首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Twenty-six strains of Bacillus cereus from different sources were determined to be either mesophilic or psychrotrophic by growth at 6 and 42 degrees C. The strains were also screened by two polymerase chain reaction (PCR) methods designed to discriminate between mesophilic and psychrotrophic types. Seventeen of the 26 strains were able to grow at 6 degrees C, but only four conformed to the new psychrotolerant species Bacillus weihenstephanensis. Among the 26 strains were two which caused outbreaks of food poisoning in Norway, and three others that were isolated from food suspected of causing illness. The presence of the gene components encoding production of enterotoxins Nhe, Hbl, EntT and a recently described cytotoxin K was determined by PCR. All the strains possessed genes for at least one of these toxins, and 19 of the 26 strains were cytotoxic in a Vero cell assay. We conclude that there are psychrotrophic B. cereus strains which cannot be classified as B. weihenstephanensis, and that intermediate forms between the two species exist. No correlation between cytotoxicity and the growth temperature of the strains was found.  相似文献   

2.
Strains of species in the Bacillus cereus group are potentially enterotoxic. Thus, the detection of all B. cereus group strains is important. As 16S ribosomal DNA sequence analysis cannot adequately differentiate species of the B. cereus group, we explored the potential of the groEL gene as a phylogenetic marker. A phylogenetic analysis of the groEL sequences of 78 B. cereus group strains revealed that the B. cereus group strains were split into two major clusters, one including six B. mycoides and one B. pseudomycoides (cluster II) and the other including two B. mycoides and the rest of the B. cereus group strains (cluster I). Cluster I was further differentiated into two subclusters, Ia and Ib. The sodA gene sequences of representative strains from different clusters were also compared. The phylogenetic tree constructed from the sodA sequences showed substantial similarity to the tree constructed from the groEL sequences. Based on the groEL sequences, a PCR assay for detection and identification of B. cereus group strains was developed. Subsequent restriction fragment length polymorphism (RFLP) analysis verified the PCR amplicons and the differentiation of the B. cereus group strains. RFLP with MboI was identical for all the B. cereus group strains analyzed, while RFLP with MfeI or PstI classified all B. cereus and B. thuringiensis strains into two groups. All cluster II B. mycoides and B. pseudomycoides strains could be discriminated from other B. cereus group bacteria by restriction analysis with TspRI.  相似文献   

3.
Aims:  A PCR technique was developed as a reliable and rapid identification method for the Bacillus cereus group species, based on a unique conserved sequence of the motB gene (encoding flagellar motor protein) from B. cereus , Bacillus thuringiensis and Bacillus anthracis .
Methods and Results:  Primer locations were identified against eight strains of the B. cereus group spp. from nucleotide sequences available in the National Centre for Biotechnology Information database. The PCR assay was applied for the identification of 117 strains of the B. cereus group spp. and 19 strains from other microbial species, with special emphasis on foodborne pathogens.
Conclusion:  The designed cross-species primers are group specific and did not react with DNA from other Bacillus and non- Bacillus species either motile or not. The primers system enabled us to detect 103 CFU of B. cereus cells per millilitre of sample.
Significance and Impact of the Study:  Bacillus cereus group spp. belongs to one of the most prevalent foodborne pathogens. Bacterial growth results in production of different toxins; therefore, consumption of food containing >106 bacteria per gram may result in emetic and diarrhoeal syndromes. A rapid and sensitive bacterial detection method is significant for food safety.  相似文献   

4.
Cereulide-producing Bacillus cereus can cause an emetic type of food-borne disease that mimics the symptoms provoked by Staphylococcus aureus. Based on the recently discovered genetic background for cereulide formation, a novel 5' nuclease (TaqMan) real-time PCR assay was developed to provide a rapid and sensitive method for the specific detection of emetic B. cereus in food. The TaqMan assay includes an internal amplification control and primers and a probe designed to target a highly specific part of the cereulide synthetase genes. Additionally, a specific SYBR green I assay was developed and extended to create a duplex SYBR green I assay for the one-step identification and discrimination of the two emesis-causing food pathogens B. cereus and S. aureus. The inclusivity and exclusivity of the assay were assessed using a panel of 100 strains, including 23 emetic B. cereus and 14 S. aureus strains. Different methods for DNA isolation from artificially contaminated foods were evaluated, and established real-time assays were used to analyze two recent emetic food poisonings in southern Germany. One of the food-borne outbreaks included 17 children visiting a day care center who vomited after consuming a reheated rice dish, collapsed, and were hospitalized; the other case concerned a single food-poisoning incident occurring after consumption of cauliflower. Within 2 h, the etiological agent of these food poisonings was identified as emetic B. cereus by using the real-time PCR assay.  相似文献   

