首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of guinea pig polymorphonuclear leukocytes (PMNL) with various fatty acids elicited superoxide anion (O2-) production and an increase in intracellular Ca2+ [( Ca2+]i). Both responses, however, were seldom observed when PMNL were treated at lower concentrations. But, simultaneous addition of 1-oleoyl-2-acetylglycerol (OAG), a protein kinase C activator, caused an increase in O2- production even at the lower concentrations of fatty acids. In contrast to the synergism in O2- production, [Ca2+]i remained at almost the basal level irrespective of the presence of OAG. Among saturated fatty acids, those with carbon numbers of 14 to 18 were most effective in stimulating O2- production in combination with OAG. Unsaturated fatty acids with a carbon number of 18 were almost equally effective irrespective of the number of double bonds.  相似文献   

2.
The effect of hydroperoxy fatty acids on reactions involved in the acylation-deacylation cycle of synaptic phospholipids was studied in vitro, using nerve ending fraction isolated from rat forebrain. 15-Hydroperoxyeicosatetraenoic acid (15-HPETE), 13-hydroperoxylinoleic acid (13-HP 18: 2), and hydroperoxydocosahexaenoic acid (22:6 Hpx), at 25 microM final concentration, all inhibited the incorporation of [1-14C]arachidonate into synaptosomal phosphatidylinositol (PI), phosphatidylcholine (PC), and triacylglycerides by 50-80%. The lowest effective concentration of 15-HPETE and 13-HP 18:2 resulting in significant inhibition of the reacylation of PI was 5 microM, whereas the inhibition of [1-14C]arachidonate incorporation into PC required 10 and 5 microM hydroperoxy fatty acids, respectively. Cumene hydroperoxide and tert-butyl hydroperoxide at concentrations of 100 microM did not inhibit reacylation of PI and PC. Synthesis of labeled arachidonoyl-CoA from [1-14C]arachidonate was decreased by about 50% by 25 microM hydroperoxy fatty acids both in synaptosomes and in the microsomal fraction. Use of [1-14C]arachidonoyl-CoA as a substrate, to bypass the fatty acid activation reaction, revealed that activity of acyltransferase was not affected significantly by 25 microM 15-HPETE and 13-HP 18:2. At the same time, however, the hydrolysis of labeled arachidonoyl-CoA was substantially enhanced. Exposure of synaptosomes to 25 microM fatty acid hydroperoxides did not affect significantly the endogenous concentrations of five major free fatty acids. It is concluded that (1) among synaptic phospholipids, reacylation of PI and PC is the most susceptible to the inhibitory action of fatty acid hydroperoxides, and (2) the enzymes affected by these compounds in nerve endings are arachidonoyl-CoA synthetase and hydrolase.  相似文献   

3.
1. The effect of a range of fatty acids upon concanavalin A-stimulated [3H]thymidine incorporation into rat lymphocytes was investigated. 2. All fatty acids tested inhibited the response to mitogen but the extent of the inhibition was dependent upon the fatty acid concentration used, the time of addition of fatty acid and the duration of exposure of the cells to fatty acid. 3. All fatty acids were inhibitory at concentrations of 50 microM or above; at lower concentrations some were inhibitory and some were stimulatory. Above 50 microM the inhibitory effect was concentration dependent; the greater the fatty acid concentration, the greater the inhibition. 4. The longer the lymphocytes were exposed to the fatty acid the greater was the inhibitory effect. This was true if the fatty acids were added at the same time as the mitogenic stimulus or if they were added before or after the stimulus. Some fatty acids maintained their inhibitory effect when added 24 or 48 hr after the mitogenic stimulus. 5. Generally unsaturated fatty acids were more inhibitory than saturated fatty acids; the greatest inhibition of proliferation was caused by eicosapentaenoate and arachidonate and the least inhibition by myristate and palmitate. 6. Inhibition was greater in the absence of serum. 7. Inhibition by unsaturated fatty acids could be partially or totally relieved by addition in combination with myristate or palmitate, suggesting that the inhibitory effect of fatty acids may be due to alteration of membrane fluidity caused by an imbalance of fatty acids presented to the cells. 8. PGE2 levels were similar in the medium of cells grown in the presence of fatty acids with varying inhibitory effects, indicating that PGE2 production is not the sole mechanism of suppression of the proliferative response. 9. Although the mechanism by which fatty acids exert their effect remains to be determined, these results indicate that lymphocyte proliferation and so an immune response could be influenced by dietary lipid manipulation.  相似文献   

