首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hypothesis suggested in this paper is an attempt to explain a discrepancy between in vivo and in vitro polycyclic aromatic hydrocarbons (PAH)-carcinogenesis experiments, described frequently in the literature. Whereas, in pretreated animals, a higher level of induced PAH-metabolizing enzymes reduces PAH-carcinogenicity, in the tissues or homogenates from pretreated animals the induced PAH-metabolizing enzymes increase the carcinogenic effects of PAH. In our model, both the pretreatment or route of administration should cause a frameshift in the alternation of active and inactive metabolites in the compartments. In pretreated animals the carcinogenicity of PAH administered per os is reduced, because the PAH metabolism is completed to tetrol, the ultimate inactive metabolite, before it reaches the target tissue. The hypothesis explains the discrepancy and makes predictions which can be tested experimentally.  相似文献   

2.
Aberrant expression of wild-type and mutant forms of the platelet-derived growth factor receptor (PDGFR) family of receptor tyrosine kinases has been implicated in various oncologic indications such as leukemias, gliomas, and soft tissue sarcomas. Clinically used kinase inhibitors imatinib and sunitinib are potent inhibitors of wild-type PDGFR family members, but show reduced binding to mutant forms. Here we describe compound 5 which binds to both wild-type and oncogenic mutant forms of PDGFR family members, and demonstrates both cellular and in vivo activity.  相似文献   

3.
2-(4-Fluorophenyl)-quinazolin-4(3H)-one (FQ) was synthesized, and its structure was identified with 1H nuclear magnetic resonance (1H NMR), 13C nuclear magnetic resonance (13C NMR), fourier transform infrared spectroscopy (FTIR), and high resolution mass spectrometry (HRMS). From the enzyme analysis, the results showed that it could inhibit the diphenolase activity of tyrosinase (IC50 = 120 ± 2 μM). Furthermore, the results of kinetic studies showed that the compound was a reversible mixed-type inhibitor, and that the inhibition constants were determined to be 703.2 (KI) and 222.1 μM (KIS). The results of fluorescence quenching experiment showed that the compound could interact with tyrosinase and the substrates (tyrosine and l-DOPA). Molecular docking analysis revealed that the mass transfer rate was affected by FQ blocking the enzyme catalytic center. In brief, current study identified a novel tyrosinase inhibitor which deserved further study for hyperpigmentation drugs.  相似文献   

4.
A novel serum protein inhibiting specifically the enzymatic activity of the basic phospholipase A(2) (PLA(2)) from the venom of the Chinese mamushi snake (Agkistrodon blomhoffii siniticus) was purified from a nonvenomous Colubridae snake, Elaphe quadrivirgata. The purified inhibitor was a 150-kDa glycoprotein having a trimeric structure, composed of two homologous 50-kDa subunits. Their amino acid sequences, containing leucine-rich repeats, were typical of the beta-type PLA(2) inhibitor (PLIbeta), previously identified from the serum of A. blomhoffii siniticus. The inhibitor inhibited exclusively group II basic PLA(2)s and did not inhibit other kinds of PLA(2)s. This is the first paper reporting the existence of PLIbeta in a nonvenomous snake. The existence of PLIbeta in the nonvenomous snake reflects that PLIbetas are widely distributed over the snake species and participate commonly in regulating the physiological activities of the unidentified target PLA(2)s.  相似文献   

5.
To obtain human tissue inhibitor of metalloproteinase-2 (TIMP-2)cDNA and the secretory expression of TIMP-2 gene in Pichia pastoris,we designed and synthesized a 618 base pairs artificial gene coding for the TIMP-2 with a computer-aided design method using a standard chemical synthesis technique,which was composed of frequently used codons in the highly expressed Pichia pastoris genes.Then the synthetic gene encoding TIMP-2 was checked by means of dideoxynucleotide sequencing.The verified gene of TIMP-2 was cloned to the Escherichia coli-yeast shuttle vector of pPIC9 to construct a recombinant plasmid pPIC9-T2.The plasmid was transformed into GS115 cells of the methylotrophic yeast,Pichia pastoris by electroporation,and we got the expression cell through phenotype selection and induction with methanol.Separation,purification,and bioactivity analysis of the expressed products were performed.  相似文献   

6.
LaPSvS1, a highly sulfated branched (1-->3)-beta-galactan was prepared from the arabino-galactan from Larix decidua Miller by partial hydrolysis and subsequent sulfation with SO(3)-pyridine in DMF. The molecular weight was analyzed by GPC and the sulfate content was determined by ion chromatography. LaPSvS1 exhibited good antiangiogenic and antiinflammatory effects in two different modifications of the known CAM-assay. In vitro results obtained in the FGF-2-trypsin-assay and in fluorospectrometric experiments revealed that LaPSvS1 interacts with the fibroblast growth factor 2 system. This interaction is correlated with the in vivo effect of LaPSvS1 on FGF-2 induced angiogenesis.  相似文献   

