首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Impaired deformability of copper-deficient neutrophils   总被引:1,自引:0,他引:1  
We have previously shown that dietary copper deficiency augments neutrophil accumulation in the lung microvasculature. The current study was designed to determine whether a diet deficient in copper promotes neutrophil chemoattraction within the lung vasculature or if it alters the mechanical properties of the neutrophil, thus restricting passage through the microvessels. Sprague-Dawley rats were fed purified diets that were either copper adequate (6.3 microg Cu/g diet) or copper deficient (0.3 microg Cu/g diet) for 4 weeks. To assess neutrophil chemoattraction, bronchoalveolar lavage fluid was assayed for the neutrophil chemokine macrophage inflammatory protein-2 (MIP-2) by enzyme-linked immunosorbent assay. Neutrophil deformability was determined by measuring the pressure required to pass isolated neutrophils through a 5-microm polycarbonate filter. The MIP-2 concentration was not significantly different between the dietary groups (Cu adequate, 435.4 +/- 11.9 pg/ml; Cu deficient, 425.6 +/- 14.8 pg/ml). However, compared with controls, more pressure was needed to push Cu-deficient neutrophils through the filter (Cu adequate, 0.150 +/- 0.032 mm Hg/sec; Cu deficient, 0.284 +/- 0.037 mm Hg/sec). Staining of the filamentous actin (F-actin) with FITC-Phalloidin showed greater F-actin polymerization and shape change in the Cu-deficient group. These results suggest that dietary copper deficiency reduces the deformability of neutrophils by promoting F-actin polymerization. Because most neutrophils must deform during passage from arterioles to venules in the lungs, we propose that copper-deficient neutrophils accumulate in the lung because they are less deformable.  相似文献   

2.
The effectiveness of a cupruretic agent, N,N'-bis-(2 amino ethyl)-1,3-propanediamine HCl or 2,3,2-tetramine HCl (TETA), in the induction of copper (Cu) deficiency and the ability of a Cu-deficient diet in the maintenance of the depressed Cu status 10 wk after TETA treatment were examined in this study. In the first experiment, 42 male New Zealand White rabbits, 35 d of age, were randomly divided into three dietary treatments: a copper (Cu)-deficient (2.3 mg Cu/kg diet), a Cu-adequate (13.5 mg Cu/kg diet), and a commercial ration (21.6 mg Cu/kg diet) group. A single oral dose of 100 mg of 2,3,2-tetramine HCl TETA/kg body wt/d were administered to half of the rabbits from each treatment group for 10 d while the remaining rabbits were untreated. In the second experiment, 10 similar rabbits were assigned to three treatments: Cu-deficient plus TETA (n = 4); Cu-adequate plus TETA (n = 3); and Cu-adequate alone (n = 3). The rabbits were fed a TETA dose of 100 mg/d for three 4-d periods over 3 wk, and thereafter maintained on the diets for another 10 wk. Rabbits from the first experiment fed Cu-deficient diet and treated with TETA demonstrated cardiac hypertrophy and markedly reduced plasma and liver Cu concentrations that indicated that the animals were Cu-deficient. Significant elevations (twofold) in low density lipoprotein (LDL) protein, cholesterol, triglyceride, and apolipoprotein B (apo B) concentrations were observed in TETA treated rabbits fed Cu-deficient diet. In the second experiment, the plasma LDL protein level remained elevated, the plasma Cu level was reduced 45%, and the Cu level of the heart when expressed as microgram/g dry tissue was reduced, 10 wk post TETA treatment in rabbits maintained on Cu-deficient diet. Thus, Cu deficiency and hyperlipoproteinemia was rapidly induced by TETA and was still evident 10 wk posttreatment in rabbits maintained on a Cu-deficient diet.  相似文献   

3.
4.
The long-term effects of low dietary copper (Cu) intake during pregnancy and lactation on cardiac mitochondria in first-generation adult rats was examined. Rat dams were fed diets containing either low (1 mg/kg Cu) or adequate (6 mg/kg Cu) levels of dietary Cu beginning 3 weeks before conception and ending 3 weeks after birth. Cytochrome c oxidase (CCO) activity was 51% lower in isolated cardiac mitochondria from 21-day-old offspring of Cu-deficient dams than in the offspring of Cu-adequate dams. CCO activities in the cardiac mitochondria of 63- and 290-day-old offspring were 22% lower and 14% lower, respectively, in the offspring of Cu-deficient dams after they had been repleted with adequate dietary Cu from the time they were 21 days old. Electron micrographs showed that the size of residual bodies and the cellular volume they occupied in cardiomyocytes rose significantly between 63 and 290 days in the Cu-repleted offspring of Cu-deficient dams, but not in the offspring of Cu-adequate dams. The rate of hydrogen peroxide generation by cardiac mitochondria also was 24% higher in the 290-day-old repleted offspring of Cu-deficient dams than in the offspring of Cu-adequate dams. The increase in hydrogen peroxide production by cardiac mitochondria and in the relative volume and size of dense deposits in cardiomyocytes is consistent with increased oxidative stress and damage resulting from prolonged reduction of CCO activity in the offspring of Cu-deficient dams.  相似文献   