4.
Elongation of C20 polyunsaturated fatty acids by human skin fibroblasts   总被引:2,自引:0,他引:2  
Human skin fibroblasts actively elongate a portion of incorporated C20 polyunsaturated fatty acids to their respective C22 derivatives. As much as 40% of incorporated [14C]eicosapentaenoate is elongated within 8 h and 85% by 48 h. Elongation of [14C]arachidonate is initially less than half that of [14C]eicosapentaenoate and plateaus at 20-30% of incorporated 14C-labeled fatty acid. The elongation of 5,8,11-[14C]eicosatrienoate is intermediate between that of 20:4(n-6) and 20:5(n-3). Docosatetraenoate is not an effective inhibitor of the elongation of arachidonate, thus suggesting that the observed plateau is not due to product inhibition. When concentrations of exogenous fatty acids are increased, these cells elongate substantial quantities of C20 polyunsaturated fatty acids; elongation of eicosapentaenoate is consistently more extensive than that of arachidonate. Eicosapentaenoate is also an effective inhibitor of the elongation of [14C]arachidonate. Increases in exogenous arachidonate up to 10 microM result in an increase in elongation of [14C]arachidonate both in absolute quantities and as a percentage of that incorporated; the arachidonate thus acts as a positive modulator of its own elongation. Increased eicosapentaenoate also enhances the elongation of [14C]eicosapentaenoate, but only at lower concentrations (0.02-0.15 microM). The factors which regulate the elongation of C20 polyunsaturated fatty acids in human skin fibroblasts serve to permit extensive elongation of eicosapentaenoate while retaining incorporated arachidonate primarily in its C20 form.  相似文献   

5.
The addition of saturated C6, C8, C10, and C12 fatty acids appeared to lyse actively growing cells of Bacillus subtilis 168, as judged by a decrease in the optical density of the culture. Of these fatty acids, dodecanoic acid was the most effective, with 50% lysis occurring in about 30 min at a concentration of 0.5 mM. These conditions also decreased the amount of peptidoglycan estimated by the incorporated radioactivity of N-acetyl-D-[1-14C]glucosamine. At concentrations above 1 mM, however, bacterial lysis was not extensive. Dodecanoic acid did not affect autolysis of the cell wall. The lytic action of dodecanoic acid was greatly diminished in cells in which protein synthesis was inhibited and in an autolytic enzyme-deficient mutant. The results suggest that fatty acid-induced lysis of B. subtilis 168 is due to the induction of autolysis by an autolytic enzyme rather than massive solubilization of the cell membrane by the detergent-like action of the fatty acids.  相似文献   

6.
The development of a system for modifying the membrane fatty acid composition of cultured soybean cells (Glycine max [L.] Merr.) is described. Tween-fatty acid esters carrying specific fatty acids were synthesized and added to the medium of suspension cultures. Cells transferred large quantities of exogenous fatty acids from Tweens to all acylated membrane lipids; up to 50% of membrane fatty acids were exogenously derived. C15 to C20 saturated fatty acids and C16, C18, and C20 unsaturated fatty acids with either cis or trans double bonds were incorporated into lipids. Cells elongated saturated fatty acids of C16 or less, and unsaturated fatty acids with cis double bonds were further desaturated. No other types of modifications were observed. Growth ceased in cells treated with excessive concentrations of Tween-fatty acid esters, but frequently not for several days. Cessation of cell growth was correlated with changes in membrane fatty acid composition resulting from incorporation of large amounts of exogenous fatty acids into membrane lipids, although cells tolerated large variations in fatty acid composition. Maximum tolerable Tween concentrations varied widely according to the fatty acid supplied. Potential uses of this system and implications of the observed modifications on the pathway of incorporation are discussed.  相似文献   