5.
Bacillus anthracis has four plasmid possible virulence genotypes: pXO1+/pXO2+, pXO1+/pXO2-, pXO1-/pXO2+ or pXO1-/pXO2-. Due to the lack of a specific chromosomal marker for B. anthracis, differentiation of the pXO1-/pXO2- form of B. anthracis from closely related Bacillus cereus group species is difficult. In this study, we evaluate the ability of sspE, pXO1 and pXO2 primers to discriminate individual B. anthracis and the B. cereus group genotypes using multiplex real-time PCR and melting curve analysis. Optimal conditions for successful multiplex assays have been established. Purified DNAs from 38 bacterial strains including 11 strains of B. anthracis and 18 B. cereus group strains were analyzed. Nine of the B. cereus group near-neighbor strains were shown by multilocus sequence typing to be phylogenetically proximate to the B. anthracis clade. We have demonstrated that the four plasmid genotypes of B. anthracis and B. cereus group near-neighbors were differentially and simultaneously discriminated by this assay.  相似文献   

6.
A rapid sonication method for lysis of Gram-positive bacteria was evaluated for use in combination with quantitative real-time polymerase chain reaction (PCR) analyses for detection. Other criteria used for evaluation of lysis were microscopic cell count, colony forming units (cfu), optical density at 600 nm and total yield of DNA measured by PicoGreen fluorescence. The aim of this study was complete disruption of cellular structures and release of DNA without the need for lysing reagents and time-consuming sample preparation. The Gram-positive bacterium Bacillus cereus was used as a model organism for Gram-positive bacteria. It was demonstrated by real-time PCR that maximum yield of DNA was obtained after 3 to 5 min of sonication. The yield of DNA was affected by culture age and the cells from a 4-h-old culture in the exponential phase of growth gave a higher yield of DNA after 5 min of sonication than a 24-h-old culture in the stationary phase of growth. The 4-h-old culture was also more sensitive for lysis caused by heating. The maximum yield of DNA, evaluated by real-time PCR, from a culture of the Gram-negative bacterium Escherichia coli, was obtained after 20 s of sonication. However, the yield of target DNA from E. coli rapidly decreased after 50 s of sonication due to degradation of DNA. Plate counting (cfu), microscopic counting and absorbance at 600 nm showed that the number of viable and structurally intact B. cereus cells decreased rapidly with sonication time, whereas the yield of DNA increased as shown by PicoGreen fluorescence and real-time PCR. The present results indicate that 3-5 min of sonication is sufficient for lysis and release of DNA from samples of Gram-positive bacteria.  相似文献   

7.
A fluorogenic probe-based PCR assay was developed and evaluated for its utility in detecting Bacillus cereus in nonfat dry milk. Regions of the hemolysin and cereolysin AB genes from an initial group of two B. cereus isolates and two Bacillus thuringiensis isolates were cloned and sequenced. Three single-base differences in two B. cereus strains were identified in the cereolysin AB gene at nucleotides 866, 875, and 1287, while there were no species-consistent differences found in the hemolysin gene. A fluorogenic probe-based PCR assay was developed which utilizes the 5'-to-3' exonuclease of Taq polymerase, and two fluorogenic probes were evaluated. One fluorogenic probe (cerTAQ-1) was designed to be specific for the nucleotide differences at bases 866 and 875 found in B. cereus. A total of 51 out of 72 B. cereus strains tested positive with the cerTAQ-1 probe, while only 1 out of 5 B. thuringiensis strains tested positive. Sequence analysis of the negative B. cereus strains revealed additional polymorphism found in the cereolysin probe target. A second probe (cerTAQ-2) was designed to account for additional polymorphic sequences found in the cerTAQ-1-negative B. cereus strains. A total of 35 out of 39 B. cereus strains tested positive (including 10 of 14 previously negative strains) with cerTAQ-2, although the assay readout was uniformly lower with this probe than with cerTAQ-1. A PCR assay using cerTAQ-1 was able to detect approximately 58 B. cereus CFU in 1 g of artificially contaminated nonfat dry milk. Forty-three nonfat dry milk samples were tested for the presence of B. cereus with the most-probable-number technique and the fluorogenic PCR assay. Twelve of the 43 samples were contaminated with B. cereus at levels greater than or equal to 43 CFU/g, and all 12 of these samples tested positive with the fluorogenic PCR assay. Of the remaining 31 samples, 12 were B. cereus negative and 19 were contaminated with B. cereus at levels ranging from 3 to 9 CFU/g. All 31 of these samples were negative in the fluorogenic PCR assay. Although not totally inclusive, the PCR-based assay with cerTAQ-1 is able to specifically detect B. cereus in nonfat dry milk.  相似文献   

