首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rat is the preferred experimental animal in many biological studies. With the recent derivation of authentic rat embryonic stem (ES) cells it is now feasible to apply state-of-the art genetic engineering in this species using homologous recombination. To establish whether rat ES cells are amenable to in vivo recombination, we tested targeted disruption of the hypoxanthine phosphoribosyltransferase (hprt) locus in ES cells derived from both inbred and outbred strains of rats. Targeting vectors that replace exons 7 and 8 of the hprt gene with neomycinR/thymidine kinase selection cassettes were electroporated into male Fisher F344 and Sprague Dawley rat ES cells. Approximately 2% of the G418 resistant colonies also tolerated selection with 6-thioguanine, indicating inactivation of the hprt gene. PCR and Southern blot analysis confirmed correct site-specific targeting of the hprt locus in these clones. Embryoid body and monolayer differentiation of targeted cell lines established that they retained differentiation potential following targeting and selection. This report demonstrates that gene modification via homologous recombination in rat ES cells is efficient, and should facilitate implementation of targeted, genetic manipulation in the rat.  相似文献   

2.
Identification of gene function has often relied on isolation of mutant cells in which expression of the gene was inactivated. Gene targeting by homologous recombination in tissue culture now may provide a technology to rapidly and directly produce such mutant mammalian cells. We demonstrate that selection of embryonic stem and pre-B cell lines for expression of a promoterless construct containing murine N-myc genomic sequences fused to a gene encoding neomycin resistance allows highly efficient recovery of variants in which the endogenous N-myc gene is disrupted. The high frequency of N-myc gene disruption by this method should permit targeted disruption of both allelic N-myc copies in various cell lines to study N-myc function.  相似文献   

3.
Homologous recombination in human embryonic stem cells   总被引:24,自引:0,他引:24  
  相似文献   

4.
We have analyzed the gene-targeting frequencies and recombination products generated by a series of vectors which target the hprt locus in embryonic stem cells and found the existence of alternative pathways that depend on the location of the double-strand break within the vector. A double-strand break in the targeting homology was found to increase the targeting frequency compared with a double-strand break at the edge of or outside the target homology; this finding agrees with the double-strand break repair model proposed for Saccharomyces cerevisiae. Although a double-strand break in the homology is important for efficient targeting, observations reported here suggest that the terminal ends are not always directly involved in the initial recombination event. Short terminal heterologous sequences which block the homologous ends of the vector may be incorporated into the target locus. A modification of the double-strand break repair model is described to account for this observation.  相似文献   

5.
We have disrupted one allele of the N-myc locus in mouse embryonic stem (ES) cells by using homologous recombination techniques and have obtained germ line transmission of null N-myc ES cell lines with transmission of the null N-myc allele to the offspring. The creation of mice with a deficient N-myc allele will allow the generation of offspring bearing null N-myc alleles in both chromosomes and permit study of the role that this proto-oncogene plays in embryonic development.  相似文献   

6.
Gene knockout in murine embryonic stem cells (ESCs) has been an invaluable tool to study gene function in vitro or to generate animal models with altered phenotypes. Gene targeting using standard techniques, however, is rather inefficient and typically does not exceed frequencies of 10(-6). In consequence, the usage of complex positive/negative selection strategies to isolate targeted clones has been necessary. Here, we present a rapid single-step approach to generate a gene knockout in mouse ESCs using engineered zinc-finger nucleases (ZFNs). Upon transient expression of ZFNs, the target gene is cleaved by the designer nucleases and then repaired by non-homologous end-joining, an error-prone DNA repair process that introduces insertions/deletions at the break site and therefore leads to functional null mutations. To explore and quantify the potential of ZFNs to generate a gene knockout in pluripotent stem cells, we generated a mouse ESC line containing an X-chromosomally integrated EGFP marker gene. Applying optimized conditions, the EGFP locus was disrupted in up to 8% of ESCs after transfection of the ZFN expression vectors, thus obviating the need of selection markers to identify targeted cells, which may impede or complicate downstream applications. Both activity and ZFN-associated cytotoxicity was dependent on vector dose and the architecture of the nuclease domain. Importantly, teratoma formation assays of selected ESC clones confirmed that ZFN-treated ESCs maintained pluripotency. In conclusion, the described ZFN-based approach represents a fast strategy for generating gene knockouts in ESCs in a selection-independent fashion that should be easily transferrable to other pluripotent stem cells.  相似文献   