7.
The chemokine receptors CXCR1/2 play a key role in the aggressiveness of several types of cancers including head and neck squamous cell carcinomas (HNSCCs). In HNSCCs, CXCR1/2 signaling promotes cell proliferation and angiogenesis leading to tumor growth and metastasis. The competitive inhibitor of CXCR1/2, C29, inhibits the growth of experimental HNSCCs in mice. However, a non-invasive tool to monitor treatment response is essential to implement the use of C29 in clinical practices. 18F-FDG PET/CT is a gold-standard tool for the staging and the post-therapy follow-up of HNSCCs patients. Our study aimed to perform the first in vivo monitoring of C29 efficacy by non-invasive 18F-FDG PET/CT imaging. Mice bearing experimental HNSCCs (CAL33) were injected with 18F-FDG (T0) and thereafter treated (n = 7 mice, 9 tumors, 50 mg/kg by gavage) or not (n = 7 mice, 10 tumors) with C29 for 4 consecutive days. Final 18F-FDG-tumor uptake was determined at day 4 (TF). The average relative change (TF-T0) in 18F-FDG tumor uptake was +25.85 ± 10.93 % in the control group vs ?5.72 ± 10.07 % in the C29-treated group (p < 0.01). These results were consistent with the decrease of the tumor burden and with the decrease of tumor proliferating Ki67+ cells. These results paved the way for the use of 18F-FDG to monitor tumor response following C29 treatment.  相似文献   

8.
Background and Aims The inverse relationship between atmospheric CO2 partial pressure (pCO2) and stomatal frequency in many species of plants has been widely used to estimate palaeoatmospheric CO2 (palaeo-CO2) levels; however, the results obtained have been quite variable. This study attempts to find a potential new proxy for palaeo-CO2 levels by analysing stomatal frequency in Quercus guyavifolia (Q. guajavifolia, Fagaceae), an extant dominant species of sclerophyllous forests in the Himalayas with abundant fossil relatives.Methods Stomatal frequency was analysed for extant samples of Q. guyavifolia collected from17 field sites at altitudes ranging between 2493 and 4497 m. Herbarium specimens collected between 1926 and 2011 were also examined. Correlations of pCO2–stomatal frequency were determined using samples from both sources, and these were then applied to Q. preguyavaefolia fossils in order to estimate palaeo-CO2 concentrations for two late-Pliocene floras in south-western China.Key Results In contrast to the negative correlations detected for most other species that have been studied, a positive correlation between pCO2 and stomatal frequency was determined in Q. guyavifolia sampled from both extant field collections and historical herbarium specimens. Palaeo-CO2 concentrations were estimated to be approx. 180–240 ppm in the late Pliocene, which is consistent with most other previous estimates.Conclusions A new positive relationship between pCO2 and stomatal frequency in Q. guyavifolia is presented, which can be applied to the fossils closely related to this species that are widely distributed in the late-Cenozoic strata in order to estimate palaeo-CO2 concentrations. The results show that it is valid to use a positive relationship to estimate palaeo-CO2 concentrations, and the study adds to the variety of stomatal density/index relationships that available for estimating pCO2. The physiological mechanisms underlying this positive response are unclear, however, and require further research.  相似文献   

9.
To obtain human tissue inhibitor of metalloproteinase-2 (TIMP-2) cDNA and the secretory expression of TIMP-2 gene in Pichia pastoris, we designed and synthesized a 618 base pairs artificial gene coding for the TIMP-2 with a computer-aided design method using a standard chemical synthesis technique, which was composed of frequently used codons in the highly expressed Pichia pastoris genes. Then the synthetic gene encoding TIMP-2 was checked by means of dideoxynucleotide sequencing. The verified gene of TIMP-2 was cloned to the Escherichia coli-yeast shuttle vector of pPIC9 to construct a recombinant plasmid pPIC9-T2. The plasmid was transformed into GS115 cells of the methylotrophic yeast, Pichia pastoris by electroporation, and we got the expression cell through phenotype selection and induction with methanol. Separation, purification, and bioactivity analysis of the expressed products were performed. __________ Translated from Microbiology, 2006, 33(1): 1–6 [译自: 微生物学通报]  相似文献   