5.
Low dietary copper has been shown to decrease the expression of various protein kinase C (PKC) isozymes and increase the risk of colon cancer development in experimental animals. The purpose of this study was to investigate the relationship between dietary copper and carcinogen administration on PKC isozyme accumulation and aberrant crypt foci (ACF) formation in rats fed 0.9 and 7.7 microg Cu/g diet. After 24 and 31 d on the diets, the rats were injected with either dimethylhydrazine (DMH) (25 mg/kg i.p.) or saline and killed at two time points (2 wk and 8 wk after DMH). Rats fed low dietary copper had significantly lower (p<0.0001) hematocrits, hemoglobin, ceruloplasmin activity and plasma and liver copper concentrations than rats fed adequate dietary copper. Ingestion of low dietary copper significantly (p<0.005) increased the formation of DMH-induced ACF (116.8 vs 59.6). Low dietary copper significantly (p<0.05) decreased the concentration of PKC alpha, delta, and zeta in the colon at 2 wk but not at 8 wk. Thus, changes in PKC isoform protein concentration may be related to increased susceptibility of copper-deficient animals to colon cancer.  相似文献   

6.
Endothelium-dependent relaxation of aortas was studied in dietary copper (Cu) deficiency. Male, weanling Sprague-Dawley rats were fed diets deficient (CuD, less than 0.5 ppm) or adequate (CuA, 5.0-5.5 ppm) in Cu for 4 weeks. Aortic rings from paired Cu-deficient and Cu-adequate rats were isolated from the descending thoracic aorta, placed in tandem tissue baths, and attached to force transducers. Aortas were contracted with phenylephrine (3 x 10(-7) M) and the degree of force reduction was measured after successively increasing the dose of acetylcholine (10(-8)-10(-5) M), histamine 10(-6)-10(-3) M), or sodium nitroprusside (10(-9)-10(-6) M). Cu deficiency was found to significantly reduce the relaxation responses of each relaxing agent at the highest three of the four doses tested. The ability of Cu-adequate and Cu-deficient aortas to relax was not different, as indicated by their complete relaxation in response to 10(-4) or 10(-5) M papaverine. Because the relaxation responses to both acetylcholine and histamine in rat aorta are dependent on the presence of endothelium, the reduction of these responses suggests that endothelium, or its interaction with smooth muscle, was disrupted in dietary Cu deficiency. The reduction in response to sodium nitroprusside, an endothelium-independent analog of endothelium-derived relaxing factor, indicates that the interaction of endothelium-derived relaxing factor with smooth muscle was disrupted. These findings have implications regarding blood pressure regulation in Cu deficiency.  相似文献   

7.
The effects of severe, moderate, and mild copper deficiencies on cellular and humoral immunity were studied. Fifty male Sprague-Dawley rats, 5 wk of age, were fed diets containing 0.5, 2.0, 3.5, or 5.0 micrograms Cu/g for either 4 or 8 wk. Ten of the rats were fed the control diet, but were pair-fed with the 0.5-micrograms/g treatment group. All rats were immunized once with sheep red blood cells. Mean plasma-copper concentration reflected the dietary levels of copper, and ceruloplasmin activity correlated highly to plasma copper. Rats consuming suboptimal levels of copper responded differently to the deficiencies, so copper status varied among those animals. After 8 wk, cell proliferation, when stimulated by phytohemagglutinin, was dependent on the copper status of the animal. Severely deficient rats had consistently lower lymphocyte stimulation indexes for phytohemagglutinin and concanavalin A, but specific antibody response was not reduced. Immunoglobulin G (IgG) concentrations were variable for all rats, and immunoglobulin M (IgM) concentrations were lower for the severely deficient rats. Suboptimal dietary copper may alter immune function in rats, depending on the ensuing effect on copper status.  相似文献   