7.
8.
Mouse models for some human genetic diseases are limited in their applications since they do not accurately reproduce the phenotype of the human disease. It has been suggested that larger animals, for example sheep, might produce more useful models, as some aspects of sheep physiology and anatomy are more similar to those of humans. The development of methods to clone animals from somatic cells provides a potential novel route to generate such large animal models following gene targeting. Here, we assess targeting of the cystic fibrosis transmembrane conductance regulator (CFTR) gene in ovine somatic cells using homologous recombination (HR) of targeting constructs with extensive (>11 kb) homology. Electroporation of these constructs into ovine fetal and post-natal fibroblasts generated G418-resistant clones, but none analyzed had undergone HR, suggesting that at least for this locus, it is an extremely inefficient process. Karyotyping of targeted ovine fetal fibroblasts showed them to be less chromosomally stable than post-natal fibroblasts, and, moreover, extended culture periods caused them to senesce, adversely affecting their viability for use as nuclear transfer donor cells. These data stress the importance of donor cell choice in somatic cell cloning and suggest that culture time be kept to a minimum prior to nuclear transfer in order to maximize cell viability.  相似文献   

9.
Inducible site-directed recombination in mouse embryonic stem cells.   总被引:15,自引:6,他引:15       下载免费PDF全文
The site-directed recombinase Cre can be employed to delete or express genes in cell lines or animals. Clearly, the ability to control remotely the activity of this enzyme would be highly desirable. To this end we have constructed expression vectors for fusion proteins consisting of the Cre recombinase and a mutated hormone-binding domain of the murine oestrogen receptor. The latter still binds the anti-oestrogen drug tamoxifen but no longer 17 beta-oestradiol. We show here that in embryonic stem cells expressing such fusion proteins, tamoxifen can efficiently induce Cre-mediated recombination, thereby activating a stably integrated LacZ reporter gene. In the presence of either 10 microM tamoxifen or 800 nM 4-hydroxy-tamoxifen, recombination of the LacZ gene is complete within 3-4 days. By placing a tamoxifen-binding domain on both ends of the Cre protein, the enzymatic activity of Cre can be even more tightly controlled. Transgenic mice expressing such an tamoxifen-inducible Cre enzyme may thus provide a new and useful genetic tool to mutate or delete genes at specific times during development or in adult animals.  相似文献   

10.
One of the remarkable achievements in knockout (KO) rat production reported during the period 2008-2010 is the derivation of authentic embryonic stem (ES) cells from rat blastocysts using a novel culture medium containing glycogen synthase kinase 3 and mitogen-activated protein kinase kinase inhibitors (2i medium). Here, we report gene-targeting technology via homologous recombination in rat ES cells, demonstrating its use through production of a protease-activated receptor-2 gene (Par-2) KO rat. We began by generating germline-competent ES cells from Dark Agouti rats using 2i medium. These ES cells, which differentiate into cardiomyocytes in vitro, can produce chimeras with high ES cell contribution when injected into blastocysts. We then introduced a targeting vector with a neomycin-resistant gene driven by the CAG promoter to disrupt Par-2. After a 7-day drug selection, 489 neomycin-resistant colonies were obtained. Following screening by polymerase chain reaction (PCR) genotyping and quantitative PCR analysis, we confirmed three homologous recombinant clones, resulting in chimeras that transmitted the Par-2 targeted allele to offspring. Par-2 KO rats showed a loss of Par-2 messenger RNA expression in their stomach cells and a lack of PAR-2 mediated smooth muscle relaxation in the aorta as indicated by pharmacological testing. Compared with mice, rats offer many advantages in biomedical research, including a larger body size; consequently, they are widely used in scientific investigation. Thus, the establishment of a gene-targeting technology using rat ES cells will be a valuable tool in human disease model production and drug discovery.  相似文献   