10.
5-(Hydroxymethyl)-2-furfural (HMF), a pyrolysate of carbohydrate isolated from instant coffee (Coffea arabica L.), selectively inhibits the activities of mammalian DNA polymerase lambda (pol lambda) and terminal deoxynucleotidyltransferase (TdT) which are family X pols, in vitro. The compound influenced neither the activities of replicative DNA polymerases such as alpha, delta, and epsilon, nor even the activity of pol beta which is from the same family and thought to have a very similar three-dimensional structure to the pol beta-like region of pol lambda. Since parts of HMF such as furan, furfuryl alcohol, and 2-furaldehyde did not influence the activities of any enzymes tested, the substituted form of furan with a hyroxymethyl group and a formyl group might be important for the inhibition of pol lambda and TdT. The inhibitory effect of HMF on intact pol lambda (i.e., residues 1-575), a truncated pol lambda lacking the N-terminal BRCA1 C-terminus domain (133-575, del-1 pol lambda) and another truncated pol lambda lacking the N-terminal proline-rich region (245-575, del-2 pol lambda) was dose-dependent, and 50% inhibition was observed at a concentration of 26.1, 10.3, and 4.6 microM, respectively. The IC(50) value of HMF for TdT was the same as that for del-2 pol lambda (5.5 microM). The HMF-induced inhibition of both pol lambda and TdT activities was competitive with respect to both the DNA template-primer and the dNTP substrate. On the basis of these results, HMF was suggested to bind to the pol beta-like region of pol lambda and TdT.  相似文献   

11.
Apo2L/TRAIL is actively investigated as a novel targeted agent to directly induce apoptosis of susceptible cancer cells. Apo2L/TRAIL-refractory cells can be sensitized to the cytotoxic effect of this ligand by cytotoxic chemotherapeutics. The aim of this study was to evaluate the in vitro tumoricidal activity of the Apo2L/TRAIL + Trichostatin A in cultured thoracic cancer cells and to elucidate the molecular basis of the synergistic cytotoxicity of this combination. Concurrent exposure of cultured cancer cells to sublethal concentrations of Apo2L/TRAIL and Trichostatin A resulted in profound enhancement of Apo2L/TRAIL-mediated cytotoxicity in all cell lines regardless of their intrinsic susceptibility to this ligand. This combination was not toxic to primary normal cells. While Apo2L/TRAIL alone or Trichostatin A alone mediated < 20% cell death, 60 to 90% of cancer cells were apoptotic following treatment with TSA + Apo2L/TRAIL combinations. Complete translocation of Bax from the cytosol to the mitochondria compartment was mainly observed in combination-treated cells and this was correlated with robust elevation of caspase 9 proteolytic activity indicative of activation of the mitochondria apoptogenic effect. Profound TSA + Apo2L/TRAIL–mediated cytotoxicity and apoptosis were completely abrogated by either Bcl2 over-expression or by the selective caspase 9 inhibitor, highlighting the essential role of mitochondria-dependent apoptosis signaling cascade in this process. Moreover, increased caspase 8 activity observed in cells treated with the TSA + Apo2L/TRAIL combination was completely suppressed by Bcl-2 over-expression or by the selective caspase 9 inhibitor indicating that the elevated caspase 8 activity in combination-treated cells was secondary to a mitochondria-mediated amplification feedback loop of caspase activation. These finding form the basis for further development of HDAC inhibitors + Apo2L/TRAIL combination as novel targeted therapy for thoracic malignancies. R.M. Reddy and W.-S. Yeow contributed equally to this work. This research was supported by the Intramural Research Program of the National Cancer Institute, NIH.  相似文献   

12.
In the present study, the newly synthesized TRH analog (l-pGlu-(2-propyl)-l-His-l-ProNH2; NP-647) was evaluated for its effects in in vitro (oxygen glucose deprivation (OGD)-, glutamate- and H2O2-induced injury in PC-12 cells) and in vivo (transient global ischemia) models of cerebral ischemic injury. PC-12 cells were subjected to oxygen and glucose deprivation for 6 h. Exposure of NP-647 was given before and during OGD. In glutamate and H2O2 induced injury, exposure of NP-647 was given 1, 6 and 24 h prior to exposure of glutamate and H2O2 exposure. NP-647, per se found to be non-toxic in 1-100 μM concentrations. NP-647 showed protection against OGD at the 1 and 10 μM. The concentration-dependent protection was observed in H2O2- and glutamate-induced cellular injury. In in vivo studies, NP-647 treatment showed protection of hippocampal (CA1) neuronal damage in transient global ischemia in mice and subsequent improvement in memory retention was observed using passive avoidance retention test. Moreover, administration of NP-647 resulted in decrease in inflammatory cytokines TNF-α and IL-6 as well as lipid peroxidation. These results suggest potential of NP-647 in the treatment of cerebral ischemia and its neuroprotective effect may be attributed to reduction of excitotoxicity, oxidative stress and inflammation.  相似文献   