8.
Real-time PCR assays based on TaqMan chemistry have been developed for the detection and quantification of Botrytis cinerea, suitable for a wide range of different host plant species. Assays were designed to the beta-tubulin gene, the intergenic spacer (IGS) region of the nuclear ribosomal DNA and also to a previously published, species-specific sequence characterised amplified region (SCAR) marker; the assays were compared to a published method based on SYBR Green I technology. The assays designed to the IGS region and SCAR marker proved to be highly specific for B. cinerea but assays designed to the beta-tubulin gene and the previously published assay designed to the cutinase-A gene both cross-react with B. fabae. The assay designed to the IGS region was the most sensitive and was able to reliably detect and quantify as little as 20 fg of B. cinerea DNA. The method incorporates the detection of a gene from the plant host to compensate for variations in extraction efficiency and size of sample tested. The assays designed were used to follow the progression of infection of B. cinerea in plant material inoculated with spores to the point of symptom induction. They should be ideally suited to investigating infection processes in-planta and could be used to investigate aspects of infection/plant pathogenesis, by B. cinerea and are particularly suited to the detection and quantification of the pathogen prior to the development of symptoms.  相似文献   

9.
Bacillus cereus group bacteria share a significant degree of genetic similarity. Thus, to differentiate and identify the Bacillus cereus group efficiently, a multiplex PCR method using the gyrB and groEL genes as diagnostic markers is suggested for simultaneous detection. The assay yielded a 400 bp amplicon for the groEL gene from all the B. cereus group bacteria, and a 253 bp amplicon from B. anthracis, 475 bp amplicon from B. cereus, 299 bp amplicon from B. thuringiensis, and 604 bp amplicon from B. mycoides for the gyrB gene. No nonspecific amplicons were observed with the DNA from 29 other pathogenic bacteria. The specificity and sensitivity of the B. cereus group identification using this multiplex PCR assay were evaluated with different kinds of food samples. In conclusion, the proposed multiplex PCR is a reliable, simple, rapid, and efficient method for the simultaneous identification of B. cereus group bacteria from food samples in a single tube.  相似文献   

10.
rpoB and gyr genes (and their fragments) of chromosomal DNA of bacteria from Bacillus cereus group - B. anthracis, B. cereus, and B. thuringiensis - which are the potential markers for their genotyping were sequenced and phylogenetic trees were constructed. Sets of primers for species-specific detection of B. anthracis, B. cereus, and B. thuringiensis by multiplex polymerase chain reaction were designed. Also primers sets, which allow to differentiate strains of B. anthracis with various plasmid profiles (containing both plasmids (pXO1+, pXO2+), and without one (pXO1+, pXO2- or pXO1-, pXO2+) or both plasmids (pXO1-, pXO2-), determining pathogenic characteristics of the strains, were developed. For multiplex PCR primer sets were optimized on the annealing temperature of primers and amplicon length. Itwas shown that phylogenetic tree can be applied as an indicator of reliability and accuracy of taxonomical classification of microorganisms' species and subspecies. Comparison of pXO1 and pXO2 plasmid sequences of B. anthracis showed that these plasmids contain 18 and 4 palindrome sequences respectively which can potentially form thermodynamically stable hairpin-loop structures.  相似文献   