11.
The biomedical application of human embryonic stem (hES) cells will increasingly depend on the availability of technologies for highly controlled genetic modification. In mouse genetics, conditional mutagenesis using site-specific recombinases has become an invaluable tool for gain- and loss-of-function studies. Here we report highly efficient Cre-mediated recombination of a chromosomally integrated loxP-modified allele in hES cells and hES cell-derived neural precursors by protein transduction. Recombinant modified Cre recombinase protein translocates into the cytoplasm and nucleus of hES cells and subsequently induces recombination in virtually 100% of the cells. Cre-transduced hES cells maintain the expression of pluripotency markers as well as the capability of differentiating into derivatives of all three germ layers in vitro and in vivo. We expect this technology to provide an important technical basis for analyzing complex genetic networks underlying human development as well as generating highly purified, transplantable hES cell-derived cells for regenerative medicine.  相似文献   

12.
M Jasin  F Liang 《Nucleic acids research》1991,19(25):7171-7175
Mouse embryonic stem (ES) cells were compared to COS1 and CV1 cells for their ability to perform extrachromosomal homologous recombination. RSVCAT plasmid substrates consisting of overlapping chloramphenicol acetyltransferase (CAT) gene fragments were transiently transfected into cells and extracts were assayed for CAT activity. Approximately 10% activity, relative to transfection with a complete CAT gene, was recovered for the recombination substrates in each of the cell lines tested. ES cells, therefore, as other cell lines, are capable of high levels of extrachromosomal recombination.  相似文献   

13.
The first step in the generation of genetically tagged human embryonic stem cell (HESC) reporter lines is the isolation of cells that contain a stably integrated copy of the reporter vector. These cells are identified by their continued growth in the presence of a specific selective agent, usually conferred by a cassette encoding antibiotic resistance. In order to mitigate potential interference between the regulatory elements driving expression of the antibiotic resistance gene and those controlling the reporter gene, it is advisable to remove the positive selection cassette once the desired clones have been identified. This report describes a protocol for the removal of loxP-flanked selection cassettes from genetically modified HESCs by transient transfection with a vector expressing Cre recombinase. An integrated procedure for the clonal isolation of these genetically modified lines using single-cell deposition flow cytometry is also detailed. When performed sequentially, these protocols take approximately 1 month.  相似文献   

14.
Efficient gene targeting by homologous recombination in rice   总被引:26,自引:0,他引:26  
Modification of genes through homologous recombination, termed gene targeting, is the most direct method to characterize gene function. In higher plants, however, the method is far from a common practice. Here we describe an efficient and reproducible procedure with a strong positive/negative selection for gene targeting in rice, which feeds more than half of the world's population and is an important model plant. About 1% of selected calli and their regenerated fertile plants were heterozygous at the targeted locus, and only one copy of the selective marker used was found at the targeted site in their genomes. The procedure's applicability to other genes will make it feasible to obtain various gene-targeted lines of rice.  相似文献   

15.
16.
Gene targeting in embryonic stem cells scores a knockout in Stockholm   总被引:4,自引:0,他引:4  
Mak TW 《Cell》2007,131(6):1027-1031
The 2007 Nobel Prize in Physiology or Medicine has been awarded to Mario Capecchi, Martin Evans, and Oliver Smithies for developing specific gene modification techniques and mouse embryonic stem cell technology that, when combined, enable the creation of "knockout" mice. Analyses of these mutant animals have revolutionized the elucidation of gene functions, and these mice have proved to be valuable models of numerous human diseases.  相似文献   

17.
Targeted induction of double-strand breaks (DSBs) at natural endogenous loci was shown to increase the rate of gene replacement by homologous recombination in mouse embryonic stem cells. The gene encoding dopachrome tautomerase (Dct) is specifically expressed in melanocytes and their precursors. To construct a genetic tool allowing the replacement of Dct gene by any gene of interest, we generated an embryonic stem cell line carrying the recognition site for the yeast I-SceI meganuclease embedded in the Dct genomic segment. The embryonic stem cell line was electroporated with an I-SceI expression plasmid, and a template for the DSB-repair process that carried sequence homologies to the Dct target. The I-SceI meganuclease was indeed able to introduce a DSB at the Dct locus in live embryonic stem cells. However, the level of gene targeting was not improved by the DSB induction, indicating a limited capacity of I-SceI to mediate homologous recombination at the Dct locus. These data suggest that homologous recombination by meganuclease-induced DSB may be locus dependent in mammalian cells.  相似文献   