8.
Copper (Cu) deficiency decreases the activity of Cu-dependent antioxidant enzymes such as Cu,zinc-superoxide dismutase (Cu,Zn-SOD) and may be associated with increased susceptibility to oxidative stress. Iron (Fe) overload represents a dietary oxidative stress relevant to overuse of Fe-containing supplements and to hereditary hemochromatosis. In a study to investigate oxidative stress interactions of dietary Cu deficiency with Fe overload, weanling male Long–Evans rats were fed one of four sucrose-based modified AIN-93G diets formulated to differ in Cu (adequate 6 mg/kg diet vs. deficient 0.5 mg/kg) and Fe (adequate 35 mg/kg vs. overloaded 1500 mg/kg) in a 2×2 factorial design for 4 weeks prior to necropsy. Care was taken to minimize oxidation of the diets prior to feeding to the rats. Liver and plasma Cu content and liver Cu,Zn-SOD activity declined with Cu deficiency and liver Fe increased with Fe overload, confirming the experimental dietary model. Liver thiobarbituric acid reactive substances were significantly elevated with Fe overload (pooled across Cu treatments, 0.80±0.14 vs. 0.54±0.08 nmol/mg protein; P<.0001) and not affected by Cu deficiency. Liver cytosolic protein carbonyl content and the concentrations of several oxidized cholesterol species in liver tissue did not change with these dietary treatments. Plasma protein carbonyl content decreased in Cu-deficient rats and was not influenced by dietary Fe overload. The various substrates (lipid, protein and cholesterol) appeared to differ in their susceptibility to the in vivo oxidative stress induced by dietary Fe overload, but these differences were not exacerbated by Cu deficiency.  相似文献   

9.
Hearts from severely Cu-deficient rats show a variety of pathological defects, including hypertrophy and, in intact hearts, depression of contractile function. Paradoxically, isolated cardiomyocytes from these rats exhibit enhanced contractile properties. Because hypertrophy and enhanced contractility observed with other pathologies are associated with elevation of insulin-like growth factor-I (IGF)-I, this mechanism was examined for the case of dietary Cu deficiency. Male, weanling Sprague-Dawley rats were provided diets that were deficient (approximately 0.5 mg Cu/kg diet) or adequate (approximately 6 mg Cu/kg diet) in Cu for 5 wk. IGF-I was measured in serum and hearts by an ELISA method, cardiac IGF-I and IGF-II receptors and IGFBP-3 were measured by Western blotting analysis, and mRNAs for cardiac IGF-I and IGF-II were measured by RT-PCR. Contractility of isolated cardiomyocytes was assessed by a video-based edge-detection system. Cu deficiency depressed serum and heart IGF-I and heart IGFBP-3 protein levels and increased cardiac IGF-I receptor protein. Cardiac IGF-II protein and mRNA for cardiac IGF-I and IGF-II were unaffected by Cu deficiency. A Cu deficiency-induced increase in cardiomyocyte contractility, as indicated by increases in maximal velocities of shortening (-dL/dt) and relengthening (+dL/dt) and decrease in time to peak shortening (TPS), was confirmed. These changes were largely inhibited by use of H-1356, an IGF-I receptor blocker. We conclude that enhanced sensitivity to IGF-I, as indicated by an increase in IGF-I receptor protein, accounts for the increased contractility of Cu-deficient cardiomyocytes and may presage cardiac failure.  相似文献   

10.
Perturbations in copper (Cu) metabolism are a characteristic of diabetes, for example, elevated plasma Cu and compromised oxidant defense related to diabetes-induced effects on Cu-containing enzymes. Herein, the redistribution of Cu in selected tissues is described in response to diabetic and nondiabetic states in rats that were fed diets adequate in (12 mg Cu/kg of diet) or deficient in (no added Cu) Cu. Diabetes was induced by intravenous administration of streptozotocin (40 mg/kg body weight). After 5 weeks, rats were gavaged with (67)Cu (0.74 MBq per rat) using the Cu-deficient diet as a vehicle (suspended 1:3 in water) and killed at various time points. The use of (67)Cu allowed for the assessment of short-term Cu distribution and its comparison to the steady-state Cu distribution, as determined by direct Cu analysis. In contrast to control rats, the adaptive mechanisms for Cu homeostasis in diabetic rats were impaired. In general, measures of Cu retention were reduced in diabetic rats compared to corresponding values for control rats. Moreover, diabetic rats had low copper, zinc superoxide dismutase activity that was reduced even further when diabetic rats were fed with low-Cu diets. However, liver and kidney metallothionein and plasma ceruloplasmin levels were elevated in diabetic rats compared to control rats. Such diabetes-related metabolic alterations were taken as measures of increased oxidative stress and inflammation, which may have implications in the progression of diabetes-related pathologies.  相似文献   