11.
We report here the development, validation, and use of three real-time PCR assays to quantify the abundance of the following three groups of tetracycline resistance genes: tet(A) and tet(C); tet(G); and tet genes encoding ribosomal protection proteins, including tet(M), tet(O), tetB(P), tet(Q), tet(S), tet(T), and tet(W). The assays were validated using known numbers of sample-derived tet gene templates added to microbiome DNA. These assays are both precise and accurate over at least 6 log tet gene copies. New tet gene variants were also identified from cloned tet amplicons as part of this study. The utility of these real-time PCR assays was demonstrated by quantifying the three tet gene groups present in bovine and swine manures, composts of swine manure, lagoons of hog house effluent, and samples from an Ekokan upflow biofilter system treating hog house effluent. The bovine manures were found to contain fewer copies of all three groups of tet genes than the swine manures. The composts of swine manures had substantially reduced tet gene abundance (up to 6 log), while lagoon storage or the upflow biofilter had little effect on tet gene abundance. These results suggest that the method of manure storage and treatment may have a substantial impact on the persistence and dissemination of tet genes in agricultural environments. These real-time PCR assays provide rapid, quantitative, cultivation-independent measurements of 10 major classes of tet genes, which should be useful for ecological studies of antibiotic resistance.  相似文献   

12.
目的建立一种快速、灵敏、特异的眼源性蜡样芽胞杆菌PCR检测方法,为蜡样芽胞杆菌性眼内炎患者的快速诊断提供依据。方法选择编码蜡样芽胞杆菌细胞毒素的cytK为靶基因设计引物,建立检测眼源性蜡样芽胞杆菌PCR;PCR产物用琼脂糖凝胶电泳鉴定,基因序列与GenBank比对验证扩增产物;将计数过的5株蜡样芽胞杆菌菌悬液,梯度稀释后分别提取DNA进行PCR扩增,确定检测方法的灵敏度;分别用眼部常见感染菌金黄色葡萄球菌、表皮葡萄球菌、甲型溶血性链球菌、化脓性链球菌、藤黄微球菌、铜绿假单胞菌、大肠埃希菌、普通变形杆菌和白假丝酵母菌以及枯草芽胞杆菌DNA进行特异性试验;进一步将该方法应用到人工污染致病蜡样芽胞杆菌的房水标本中,并分析其灵敏度。结果5株分离自眼内炎患者标本中的蜡样芽胞杆菌均扩增出360bp左右的DNA片段,测序结果与GenBank比对一致;该法检测在5h内完成,方法灵敏度达7.5~15.0CFU/mL;其他菌株检测未出现非特异性扩增;对模拟感染房水标本的PCR鉴定结果与分离培养对比,二者符合率为100%,模拟标本的检测灵敏度与纯菌结果一致。结论cytK基因为靶基因的PCR用于眼源性蜡样芽胞杆菌的快速检测,具有简便、快速、敏感、特异等特点,为眼内炎患者的快速诊断提供依据,在实际检验工作中有良好的应用前景。  相似文献   

13.
Evaluation of the fate and transport of biological warfare (BW) agents in landfills requires the development of specific and sensitive detection assays. The objective of the current study was to develop and validate SYBR green quantitative real-time PCR (Q-PCR) assays for the specific detection and quantification of surrogate BW agents in synthetic building debris (SBD) and leachate. Bacillus atrophaeus (vegetative cells and spores) and Serratia marcescens were used as surrogates for Bacillus anthracis (anthrax) and Yersinia pestis (plague), respectively. The targets for SYBR green Q-PCR assays were the 16S-23S rRNA intergenic transcribed spacer (ITS) region and recA gene for B. atrophaeus and the gyrB, wzm, and recA genes for S. marcescens. All assays showed high specificity when tested against 5 ng of closely related Bacillus and Serratia nontarget DNA from 21 organisms. Several spore lysis methods that include a combination of one or more of freeze-thaw cycles, chemical lysis, hot detergent treatment, bead beat homogenization, and sonication were evaluated. All methods tested showed similar threshold cycle values. The limit of detection of the developed Q-PCR assays was determined using DNA extracted from a pure bacterial culture and DNA extracted from sterile water, leachate, and SBD samples spiked with increasing quantities of surrogates. The limit of detection for B. atrophaeus genomic DNA using the ITS and B. atrophaeus recA Q-PCR assays was 7.5 fg per PCR. The limits of detection of S. marcescens genomic DNA using the gyrB, wzm, and S. marcescens recA Q-PCR assays were 7.5 fg, 75 fg, and 7.5 fg per PCR, respectively. Quantification of B. atrophaeus vegetative cells and spores was linear (R(2) > 0.98) over a 7-log-unit dynamic range down to 10(1) B. atrophaeus cells or spores. Quantification of S. marcescens (R(2) > 0.98) was linear over a 6-log-unit dynamic range down to 10(2) S. marcescens cells. The developed Q-PCR assays are highly specific and sensitive and can be used for monitoring the fate and transport of the BW surrogates B. atrophaeus and S. marcescens in building debris and leachate.  相似文献   