18.
Spermatogonial stem cells can convert into embryonic stem (ES) cell-like multipotent germline stem (mGS) cells in vitro and produce germline chimeras by blastocyst microinjection. Although homologous recombination was previously demonstrated in mGS cells, spermatogenesis was not found in chimeras, suggesting that they are not competent for germline modification. Here we conducted detailed analysis of chimeric animals to determine whether mGS cells retain germline potential after genetic manipulation. Spermatozoa that were deficient in the occludin gene could be recovered from animals that were chimeric with mGS cells that underwent homologous recombination. The phenotypes of the occludin knockout (KO) mice were similar to those reported for KO mice produced using ES cells, and the animals showed growth retardation, gastritis and male infertility. Furthermore, we found that heterozygous mGS cells acquire two copies of the G418-resistant genes and become homozygous for the targeted allele by culturing at high concentrations of G418. Cytogenetic analysis showed that the aneuploid mGS cells observed during genetic manipulation were trisomic for chromosome 8 or 11, which is a common chromosomal abnormality in ES cells. Thus, mGS cells can be used to produce KO animals, and this novel method of germline manipulation may prove useful in diverse mammalian species.  相似文献   

19.
The reactivation of X‐linked genes is observed in some primary breast tumors. Two active X chromosomes are also observed in female embryonic stem cells (ESCs), but whether double doses of X‐linked genes affect DNA repair efficiency remains unclear. Here, we establish isogenic female/male ESCs and show that the female ESCs are more sensitive to camptothecin and have lower gene targeting efficiency than male ESCs, suggesting that homologous recombination (HR) efficiency is reduced in female ESCs. We also generate Xist‐inducible female ESCs and show that the lower HR efficiency is restored when X chromosome inactivation is induced. Finally, we assess the X‐linked genes with a role in DNA repair and find that Brcc3 is one of the genes involved in a network promoting proper HR. Our findings link the double doses of X‐linked genes with lower DNA repair activity, and this may have relevance for common diseases in female patients, such as breast cancer.  相似文献   

20.
【目的】结核分枝杆菌同源重组效率很低,突变株的构建需要半年之久。本研究的目的在于构建一种用于在结核分枝杆菌中进行基因快速敲除、且易于筛选的高效同源重组系统。【方法】野生型结核分枝杆菌转化含有SacB反向选择标记、且能诱导表达两种同源重组酶gp60和gp61的质粒pSL002。然后分别将靶基因的两个同源臂克隆入到含有hyg(潮霉素)抗性基因和gfp(绿色荧光蛋白)基因的重组质粒pSL001中,再将靶基因同源臂-loxP-hyg-gfp-loxP片段从pSL001切下,转化含有pSL002的野生型结核分枝杆菌,一步得到双交换突变株。再将含有SacB反向选择标记、且表达Cre重组酶的质粒pSL003转化入结核分枝杆菌双交换突变株中,切除两个loxP之间的hyg抗性基因和gfp基因,得到无痕缺失突变株。最后利用含有2%蔗糖的琼脂糖平板去除含有SacB反向选择标记的质粒pSL002和pSL003。【结果】在结核分枝杆菌中成功构建了高效同源重组系统,利用该系统构建了rv1364c、pstP跨膜区、pstP胞外区三个突变株,得到双交换突变株的效率为25%-62.5%,从双交换突变株得到无痕缺失突变株的效率为100%。通过gfp作为荧光标记基因,利用NightSea BlueStar蓝光手电筒和滤光眼镜,可以对平板上的基因缺失株直接进行快速判定。【结论】该同源重组系统利用gp60和gp61重组酶,在时间上将在结核分枝杆菌中无痕缺失突变株的构建从6个月缩短到3个月。这是目前为止在结核分枝杆菌中构建突变株最快且效率最高的方法,为加速分枝杆菌功能基因组的研究提供了新的遗传工具。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号