首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In 16 patients with metastatic testicular cancer and 10 age matched male control subjects growth hormone (GH) responses to growth hormone releasing hormone (GHRH; 1 microgram/kg body weight iv.) and thyrotropin releasing hormone (TRH; 200 micrograms iv.) were measured. Basal GH levels and GH levels following stimulation with GHRH or TRH were significantly increased in cancer patients compared to control subjects. 9 patients with testicular cancer were studied both in the stage of metastatic disease and after they had reached a complete remission. In complete remission GH responses to GHRH tended to decrease but the differences did not reach statistical significance. Our data suggest an alteration of hypothalamic and/or pituitary regulation of GH secretion in patients with metastatic testicular cancer.  相似文献   

2.
Patients with hyperthyroidism have reduced growth hormone (GH) responses to pharmacological stimuli and reduced spontaneous nocturnal GH secretion. The stimulatory effect of clonidine on GH secretion has been suggested to depend on an enhancement of hypothalamic GH-releasing hormone (GHRH) release. The aim of our study was to evaluate the effects of clonidine and GHRH on GH secretion in patients with hyperthyroidism. Eight hyperthyroid females with recent diagnosis of Graves' disease (age range 20-55 years, body mass index range 19.2-26.2 kg/m2) and 6 healthy female volunteers (age range 22-35 years, body mass index range 19-25 kg/m2) underwent two experimental trials at no less than 7-day intervals: (a) an intravenous infusion of clonidine 150 micrograms in 10 ml of saline, or (b) a bolus intravenous injection of human GHRH (1-29)NH2, 100 micrograms in 1 ml of saline. Hyperthyroid patients showed blunted GH peaks after clonidine (7.1 +/- 1.7 micrograms/l) as compared to normal subjects receiving clonidine (28.5 +/- 4.9 micrograms/l, p less than 0.05). GH peaks after GHRH were also significantly lower in hyperthyroid subjects (8.0 +/- 1.7 micrograms/l) as compared to normal subjects receiving GHRH (27.5 +/- 4.4 micrograms/l, p less than 0.05). No significant differences in the GH values either after clonidine or GHRH were observed in the two groups of subjects examined. Our data demonstrate that the GH responses to clonidine as well as to GHRH in patients with hyperthyroidism are inhibited in a similar fashion with respect to normal subjects.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The aim of the study was the evaluation of growth hormone secretion under physiologic conditions in two groups of type I diabetics: responding and nonresponding to TRH stimulation. Both groups matched for age and metabolic control of diabetes were studied during 24-hours and after GHRH stimulation. The whole diabetic group (n = 18) showed circadian rhythm of GH secretion with mesor value of 4.03 micrograms/l. TRH-responders had lower mesor GH value than TRH-nonresponders: 3.53 vs. 5.32, p < 0.05. GH response to GHRH was almost identical in both groups. C-peptide level was lower in TRH-responders: 0.16 vs. 0.56 microgram/l, p < 0.05. No correlation was found between growth hormone response and HbA1 and C-peptide levels. It is concluded that type I diabetics responding to TRH stimulation are characterized by lower mean 24-hour GH levels and lower C-peptide values.  相似文献   

4.
In a previous paper we have demonstrated that growth hormone (GH) responses to growth hormone releasing hormone (GHRH) are higher in premenopausal normal women than in age matched healthy men. As in type I diabetes mellitus various disturbances of GH secretion have been reported, the aim of our study was to assess the effect of sex on basal and GHRH stimulated GH secretion in type I diabetes mellitus. In 21 female and 23 male type I diabetic patients and 28 female and 30 male control subjects GH levels were measured before and after stimulation with GHRH (1 microgram/kg body weight i.v.) by radioimmunoassay. GH responses to GHRH were significantly higher in female than in male control subjects (p less than 0.02), whereas the GH levels following GHRH stimulation were similar in female and male type I diabetic patients. GH responses to GHRH were significantly higher in the male type I diabetic patients than in the male control subjects (p less than 0.001); in the female type I diabetic patients and the female control subjects, however, GH responses to GHRH were not statistically different. The absence of an effect of sex on GHRH stimulated GH responses in type I diabetes mellitus provides further evidence of an abnormal GH secretion in this disorder.  相似文献   