7.
In the present study, the effect of increasing concentrations of palmitic (PA, C16:0), stearic (SA, C18:0), oleic (OA, C18:1, n-9), linoleic (LA, C18:2n-6), docosahexaenoic (DHA, C22:6 n-3) and eicosapentaenoic (EPA, C20:5 n-3) acids on lymphocyte proliferation was investigated. The maximal non-toxic concentrations of these fatty acids for human lymphocytes in vitro were determined. It was also evaluated whether these fatty acids at non-toxic concentrations affect IL-2 induced lymphocyte proliferation and cell cycle progression. OA and LA at 25 microM increased lymphocyte proliferation and at higher concentrations (75 microM and 100 microM) inhibited it. Both fatty acids promoted cell death at 200 microM concentration. PA and SA decreased lymphocyte proliferation at 50 microM and promoted cell death at concentrations of 100 microM and above. EPA and DHA decreased lymphocyte proliferation at 25 and 50 microM being toxic at 50 and 100 microM, respectively. PA, SA, DHA and EPA decreased the stimulatory effect of IL-2 on lymphocyte proliferation, increasing the percentage of cells in G1 phase and decreasing the proportion of cells in S and G2/M phases. OA and LA caused an even greater pronounced effect. The treatment with all fatty acids increased neutral lipid accumulation in the cells but the effect was more pronounced with PA and DHA. In conclusion, PA, SA, DHA and EPA decreased lymphocyte proliferation, whereas OA and LA stimulated it at non-toxic concentrations.  相似文献   

8.
It is known that triphenylethylene anti-oestrogens such as tamoxifen bind to specific high-affinity anti-oestrogen-binding sites, which are distinct from oestrogen receptors. These binding sites are widely distributed in human and animal tissues, but their function and endogenous ligands are unknown. By using [3H]tamoxifen and a rat liver microsomal fraction, a radio-ligand-binding assay was developed in an attempt to identify endogenous ligands for the anti-oestrogen-binding sites in the rat. An ether extract of rat serum inhibited [3H]tamoxifen binding to rat liver binding sites in a dose-dependent manner. Identification of the active serum constituents that inhibited [3H]tamoxifen binding was achieved by g.l.c.-mass spectrometry after preliminary purification of a rat serum extract by silica-gel t.l.c. Three unsaturated fatty acids (oleic, linoleic and arachidonic) accounted for about 50% of the total inhibiting activity of the serum extract. The concentrations of these fatty acids required to inhibit [3H]tamoxifen binding were in the range of 10-100 microM, comparable with those found in the rat circulation under physiological conditions. Saturated fatty acids present in rat serum (palmitic and stearic) did not inhibit [3H]tamoxifen binding. A survey of other fatty acids revealed that, in general, unsaturated fatty acids were far more potent than saturated fatty acids in inhibiting [3H]tamoxifen binding. These studies demonstrate that unsaturated fatty acids are quantitatively the most important circulating inhibitors of [3H]tamoxifen binding to the anti-oestrogen-binding sites. The biological significance of their interaction with these sites, however, remains to be clarified.  相似文献   

9.
Effects of fatty acids, prostaglandins, and phospholipids on the activity of purified cGMP-stimulated cyclic nucleotide phosphodiesterase from calf liver were investigated. Prostaglandins A2, E1, E2, F1 alpha, and F2 alpha, thromboxane B2, and most phospholipids were without effect; lysophosphatidylcholine was a potent inhibitor. Several saturated fatty acids (carbon chain length 14-24), at concentrations up to 1 mM, had little or no effect on hydrolysis of 0.5 microM [3H]cGMP or 0.5 microM [3H]cAMP with or without 1 microM cGMP. In general, unsaturated fatty acids were inhibitory, except for myristoleic and palmitoleic acids which increased hydrolysis of 0.5 microM [3H]cAMP. The extent of inhibition by cis-isomers correlated with the number of double bonds. Increasing concentrations of palmitoleic acid from 10 to 100 microM increased hydrolysis of [3H]cAMP with maximal activation (60%) at 100 microM; higher concentrations were inhibitory. Palmitoleic acid inhibited cGMP hydrolysis and cGMP-stimulated cAMP hydrolysis with IC50 values of 110 and 75 microM, respectively. Inhibitory effects of palmitoleic acid were completely or partially prevented by equimolar alpha-tocopherol. Palmitelaidic acid, the trans isomer, had only slightly inhibitory effects. The effects of palmitoleic acid (100 microM) were dependent on substrate concentration. Activation was maximal with 1 microM [3H]cAMP and was reduced with increasing substrate; with greater than 10 microM cAMP, palmitoleic had no effect. Inhibition of cGMP hydrolysis was maximal at 2.5 microM cGMP and was reduced with increasing cGMP; at greater than 100 microM cGMP palmitoleic acid increased hydrolysis slightly. Palmitoleic acid did not affect apparent Km or Vmax for cAMP hydrolysis, but increased the apparent Km (from 17 to 60 microM) and Vmax for cGMP hydrolysis with little or no effect on the Hill coefficient for either substrate. These results suggest that certain hydrophobic domains play an important role in modifying the catalytic specificity of the cGMP-stimulated phosphodiesterase for cAMP and cGMP.  相似文献   

