. Cell suspensions were washed with ethylene glycol bis (beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid at 0 degrees C to remove surface-bound ligand and then assessed for the retention of radioactive glycoprotein in the presence of digitonin, which permeabilized the cells and released the internal soluble contents. In cells which initially contained only surface-bound ligand, about 50% of the internalized ligand dissociated from receptor very rapidly (t1/2 less than or equal to 2.5 min, k greater than or equal to 0.28 min-1), at 37 degrees C, whereas the other 50% dissociated more slowly with apparent first order kinetics (t1/2 = 50 min, k = 0.014 min-1). This equal distribution of internalized ligand into two compartments, from which dissociation occurred with very different kinetics, did not depend on the extent of surface receptor occupancy and also occurred under non-steady state conditions of continuous exposure to ligand. Ligand entering both the rapid and slow dissociation compartments was eventually degraded with apparent first order kinetics (k = 0.0047 min-1), suggesting that the intracellular routing of ligand to lysosomes after dissociation from either compartment was via the same pathway. The fast and slow dissociation of receptor-ligand complexes were also distinguished by different temperature sensitivities; the slow dissociation process ceased below 18 degrees C, whereas the fast dissociation process still proceeded. The equal partition of internalized complexes into the two kinetic compartments did not change as a function of temperature but did change as cells continued to endocytose asialo-orosomucoid at 37 degrees C. As the internal receptor pool approached a steady state level of occupancy, there was an increase in the average time for receptor recycling and an increase in the fraction of incoming receptor-ligand complexes which dissociated rapidly (approximately 75%). In addition, under steady state conditions, the rate of the slow dissociation process increased (k = 0.026 min-1, t1/2 = 27 min).  相似文献   

18.
We describe a system for extending stopped-flow analysis to the kinetics of ligand capture and release by cell surface receptors in living cells. While most mammalian cell lines cannot survive the shear forces associated with turbulent stopped-flow mixing, we determined that a murine hematopoietic precursor cell line, 32D, is capable of surviving rapid mixing using flow rates as great as 4.0 mL/s, allowing rapid processes to be quantitated with dead times as short as 10 ms. 32D cells do not express any endogenous epidermal growth factor (EGF) receptor or other ErbB family members and were used to establish monoclonal cell lines stably expressing the EGF receptor. Association of fluorescein-labeled H22Y-murine EGF (F-EGF) to receptor-expressing 32D cells was observed by measuring time-dependent changes in fluorescence anisotropy following rapid mixing. Dissociation of F-EGF from EGF-receptor-expressing 32D cells was measured both by chase experiments using unlabeled mEGF and by experiments in which equilibrium was perturbed by dilution. Comparison of these dissociation experiments showed that little, if any, ligand-induced dissociation occurs in the chase dissociation experiments. Data from a series of association and dissociation experiments, performed at various concentrations of F-EGF in the nanomolar range and at multiple cell densities, were simultaneously analyzed using global analysis techniques and fit to a two independent receptor-class model. Our analysis is consistent with the presence of two distinct receptor populations having association rate constants of k(on1) = 8.6 x 10(6) M(-1) s(-1) and k(on2) = 2.4 x 10(6) M(-1) s(-1) and dissociation rate constants of k(off1) = 0.17 x 10(-2) s(-1) and k(off2) = 0.21 x 10(-2) s(-1). The magnitudes of these parameters suggest that under physiological conditions, in which cells are transiently exposed to nanomolar concentrations of ligand, ligand capture and release may function as the first line of regulation of the EGF receptor-induced signal transduction cascade.  相似文献   

19.
The bimolecular binding reaction between mono[TyrA14-125I]iodoinsulin and the insulin receptor was investigated at 37 degrees C in intact isolated rat adipocytes in which membrane traffic was inhibited by 1 mM KCN. This treatment decreased the fraction of cell-associated radioactivity resistant to treatment at pH 3 (usually regarded as internalized ligand) from 70% to 17%. The total amount of tracer being cell-associated at steady state was reduced to about half of the control value partly because of a decreased apparent binding affinity. The t1/2 for the forward reaction was reduced from 414 s in the control cell to 26 s in the KCN treated cell. Likewise, the t1/2 for the dissociation was reduced from 461 s to 67 s. Both rate constants were pH sensitive, the association rate constant being 7-8-fold more than the dissociation rate constant. Since both rate constants for the bimolecular reaction were one order of magnitude greater than those for the uptake and the release of label in the untreated cell, other processes than binding constitute the rate-limiting step(s) in the cellular reaction with insulin.  相似文献   

20.
The nature of the interactions between the N-methyl-D-aspartate (NMDA) and the phencyclidine (PCP) receptors was studied in membranes obtained from rat cerebral cortex and washed repeatedly to remove endogenous excitatory amino acids. Binding of [3H]-N-[1-(2-thienyl)cyclohexyl]piperidine ([3H]TCP) to its receptor sites in these membranes proceeded slowly and did not reach equilibrium even after incubation for 4 h at 25 degrees C. The dissociation rate of [3H]TCP-receptor complexes was also slow (t1/2 = 128-165 min). Both association and dissociation followed first-order reaction kinetics, with similar time constants (0.0054 min-1). Addition of glutamate and glycine to the washed membranes was immediately followed by a marked increase in the rates of both association of [3H]TCP with the receptors and its dissociation from them (t1/2 = 8 min). Association now followed second-order reaction kinetics. Accelerated association of [3H]TCP with its binding sites could also be induced by NMDA or by glutamate alone, and glycine enhanced the effect. All effects of glutamate and glycine on [3H]TCP binding kinetics were blocked by the competitive NMDA receptor antagonist AP-5 [D-(-)-2-amino-5-phosphovaleric acid]. [3H]TCP-receptor interactions at equilibrium were not altered by AP-5 or by glutamate and glycine. The binding data were fitted to a model in which interactions of [3H]TCP with the receptor involve a two-step process: the outside ligand must cross a barrier (presumably a closed NMDA receptor channel in the absence of agonists). Once agonists are added, this limitation is removed (presumably because the channel is open).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号