5.
Subjects with Cushing's disease have diminished growth hormone (GH) response to growth hormone-releasing hormone (GHRH). The aim of our study was to investigate the underlying mechanism of this diminished GH response in these patients using pyridostigmine (PD), an acetylcholinesterase inhibitor, which is reported to increase GH secretion by reducing somatostatin tone. Eight subjects with untreated Cushing's disease (caused by a pituitary adenoma) and 6 control subjects received GHRH 100 micrograms in 1 ml of saline, as intravenous bolus injection 60 min after (1) placebo (2 tablets, p.o.) or (2) PD (120 mg, p.o.). After GHRH plus placebo, the GH peak (mean +/- SEM) was significantly lower in subjects with Cushing's disease (2.4 +/- 0.5 micrograms/l) compared to control subjects (25.1 +/- 1.8 micrograms/l, p less than 0.05). After GHRH plus PD, the GH peak was significantly enhanced both in subjects with Cushing's disease (7.1 +/- 2.3 micrograms/l, p less than 0.05) and in control subjects (42.3 +/- 4.3 micrograms/l, p less than 0.05). In patients with Cushing's disease, the GH response to GHRH plus PD was lower with respect to the GH response to GHRH alone in normal subjects. We conclude that hypercortisolism may cause a decrease in central cholinergic tone which is in turn hypothesized to be responsible of an enhanced somatostatin release from the hypothalamus. However, other metabolic or central nervous system alterations may act synergistically with hypercortisolism in causing GH inhibition in patients with Cushing's disease.  相似文献   

6.
Growth hormone (GH) and prolactin (PRL) secretion after GH-releasing hormone (GHRH) and domperidone (DOM), an antidopaminergic drug which does not cross the blood-brain barrier (BBB), was evaluated in 8 healthy elderly men (65-91 years) and in 7 young adults (23-40 years). All received in random order at 2-day intervals: GHRH(1-40) (50 micrograms i.v.) bolus, DOM (5 mg/h) infusion, GHRH(1-40) (50 micrograms i.v.) plus DOM (5 mg/h i.v.), saline solution. In elderly men GH increase after GHRH was significantly lower than in young men. DOM alone did not change GH secretion in either of these groups, whereas it increased the GH response to GHRH only in young adults. PRL levels increased in both young and elderly men during both DOM and GHRH plus DOM, but the PRL release was more marked in young than in elderly men. Both integrated secretion of GH after GHRH and of PRL after DOM were inversely correlated to chronological age. Our data show an impairment of GH rise after GHRH and of PRL after DOM in elderly adults. It is also stressed that peripheral blockade of dopamine receptors by DOM is unable to amplify the GH response to GHRH only in elderly men. A reduction in GH release after GHRH might be related to aging, perhaps through a reduction of dopaminergic tonus.  相似文献   

7.
In order to investigate whether endogenous GHRH and somatostatin were involved in the mechanism of the paradoxical GH rise after TRH injection, changes in serum GH and plasma GHRH were examined before and after TRH injection in 12 cancer patients and changes in serum TSH and GH were similarly studied in 76 cancer patients including 31 GH-responders and 45 GH-nonresponders to TRH. TRH stimulated GH secretions without altering the circulating GHRH concentration in 4 of the 12 cancer patients. There was neither a significant correlation between the increase from the basal to maximum GH and GHRH after TRH injection in the 12 cancer patients nor a reciprocal relationship between the increase in GH and TSH after TRH injection in the 76 cancer patients. These findings suggested that the paradoxical GH rise after TRH injection in cancer patients was exerted by its direct action at the pituitary level, and not mediated through the hypothalamus.  相似文献   

8.
Glucocorticoids are thought to inhibit growth hormone (GH) secretion through an enhancement of endogenous somatostatin tone. The aim of our study was to evaluate the effects of GH-releasing hormone (GHRH) and clonidine, an alpha-2-adrenergic agonist which increases GH secretion acting at the hypothalamic level with an unknown mechanism, on GH secretion in seven adult patients (3M, 4F) with non endocrine diseases and on daily immunosuppressive glucocorticoid therapy. Eleven normal subjects (7M, 4F) served as controls. Steroid-treated patients showed a blunted GH response to GHRH (GH peak 8.3 +/- 3 micrograms/L) with respect to normal subjects (GH peak 19.3 +/- 2.4 micrograms/L). The GH responses to clonidine were also blunted (p less than 0.05) in steroid-treated patients (GH peak 5.8 +/- 2.8 micrograms/L) with respect to normal subjects (GH peak 17.6 +/- 2.3 micrograms/L). No significant differences between the GH responses to GHRH and clonidine were observed either in steroid-treated or in normal subjects. Clonidine is not able to enhance GH secretion similar to GHRH in patients chronically treated with steroids. It can be hypothesized that clonidine does not elicit GH secretion decreasing hypothalamic somatostatin tone.  相似文献   