10.
The properties of fatty acid chain elongation synthesis have been investigated in liver mitochondria of the European eel (Anguilla anguilla). The incorporation of [1-(14)C]acetyl-CoA into fatty acids shows a specific activity of 0.43+/-0.05 nmol/min x mg protein (n=6), which is more than twice higher than that previously reported in rat liver mitochondria. Label incorporation into fatty acids was, in mitochondria disrupted by freezing and thawing, much higher than in intact organelles thus suggesting a probable localization of this pathway inside mitochondria. Only a negligible acetyl-CoA incorporation into fatty acids occurs in the absence of ATP, Mg2+ or reduced pyridine nucleotides; NADH alone seems to be as effective as NADH + NADPH as a hydrogen donor for the reducing steps. CoASH, without effect up to 10 microM, showed a strong inhibition at higher concentrations. From the ratio of total radioactivity and radioactivity in carboxyl carbon it can be inferred that in eel-liver mitochondria only chain elongation of preexisting fatty acids occurs. A significant fatty acid chain elongation activity is also present when, instead of acetyl-CoA, [2-(14)C]malonyl-CoA is used as a carbon unit donor. Moreover, the synthesized fatty acids were actively incorporated into phopholipids, mainly phosphatidylcholine, phosphatidylethanolamine and sphyngomyelin.  相似文献   

11.
Maternal and fetal plasma concentrations of free fatty acids, triacylglycerols and phospholipids and the profile of their fatty acids were measured in three catheterized and unanaesthetized sheep. Fetal concentrations of all three lipid fractions were low and did not correlate with maternal concentrations. There were no measurable umbilical venous-arterial differences. Linoleic acid concentrations were low in both mother and fetus. The fatty acid composition of fetal adipose tissue, liver, lung and cerebellum of five animals was analysed. Again linoleic acid levels were very low, but phospholipids contained 2-8% arachidonic acid. [14C] linoleic acid and [3H] palmitic acid were infused intravenously into three ewes. Only trace amounts of labelled fatty acids were found in fetal plasma and these were confined to the free fatty acids. 14C-label was incorporated into fetal tissue lipids, but most of this probably was due to fetal lipid synthesis from [14C] acetate or other water-soluble products of maternal [14C] linoleic acid catabolism. It is concluded that only trace amounts of fatty acids cross the sheep placenta. They are derived mainly from the maternal plasma free fatty acids and might just be sufficient to be the source of the small amounts of essential fatty acids found in the lamb fetus, but are insignificant in terms of energy supply or lipid storage.  相似文献   

12.
Incorporation of [14C]acetate or [14C]pyruvate into fatty acids in isolated corn seedling chloroplasts was inhibited 90% or greater by 10 microM sethoxydim or 1 microM haloxyfop. At these concentrations, neither sethoxydim nor haloxyfop inhibited [14C]acetate incorporation into fatty acids in isolated pea chloroplasts. Sethoxydim (10 microM) and haloxyfop (1 microM) did not inhibit incorporation of [14C]malonyl-CoA into fatty acids in cell free extracts from corn tissue cultures. Acetyl coenzyme A carboxylase (EC 6.4.1.2) from corn seedling chloroplasts was inhibited by both sethoxydim and haloxyfop, with I50 values of 2.9 and 0.5 microM, respectively. This enzyme in pea was not inhibited by 10 microM sethoxydim or 1 microM haloxyfop.  相似文献   

13.
Supplementation of rat hepatocytes with various fatty acids in the culture medium reduced the conversion of [3H]phosphatidylethanolamine into phosphatidylcholine. Unsaturated fatty acids were the most effective inhibitors of phospholipid methylation. The inhibition of phosphatidylethanolamine methylation by oleate (2 mM) was reversed within 1 h after replacement with fatty acid-deficient medium. Fatty acids and their CoA derivatives (0.15-0.5 mM) produced 50% inhibition of phosphatidylethanolamine methyltransferase in rat liver microsomes. The first methylation reaction was the site of fatty acid inhibition, as methylation of phosphatidyl-N-monomethylethanolamine and phosphatidyl-N,N-dimethylethanolamine was not reduced in the presence of oleate. The inhibition by oleate was reversed by inclusion of bovine serum albumin or by addition of phospholipid liposomes. Thus, while fatty acids stimulate phosphatidylcholine biosynthesis in hepatocytes via the CDP-choline pathway, the methylation pathway is inhibited.  相似文献   