13.
Atypical antipsychotic drugs (APDs), all of which are relatively more potent as serotonin (5-HT)(2A) than dopamine D(2) antagonists, may improve negative symptoms and cognitive dysfunction in schizophrenia, in part, via increasing cortical dopamine release. 5-HT(1A) agonism has been also suggested to contribute to the ability to increase cortical dopamine release. The present study tested the hypothesis that clozapine, olanzapine, risperidone, and perhaps other atypical APDs, increase dopamine release in rat medial prefrontal cortex (mPFC) via 5-HT(1A) receptor activation, as a result of the blockade of 5-HT(2A) and D(2) receptors. M100907 (0.1 mg/kg), a 5-HT(2A) antagonist, significantly increased the ability of both S:(-)-sulpiride (10 mg/kg), a D(2) antagonist devoid of 5-HT(1A) affinity, and R:(+)-8-OH-DPAT (0.05 mg/kg), a 5-HT(1A) agonist, to increase mPFC dopamine release. These effects of M100907 were abolished by WAY100635 (0.05 mg/kg), a 5-HT(1A) antagonist, which by itself has no effect on mPFC dopamine release. WAY100635 (0.2 mg/kg) also reversed the ability of clozapine (20 mg/kg), olanzapine (1 mg/kg), risperidone (1 mg/kg), and the R:(+)-8-OH-DPAT (0.2 mg/kg) to increase mPFC dopamine release. Clozapine is a direct acting 5-HT(1A) partial agonist, whereas olanzapine and risperidone are not. These results suggest that the atypical APDs via 5-HT(2A) and D(2) receptor blockade, regardless of intrinsic 5-HT(1A) affinity, may promote the ability of 5-HT(1A) receptor stimulation to increase mPFC DA release, and provide additional evidence that coadministration of 5-HT(2A) antagonists and typical APDs, which are D(2) antagonists, may facilitate 5-HT(1A) agonist activity.  相似文献   

14.
DNA nuclease/helicase 2 (DNA2), a multi-functional protein protecting the high fidelity of genomic transmission, plays critical roles in DNA replication and repair processes. In the maturation of Okazaki fragments, DNA2 acts synergistically with other enzymes to cleave the DNA-RNA primer flaps via different pathways. DNA2 is also involved in the stability of mitochondrial DNA and the maintenance of telomeres. Moreover, DNA2 potentially participates in controlling the cell cycle by repairing the DNA replication faults at main checkpoints. In addition, previous evidences demonstrated that DNA2 also functions in the repair process of DNA damages, such as base excision repair (BER). Currently, large studies revealed the structures and functions of DNA2 in prokaryotes and unicellular eukaryotes, such as bacteria and yeast. However, the studies that highlighted the functions of human DNA2 (hDNA2) and the relationships with other multifunctional proteins are still elusive, and more precise investigations are immensely needed. Therefore, this review mainly encompasses the key functions of DNA2 in human cells with various aspects, especially focusing on the genome integrity, and also generalizes the recent insights to the mechanisms related to the occurrence of cancer and other diseases potentially linked to the mutations in DNA2.  相似文献   

15.
Agents that target HER2 have improved the prognosis of patients with HER2-amplified breast cancers. However, patients who initially respond to such targeted therapy eventually develop resistance to the treatment. We have established a line of lapatinib-resistant breast cancer cells (UACC812/LR) by chronic exposure of HER2-amplified and lapatinib-sensitive UACC812 cells to the drug. The mechanism by which UACC812/LR acquired resistance to lapatinib was explored using comprehensive gene hybridization. The FGFR2 gene in UACC812/LR was highly amplified, accompanied by overexpression of FGFR2 and reduced expression of HER2, and a cell proliferation assay showed that the IC50 of PD173074, a small-molecule inhibitor of FGFR tyrosine kinase, was 10,000 times lower in UACC812/LR than in the parent cells. PD173074 decreased the phosphorylation of FGFR2 and substantially induced apoptosis in UACC812/LR, but not in the parent cells. FGFR2 appeared to be a pivotal molecule for the survival of UACC812/LR as they became independent of the HER2 pathway, suggesting that a switch of addiction from the HER2 to the FGFR2 pathway enabled cancer cells to become resistant to HER2-targeted therapy. The present study is the first to implicate FGFR in the development of resistance to lapatinib in cancer, and suggests that FGFR-targeted therapy might become a promising salvage strategy after lapatinib failure in patients with HER2-positive breast cancer.  相似文献   