9.
The effect of thyrotropin-releasing hormone (TRH) on the release of growth hormone (GH) was investigated in 16 elderly male subjects aged 74-88 years. Intravenous injection of 200 micrograms TRH induced a clear-cut GH rise (greater than or equal to 10 ng/ml) in 7 of 16 subjects. TRH administration did not raise plasma GH in 10 adult subjects aged 36-58 years. The results suggest disorders in neurobiochemical mechanisms regulating hypothalamopituitary function in elderly men.  相似文献   

10.
J L Barron  D H Coy  R P Millar 《Peptides》1985,6(3):575-577
Synthetic analogs of growth hormone-releasing hormone, GHRH(1-29)-NH2 and D-Ala2 GHRH(1-29)-NH2 were administered as a bolus intravenous injection to five normal men in a dose range of 0.015 to 0.5 micrograms/kg body weight. Vehicle only was administered in a control study. Peak responses to GHRH analogs occurred at 15 or 30 min. An increase in the integrated plasma growth hormone (GH) response was observed at each dose. The dose-response curve of GHRH(1-29)-NH2 indicated that it has a similar molar potency to GHRH(1-40) and GHRH(1-44). The potency of D-Ala2 GHRH(1-29)-NH2 was approximately twice that of GHRH(1-29)-NH2. Neither analog affected blood levels of PRL, TSH, LH, FSH, ACTH, insulin, glucagon, glucose, cortisol, free thyroxine, and free triiodothyronine. No side effects were noted other than transient flushing with the highest dose administered. The findings demonstrate GHRH(1-29)-NH2 and its D-Ala2 analog are potent stimulators of GH release and have potential application in clinical medicine.  相似文献   

11.
Growth hormone (GH) secretion is regulated by GH-releasing hormone (GHRH), somatostatin, and possibly ghrelin, but uncertainty remains about the relative contributions of these hypophysiotropic factors to GH pulsatility. Patients with genetic GHRH receptor (GHRH-R) deficiency present an opportunity to examine GH secretory dynamics in the selective absence of GHRH input. We studied circadian GH profiles in four young men homozygous for a null mutation in the GHRH-R gene by use of an ultrasensitive GH assay. Residual GH secretion was pulsatile, with normal pulse frequency, but severely reduced amplitude (<1% normal) and greater than normal process disorder (as assessed by approximate entropy). Nocturnal GH secretion, both basal and pulsatile, was enhanced compared with daytime. We conclude that rhythmic GH secretion persists in an amplitude-miniaturized version in the absence of a GHRH-R signal. The nocturnal enhancement of GH secretion is likely mediated by decreased somatostatin tone. Pulsatility of residual GH secretion may be caused by oscillations in somatostatin and/or ghrelin; it may also reflect intrinsic oscillations in somatotropes.  相似文献   

12.
The effect of thyrotrophin releasing hormone (TRH) or human pancreatic growth hormone releasing factor (hpGRF) on growth hormone (GH) release was studied in both dwarf and normal Rhode Island Red chickens with a similar genotype except for a sex-linked dw gene. Both TRH (10 micrograms/kg) and hpGRF (20 micrograms/kg) injections stimulated plasma GH release within 15 min in young and adult chickens. The increase in GH release was higher in young cockerels than that in adult chickens. The age-related decline in the response to TRH stimulation was observed in both strains, while hpGRF was a still potent GH-releaser in adult chickens. The maximal and long acting response was observed in young dwarf chickens, suggesting differences in GH pools releasable by TRH and GRF in the anterior pituitary gland. The pituitary gland was stimulated directly by perifusion with hpGRF (1 microgram/ml and 10 micrograms/ml) or TRH (1 microgram/ml). Repeated perifusion of GRF at 40 min intervals blunted further increase in GH release, but successive perifusion with TRH stimulated GH release. The results suggest the possibility that desensitization to the effects of hpGRF occurs in vitro and that the extent of response depends on the number of receptors for hpGRF or TRH and/or the amount of GH stored in the pituitary gland.  相似文献   