14.
Aims:  To develop a rapid and sensitive detection method for cereulide-producing Bacillus cereus using a real-time PCR based on the sequence of the cereulide synthesis gene.
Methods and Results:  A total of 56 cereulide-producing B. cereus and 15 cereulide-negative strains were tested. We designed specific primers and probes for the detection of cereulide-producing B. cereus . The new cycleave real-time PCR assay gave positive detections for all of 56 cereulide-producing B. cereus strains, whereas all other strains including 10 systemic infectious disease strains were negative. No cross-reaction was observed and the internal control showed positive for all samples.
Conclusions:  The performance of the assay was highly reproducible and specific for cereulide-producing B. cereus . The positive detection was obtained within only 2 h for cereulide-producing strains. The detection limit of this assay was evaluated as 104 CFU g−1 food sample. The assay also confirmed that strains from systemic infectious cases were cereulide-negative.
Significance and Impact of the Study:  This assay is applicable for contaminated foods as well as specimens from infectious disease cases. We recommend this assay for routine examination of suspected B. cereus food poisonings.  相似文献   

15.
Bacillus cereus is one of the important food pathogens. Since B. cereus group cells, such as B. cereus, B. thuringiensis, B. anthracis and B. mycoides, share many phenotypical properties and a high level of chromosomal sequence similarity, it is interesting to investigate the virulence profiles for B. cereus group cells, including B. cereus strains isolated from foods and samples associated with food-poisoning outbreaks. For this investigation, the presence of enterotoxin genes, such as those of haemolysin BL, B. cereus enterotoxin T and enterotoxin FM, were assayed by polymerase chain reaction (PCR) methods. Meanwhile, their enterotoxin activities were assayed using the BCET-RPLA kit, haemolytic patterns on sheep blood agar and their cytotoxicity to Chinese hamster ovary (CHO) cells. Results showed that there were 12 enterotoxigenic profiles for the 98 B. cereus group strains collected. In addition, if any of the three types of enterotoxins was present in the B. cereus group cells, these cells were shown to be cytotoxic to the CHO cells. Similar enterotoxigenic profiles could be found among strains of B. cereus, B. mycoides and B. thuringiensis. Thus, all B. cereus group strains may be potentially toxigenic and the detection of these cells in foods is important. We thus designed PCR primers, termed Ph1/Ph2, from the sphingomyelinase gene of B. cereus cells. These primers were specific for all B. cereus group strains and could be used for the detection of B. cereus cells contaminated in food samples.  相似文献   

16.
A real-time immunoquantitative PCR (iqPCR) method for detection of Staphylococcus aureus enterotoxin B (SEB) was developed and evaluated using both pure cultures and foods. The assay consisted of immunocapture of SEB and real-time PCR amplification of the DNA probe linked to the detection antibody. iqPCR was compared to an in-house enzyme-linked immunosorbent assay (ELISA) using the same couple of capture-detection antibodies and to commercial kits for detection of S. aureus enterotoxins (SE). The iqPCR was approximately 1,000 times more sensitive (<10 pg ml(-1)) than the in-house ELISA and had a dynamic range of approximately 10 pg ml(-1) to approximately 30,000 pg ml(-1). iqPCR was not inhibited by any of the foods tested and was able to detect SEB present in these foods. No cross-reactivity with SE other than SEB was observed. Application of iqPCR for detection of SEB in cultures of S. aureus revealed the onset of SEB production after 4 h of incubation at 22, 37, and 42 degrees C, which was in the first half of the exponential growth phase. The total amounts of SEB produced by the two strains tested were larger at 42 degrees C than at 37 degrees C and were strain dependent.  相似文献   