14.
Treatment of newborn rat calvaria discs with a variety of unsaturated fatty acids led to a 50% enhancement of calcium uptake. Arachidonic acid was effective at lower concentrations than cis-vaccenic or oleic acid, while trans-vaccenic acid and saturated fatty acids did not enhance calcium uptake. Cyclooxygenase inhibitors indomethacin and acetylsalicylic acid abolished the enhancement of calcium uptake seen in response to cis-vaccenic acid and inhibited calcium uptake by otherwise untreated bones. Prostacyclin was found to produce up to 2 fold stimulation of calcium uptake with an EC50 of approximately 0.1 microM. No statistically significant stimulation of calcium uptake was seen in response to PGE2 or PGE1 alpha up to 25 microM, while slight stimulation was produced by 6-keto PGE1 alpha but only at concentrations of 10 microM. Prostacyclin production by calvaria was demonstrated and was stimulated over 50% by cis-vaccenic acid. These results suggest that not only is enhanced prostacyclin production responsible for elevation of calcium uptake in response to unsaturated fatty acids, but also that prostacyclin may be an important regulator of bone calcium homeostasis.  相似文献   

15.
The effect of fatty acids on Mycobacterium smegmatis was examined in vitro at pH 5.0 to 7.0 to determine the role of fatty acids in the intracellular killing of mycobacteria. Unsaturated fatty acids showed strong bactericidal activity in low concentrations (0.005 to 0.02 mM), whereas saturated fatty acids, except for lauric and myristic acids, were not very effective even at a concentration of 0.2 mM. Addition of a saturated fatty acid (palmitic or stearic acid) to an unsaturated fatty acid (oleic or linoleic acid) did not strongly interfere with the bactericidal effect of the unsaturated fatty acid at pH 5.0 and 6.0. Ca2+ (3.0 mM), Mg2+ (1.0 mM), and gamma-globulin (0.4%) showed weak reversal effects on the bactericidal activity of unsaturated fatty acids at pH 5.0 and 6.0. Serum albumin and serum showed strong reversal effects. The concentrations of each fatty acid in a mixture (molar ratio, 1:1:1:1) of oleic, linoleic, palmitic, and stearic acids required for the killing of M. smegmatis in the presence of 2% serum (bovine, rabbit, or human) were 0.05 to 0.10 mM at pH 5.0 and 6.0 and 0.05 to 0.20 mM at pH 7.0, depending on the serum used. The susceptibilities of M. kansasii, M. bovis strain BCG, and M. tuberculosis to the mixture of the four fatty acids in the presence of 2% bovine serum were similar to that of M. smegmatis, although M. fortuitum was more resistant.  相似文献   

16.
Aspergillus chevalieri and Penicillium expansum were able to tolerate sucrose concentrations in the growth media up to 80% (w/v). At 50% sucrose the growth rate is approximately 1.4 and 1.2 times, respectively, higher than in the control. While at 80% sucrose it drops to 35% and 45% of the control level for both fungi. Lipids and proteins in plasma membranes increased with increasing sucrose concentrations in the growth medium. Phospholipid content in membranes of both organisms being also increased, phosphatidyl glycerol was the major detected phospholipid and represented the highest increase. The fatty acid composition of fraction enriched plasma membrane of both fungi changed when they were grown in high sucrose concentrations. Some fatty acids which had not been detected in control cultures were present and the proportions of other fatty acids changed. At 50% sucrose the unsaturation index of membranes decreased by 20-25% in both fungi, indicating that the plasma membrane is less fluid at this concentration. At 80% sucrose a similar trend was observed for P. expansum but for A. chevalieri the unsaturation index was little changed compared with the control. The fluorescence polarization values of 1,6-diphenyl 1,3,5-hexatriene (DPH) in membranes of both fungi grown at 80% sucrose increased, indicating a decrease in membrane fluidity. At 50% sucrose the increase in saturation of membrane fatty acids would tend to reduce membrane fluidity but in A. chevalieri at 80% sucrose fatty acids did not become more saturated. In this case the marked increase in sterols at this sucrose concentration may be responsible for low membrane fluidity.  相似文献   