13.
Evidence suggests that estrogen modulates growth hormone (GH) release and that GH plays an important role in follicular and ovulatory processes. How estradiol affects GH secretion is unclear. Having verified that there is a coincident surge of GH at the time of the preovulatory LH surge, immunocytochemical studies incorporating high-temperature antigen retrieval were used to determine whether GH-releasing hormone (GHRH) neurons, somatotropes, or both, expressed estrogen receptor alpha (ER), in the ewe. Although GHRH neurons were surrounded by many ER cells, they did not express immunocytochemically detectable ERs. In contrast to gonadotropes, in which the majority expressed ERs, few somatotropes were estrogen receptive. These data suggest that estrogen does not act directly on GHRH neurons to influence GH secretion, and any direct effect on pituitary GH release, through the ERalpha, may be small.  相似文献   

14.
The substance P(SP)/bombesin (Bn) antagonists [DArg1DTrp7,9Leu11] SP(P-7482), [DArg1-DPro2DTrp7,9Leu11]SP (P-7483), [DArg1DPhe5DTrp7,9Leu11]SP(P-7492), and the growth hormone releasing hormone (GHRH) antagonist [DArg2Ala8,9,15]GHRH(1-29)(DC21-366) were tested for their in vitro effects on the release of growth hormone (GH) in the presence of GHRH and growth hormone releasing peptide, HisDTrpAlaTrpDPheLysNH2(GHRP). P-7492, P-7483, and P-7482 decreased, dose-dependently, the release of GH by GHRP (IC50 = 0.2 microM, 0.85 microM, and 6 microM, respectively). These antagonists had only a 10-15% inhibitory effect on the stimulated GH release of GHRH even at high dosage. DC21-366 decreased the stimulated release of GH by GHRH (IC50 = 0.16 microM) but not by GHRP. Neither SP nor Bn had GH releasing or inhibitory effects in this system.  相似文献   

15.
The effects of synthetic somatostatin (SRIF) on serum growth hormone (GH) concentrations stimulated by exogenous administration of synthetic thyrotropin-releasing hormone (TRH) and/or human pancreatic GH-releasing factor (hpGRF) were investigated in 4-week-old cockerels. In addition, the additive effects of TRH and hpGRF on serum GH were examined. TRH and hpGRF, when given in combination intravenously, produced an additive effect on serum GH concentration that peaked 10 min after the injection. The somatostatin did not significantly affect basal GH concentrations when given alone, but did significantly decrease the magnitude of the GH response to hpGRF. In contrast, SRIF did not significantly decrease the stimulatory effects of TRH on GH release. These results suggest that TRH and hpGRF are potent GH releasers in vivo and that their stimulating effects on GH release are additive, suggesting different mechanisms for their stimulation. The results obtained from the combination studies suggest that the main site of the stimulatory action of hpGRF is at the pituitary, and that SRIF significantly inhibited the rise in serum GH induced by a synthetic hpGRF, but not that induced by TRH.  相似文献   

16.
The present study was designed to answer the following three questions: Is there any difference between the growth hormone (GH) response to i.v. injections of GHRH 1-44 by a slowly injecting hormone pump or to a s. s. or rapid i. v. injection by syringe? Do nocturnal injections of GHRH 1-44 i. v. elicit different GH levels than during daytime? Can repetitive administration of GHRH 1-44 in patient with GH deficiency induce a physiological GH pattern and thereby normalize the condition resulting from a hypothalamic defect? A rapid i. v. bolus injection of 50 micrograms GHRH 1-44 by syringe with an injection time of one second elicited in the same subject at the same time of the day a twofold greater response than a slowly injecting (60 seconds) hormone pump. In six male adult volunteers each GHRH i. v. bolus was followed by a GH secretory pulse. The GH response at night (area under the curve and peak plasma GH levels) was significantly greater than at daytime (P less than 0.05) and greater than the GH pulses measured during a spontaneous nocturnal profile (P less than 0.05). Out of six GH deficient young adult patients who had been receiving extractive GH until two years prior to the study, three responded much like the controls, the other three patients-those who lacked any spontaneous nocturnal GH peaks-had markedly lower GH levels after GHRH (P less than 0.05). However, there was a clear-cut GH release after GHRH injection in each patient.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Slot-blot hybridization technique was used to evaluate growth hormone-releasing hormone (GHRH) mRNA levels in the hypothalamus of long-term (14 days) hypophysectomized (HPX) rats treated or not with 125 micrograms hGH/rat, twice daily IP, since the first day postsurgery. In addition, mRNA levels were determined in the hypothalamus of short-term (4 days) GH-treated (250 micrograms hGH/rat, twice daily IP) intact rats. GHRH mRNA levels were increased in HPX rats, and GH treatment partially counteracted this rise. Short-term administration of GH decreased GHRH mRNA levels in intact rats. These results, evaluated together with previous findings showing decreased hypothalamic GHRH-like immunoreactivity in both HPX rats and intact rats given GH (6, 7, 9), indicate that GH exerts a negative feedback action on the synthesis and release of GHRH.  相似文献   