16.
17.
Group X (GX) phospholipase A(2), a member of a large group of secreted phospholipases A(2) (sPLA(2)s), has recently been demonstrated to play an important in vivo role in the release of arachidonic acid and subsequent formation of eicosanoids. In a Th2 cytokine-driven mouse asthma model, deficiency of mouse GX (mGX)-sPLA(2) significantly impairs development of the asthma phenotype. In this study, we generated mGX-sPLA(2)(-/-) mice with knock-in of human GX (hGX)-sPLA(2) (i.e. hGX-sPLA(2)(+/+) knock-in mice) to understand more fully the role of GX-sPLA(2) in these allergic pulmonary responses and to assess the effect of pharmacological blockade of the GX-sPLA(2)-mediated responses. Knock-in of hGX-sPLA(2) in mGX-sPLA(2)(-/-) mice restored the allergen-induced airway infiltration by inflammatory cells, including eosinophils, goblet cell metaplasia, and hyperresponsiveness to methacholine in the mGX-sPLA(2)-deficient mice. This knock-in mouse model enabled the use of a highly potent indole-based inhibitor of hGX-sPLA(2), RO061606 (which is ineffective against mGX-sPLA(2)), to assess the potential utility of GX-sPLA(2) blockade as a therapeutic intervention in asthma. Delivery of RO061606 via mini-osmotic pumps enabled the maintenance in vivo in the mouse asthma model of plasma inhibitor concentrations near 10 μm, markedly higher than the IC(50) for inhibition of hGX-sPLA(2) in vitro. RO061606 significantly decreased allergen-induced airway inflammation, mucus hypersecretion, and hyperresponsiveness in the hGX-sPLA(2)(+/+) knock-in mouse. Thus, development of specific hGX-sPLA(2) inhibitors may provide a new pharmacological opportunity for the treatment of patients with asthma.  相似文献   

18.
The in vitro susceptibility of several nonhuman primate species to human herpesvirus 6 (HHV-6) was investigated. Only peripheral blood mononuclear cells from chimpanzees (Pan troglodytes) were found permissive to productive infection by HHV-6, indicating that the host range of HHV-6, albeit limited, may not be restricted to Homo sapiens. However, natural HHV-6 infection in chimpanzees, as well as in the other species tested, could not be documented by serological analysis. As previously observed with human cells, HHV-6 infection of chimpanzee peripheral blood mononuclear cells was highly cytopathic and the infected cells exhibited phenotypic features of activated T lymphocytes. Although in humans the majority of HHV-6-infected lymphocytes displayed the CD4 antigen, in chimpanzees a mixed CD4+ and CD8+ phenotype was observed. HHV-6 was also shown to productively coinfect individual chimpanzee T cells with human immunodeficiency virus type 1, resulting in an accelerated induction of cytopathicity. In light of these findings, we propose the utilization of chimpanzees as a potential animal model system to investigate the in vivo interaction between HHV-6 and human immunodeficiency virus type 1 and its relevance to the development of acquired immune deficiency syndrome.  相似文献   

19.
20.
The in vitro polymerization and tissue-specific expression patterns of the four essential intermediate filament (IF) proteins (A1, A2, A3, B1) and the non-essential IF protein A4 were analyzed. Recombinant B1, used as a probe in blot overlay assays of the 11 Caenorhabditis elegans IF proteins, reacted strongly with proteins A1 to A4, indicating a heterotypic interaction. Obligate heteropolymeric filament assembly in vitro was confirmed by electron microscopy. Protein B1 formed long IF when mixed with an equimolar amount of A1, A2 or A3. Developmentally regulated coexpression of B1 and one or more members of the A family was found with GFP-promoter reporters. This coexpression pattern argues for a heteropolymer system in vivo. One or both splice variants of the B1 gene are always coexpressed in a tissue-specific manner with at least one member of the A family in hypodermis, pharynx, pharyngeal-intestinal valve, excretory cells, uterus, vulva and rectum. Interestingly, while the intestine normally lacks a B1/A pair, the dauer larva shows intestinal B1 and A4. These results are in line with similar postembryonic phenotypes of the hypodermis induced by RNA interference (RNAi) of genes B1, A2 and A3. Similarly, defects of the pharynx and its A1-GFP containing tonofilaments observed in the postembryonic B1 RNAi phenotype are consistent with the coexpression of B1 and A1 in the marginal cells. Thus RNAi analyses provide independent evidence for the existence of the B1/A obligate heteropolymer system in vivo. Proteins A1 and B1 have a similar and rather slow turnover rate in photobleaching experiments of the pharynx tonofilaments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号