17.
The beta-oxidation and esterification of medium-chain fatty acids were studied in hepatocytes from fasted, fed and fructose-refed rats. The beta-oxidation of lauric acid (12:0) was less inhibited by fructose refeeding and by (+)-decanoyl-carnitine than the oxidation of oleic acid was, suggesting a peroxisomal beta-oxidation of lauric acid. Little lauric acid was esterified in triacylglycerol fraction, except at high substrate concentrations or in the fructose-refed state. With [1-14C]myristic acid (14:0), [1-14C]lauric acid (12:0), [1-14C]octanoic acid (8:0) and [2-14C]adrenic acid (22:4(n - 6] as substrate for hepatocytes from carbohydrate-refed rats, a large fraction of the 14C-labelled esterified fatty acids consisted of newly synthesized palmitic acid (16:0), stearic acid (18:0) and oleic acid (18:1) while intact [1-14C]oleic acid substrate was esterified directly. With [9,10-3H]myristic acid as the substrate, small amounts of shortened 3H-labelled beta-oxidation intermediates were found. With [U-14C]palmitic acid, no shortened fatty acids were detected. It was concluded that when the mitochondrial fatty acid oxidation is down-regulated such as in the carbohydrate-refed state, medium-chain fatty acids can partly be retailored to long-chain fatty acids by peroxisomal beta-oxidation followed by synthesis of C16 and C16 fatty acids which can then stored as triacylglycerol.  相似文献   

18.
19.
Regulation of calmodulin-independent and -dependent cAMP phosphodiesterases from quail oviduct by various fatty acids was studied. The calmodulin-independent form was slightly activated by low concentrations (20 microM) of oleic, linoleic and arachidonic acid, higher concentrations were inhibitory. The basal activity of the calmodulin-dependent form was activated by linoleic acid and to a lesser extent by arachidonic acid at low concentrations and inhibited by higher concentrations of the two fatty acids. In contrast, arachidonic acid was a potent reversible inhibitor of calmodulin in the activation of this enzyme (IC50: 20 microM) whereas linoleic acid was inactive from 10 to 150 microM. The present results strongly suggest that the differential regulation of cAMP phosphodiesterases by these fatty acids could profoundly influence the level of cAMP in the oviduct and thus its subsequent effects.  相似文献   

20.
Fatty Acid Oxidation and Ketogenesis by Astrocytes in Primary Culture   总被引:3,自引:2,他引:1  
The oxidation of the fatty acids octanoate and palmitate to CO2 and the ketone bodies acetoacetate and D-(-)-3-hydroxybutyrate was examined in astrocytes that were prepared from cortex of 2-day-old rat brain and grown in primary culture to confluence. Accumulation of acetoacetate (by mass) in the culture medium of astrocytes incubated with octanoate (0.3-0.5 mM) was 50-90 nmol C2 units h-1 mg of protein-1. A similar rate was obtained using radiolabeled tracer methodology with [1-14C]octanoate as labeled substrate. The results from the radiolabeled tracer studies using [1-14C]- and [7-14C]octanoate and [1-14C]-, [13-14C]-, and [15-14C]palmitate indicated that a substantial proportion of the omega-terminal four-carbon unit of these fatty acids bypassed the beta-ketothiolase step of the beta-oxidation pathway and the 3-hydroxy-3-methylglutaryl (HMG)-CoA cycle of the classic ketogenic pathway. The [14C]acetoacetate formed from the 1-14C-labeled fatty acids, obligated to pass through the acetyl-CoA pool, contained 50% of the label at carbon 3 and 50% at carbon 1. By contrast, the [14C]acetoacetate formed from (omega-1)-labeled fatty acids contained 90% of the label at carbon 3 and 10% at carbon 1, whereas that formed from the (omega-3)-labeled fatty acid contained 20% of the label at carbon 3 and 80% at carbon 1. These results indicate that acetoacetate is primarily formed either by the action of 3-oxo-acid-CoA transferase (EC 2.8.3.5) or acetoacetyl-CoA deacylase (EC 3.1.2.11) or both on acetoacetyl-CoA and not by the action of the mitochondrial HMG-CoA cycle involving HMG-CoA lyase (EC 4.1.3.4), which was readily detected, and HMG-CoA synthase (EC 4.1.3.5), which was barely measurable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号