18.
Models of physiological systems facilitate rational experimental design, inference, and prediction. A recent construct of regulated growth hormone (GH) secretion interlinks the actions of GH-releasing hormone (GHRH), somatostatin (SRIF), and GH secretagogues (GHS) with GH feedback in the rat (Farhy LS, Veldhuis JD. Am J Physiol Regul Integr Comp Physiol 288: R1649-R1663, 2005). In contrast, no comparable formalism exists to explicate GH dynamics in any other species. The present analyses explore whether a unifying model structure can represent species- and sex-defined distinctions in the human and rodent. The consensus principle that GHRH and GHS synergize in vivo but not in vitro was explicable by assuming that GHS 1) evokes GHRH release from the brain, 2) opposes inhibition by SRIF both in the hypothalamus and on the pituitary gland, and 3) stimulates pituitary GH release directly and additively with GHRH. The gender-selective principle that GH pulses are larger and more irregular in women than men was conferrable by way of 4) higher GHRH potency and 5) greater GHS efficacy. The overall construct predicts GHRH/GHS synergy in the human only in the presence of SRIF when the brain-pituitary nexus is intact, larger and more irregular GH pulses in women, and observed gender differences in feedback by GH and the single and paired actions of GHRH, GHS, and SRIF. The proposed model platform should enhance the framing and interpretation of novel clinical hypotheses and create a basis for interspecies generalization of GH-axis regulation.  相似文献   

19.
Plasma growth hormone releasing factor (GHRH) was measured by RIA in the plasma of 41 children with constitutionally short stature. Basal plasma GHRH was 51 +/- 10 pg/ml. L-Dopa induced a 2-fold increase in circulating GHRH 30-45 min before the elevation of GH. A positive correlation (p less than 0.005) was found between the peak of GH and GHRH during the dopaminergic stimulus. On the opposite, the secretion of GH induced by amino acids or clonidine is not preceded by an elevation of plasma GHRH. When a release of GH appeared after the insertion of the venous catheter alone, probably due to the stress, it was preceded by a rise of plasma GHRH. In four sleeping adolescents during the night no relationship was found between the peaks of plasma GHRH and the peaks of GH secretion. These results suggest that the various stimulations of GH secretion used for investigations of a short stature do not act in the same way at the hypothalamo-pituitary level.  相似文献   

20.
Growth-hormone-releasing hormone (GHRH) tests were performed once [GHRH(1-29)NH2, 1 microgram/kg] or on 2 consecutive days [GHRH(1-44)NH2, 1 and 2 microgram/kg administered in random order] in 27 children with idiopathic, isolated growth hormone (GH)-deficiency and in 49 short normal children, all clinically prepubertal. No differences in GH release were found between the tests performed on the 1st and 2nd day or according to GHRH dose or sex, both in GH-deficient and control children. 80% of GH-deficient and 87% of control children responded (GH peak greater than 10 ng/ml) to GHRH(1-29)NH2, and 65% of GH-deficient and all control children to GHRH(1-44)NH2. No differences in GH release were found between GH-deficient GHRH responders and control children. 17% of GH-deficient and 10% of control children responded only to one of the two tests performed on 2 consecutive days; the lack of responsiveness was unrelated to GHRH dose and sequence of GHRH administration (1st or 2nd day). The GHRH test does not seem to be a reproducible test for the evaluation of GH release, nor is it useful to differentiate GH-deficient GHRH responders from short normal children.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号