17.
We have developed a real-time PCR assay that can rapidly and differentially detect and quantify four genotypes of small subunit ribosomal RNA gene (SSUrDNA) of Babesia microti (Kobe-, Otsu-, Nagano- and US-types). In this assay, four genotype-specific pairs of primers targeted on internal transcribed spacer (ITS) 1 or 2 sequences were used and amplicons by each pair of primers were quantitatively detected by fluorescent SYBR Green I. The four genotype-specific pairs of primers displayed the high specificity for homologous genotype DNA. The standard curves of cycle threshold (Ct) values versus amount of target DNA per reaction (log) for all four genotypes were linear and the correlation coefficient (Rsq) values for the curves were from 0.970 to 0.997. The standard curves were almost identical even in the presence of heterologous genotype DNA. This assay could detect 10-30 fg purified DNA (equivalent to the amount of 1-5 parasite DNA) of each genotype B. microti. This assay could also detect each genotype B. microti infection in blood with 3×10(-6)%-1×10(-5)% parasitemia. This assay was applicable to field rodent and tick samples to reveal mixed infection in several samples, for which a single genotype of B. microti had been detected by direct sequencing analyses in our previous studies. This assay also seemed to be applicable to clinical human samples, showing Kobe-type positive results for the first Japanese babesiosis patient and the asymptomatic donor, both infected with Kobe-type B. microti.  相似文献   

18.
Pfiesteria complex species are heterotrophic and mixotrophic dinoflagellates that have been recognized as harmful algal bloom species associated with adverse fish and human health effects along the East Coast of North America, particularly in its largest (Chesapeake Bay in Maryland) and second largest (Albermarle-Pamlico Sound in North Carolina) estuaries. In response to impacts on human health and the economy, monitoring programs to detect the organism have been implemented in affected areas. However, until recently, specific identification of the two toxic species known thus far, Pfiesteria piscicida and P. shumwayae (sp. nov.), required scanning electron microscopy (SEM). SEM is a labor-intensive process in which a small number of cells can be analyzed, posing limitations when the method is applied to environmental estuarine water samples. To overcome these problems, we developed a real-time PCR-based assay that permits rapid and specific identification of these organisms in culture and heterogeneous environmental water samples. Various factors likely to be encountered when assessing environmental samples were addressed, and assay specificity was validated through screening of a comprehensive panel of cultures, including the two recognized Pfiesteria species, morphologically similar species, and a wide range of other estuarine dinoflagellates. Assay sensitivity and sample stability were established for both unpreserved and fixative (acidic Lugol's solution)-preserved samples. The effects of background DNA on organism detection and enumeration were also explored, and based on these results, we conclude that the assay may be utilized to derive quantitative data. This real-time PCR-based method will be useful for many other applications, including adaptation for field-based technology.  相似文献   

19.
The Manila clam Ruditapes philippinarum is infected with 2 Perkinsus species, Perkinsus olseni and P. honshuensis, in Japan. The latter was described as a new species in Mie Prefecture, Japan, in 2006. Ray's Fluid Thioglycollate Medium (RFTM) assay has been most commonly used to quantify Perkinsus infection. However, this assay cannot discriminate between species that resemble one another morphologically. We developed real-time PCR assays for the specific quantification of P. olseni and P. honshuensis. DNA was extracted using Chelex resin. Cultured P. olseni and P. honshuensis cells were counted and spiked into uninfected clam gill tissue prior to DNA extraction to generate standard curves, which allowed quantification based on the PCR cycle threshold values. We compared the RFTM assay with both real-time PCR assays by quantifying Perkinsus spp. in gill tissue samples from the same individual clams obtained from various localities in Japan. Infection intensities estimated by both assays were significantly correlated (r2 = 0.70). Our results suggest that the prevalence and infection intensity of P. honshuensis are much lower than for P. olseni in Manila clams.  相似文献   

20.
We developed and validated a real-time quantitative polymerase chain reaction (qPCR) assay to determine Mycoplasma genitalium bacterial load in endocervical swabs, based on amplification of the pdhD gene which encodes dihydrolipoamide dehydrogenase, using the Rotor-Gene platform. We first determined the qPCR assay sensitivity, limit of detection, reproducibility and specificity, and then determined the ability of the qPCR assay to quantify M. genitalium in stored endocervical specimens collected from Zimbabwean women participating in clinical research undertaken between 1999 and 2007. The qPCR assay had a detection limit of 300 genome copies/mL and demonstrated low intra- and inter-assay variability. The assay was specific for M. genitalium DNA and did not amplify the DNA from other mycoplasma and ureaplasma species. We quantified M. genitalium in 119 of 1600 endocervical swabs that tested positive for M. genitalium using the commercial Sacace M. genitalium real-time PCR, as well as 156 randomly selected swabs that were negative for M. genitalium by the same assay. The M. genitalium loads ranged between < 300 and 3,240,000 copies/mL. Overall, the qPCR assay demonstrated good range of detection, reproducibility and specificity and can be used for both qualitative and quantitative analyses of M. genitalium in endocervical specimens and potentially other genital specimens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号