11.
An 8-week feeding trial was conducted to determine the dietary copper (Cu) requirement and its effect on the non-specific immune responses of juvenile grass shrimp, Penaeus monodon. Purified diets with seven levels (0, 10, 20, 30, 40, 80, 160 mg Cu kg diet(-1) of supplemental Cu were fed to P. monodon (mean initial weight 0.29 +/- 0.004 g). Each diet was fed to three replicate groups of shrimp. The rearing water contained 1.53 microg Cu 1(-1). Shrimp fed diets supplemented with 10 and 20 mg Cu kg diet(-1) had significantly (P < 0.01) greater weight gain, feed efficiency (FE) and protein efficiency ratio (PER) than those fed the unsupplemented control diet and diets supplemented with > or = 40 mg Cu kg diet(-1). Whole body Cu concentration in shrimp generally increased as dietary Cu supplementation increased. Total haemocyte count (THC) was higher in shrimp fed diets supplemented with 10-30 mg Cu kg diet(-1) than shrimp fed the unsupplemented control diet and diets supplemented with > or = 40 mg Cu kg diet(-1). Intracellular superoxide anion (O2-) production ratios were significantly higher in shrimp fed diets supplemented with 10-30 mg Cu kg diet(-1) than shrimp fed the diet supplemented with 160 mg Cu kg diet(-1). Analysis by polynomial regression of weight gain percent, FE and by linear regression of the whole-body Cu retention of shrimp indicated that the adequate dietary Cu concentration in growing P. monodon is about 15-21 mg Cu kg diet (-1). The immune indicators suggest that an adequate dietary Cu concentration for non-specific immune responses in P. monodon is about 10-30 mg Cu kg diet(-1).  相似文献   

12.
Four experiments were done to characterize the interactions of copper, iron, and ascorbic acid with manganese in rats. All experiments were factorially arranged Dietary Mn concentrations were less than 1 micrograms/g (Mn0) and 50 micrograms/g (Mn+). Dietary Cu was less than 1 mg/g (Cu0) and 5 micrograms/g (Cu+); dietary Fe was 10 micrograms/g (Fe10) and 140 micrograms/g (Fe140). Ascorbic acid (Asc) was not added to the diet or added at a concentration of 10 g/kg diet. Experiment 1 had two variables, Mn and Cu; in Experiment 2, the variables were Mn and Asc. In Experiment 3, the variables were Mn, Cu, and Asc; in Experiment 4, they were Mn, Cu, and Fe. Definite interactions between Mn and Cu were observed, but they tended to be less pronounced than interactions between Mn and Fe. Cu depressed absorption of 54Mn and accelerated its turnover. In addition, adequate Cu (Cu+), compared with Cu0, depressed liver, plasma, and whole blood Mn of rats. Absorption of 67Cu was higher in animals fed Mn0 diets than in those fed Mn+. Ascorbic acid depressed Mn superoxide dismutase activity and increased Cu superoxide dismutase activity in the heart. The addition of ascorbic acid to the diet did not affect Mn concentration in the liver or blood. Absorption of 54Mn was depressed in rats fed Fe140 compared with those fed Fe10. Interactions among Fe, Cu, and Mn resulted in a tendency for Mn superoxide dismutase activity to be lower in rats fed Fe140 than in rats fed Fe10. Within the physiologic range of dietary concentrations, Mn and Cu have opposite effects on many factors that tend to balance one another. The effects of ascorbic acid on Mn metabolism are much less pronounced than effects of dietary Cu, which in turn affects Mn metabolism less than does Fe.  相似文献   

13.
Marginal copper (Cu) deficiency is difficult to study, in part because its effects may be small, but also because feeding of a deficient diet may not cause a discernable change in Cu status. The key to resolution of effects may be in the choice of Cu status index. In this study, liver Cu concentration, a commonly used index of Cu status, was compared with activity of ceruloplasmin (CP), a circulating Cu-dependent enzyme, and kidney Cu concentration for their utility in resolving effects of marginal Cu deficiency. Seventy male, weanling rats were fed diets containing, nominally, 0, 1.5, 3, 4.5, or 6 mg Cu/kg diet for 5 wk. All three indices showed strong depression with severe deficiency (dietary Cu=0), but were relatively weak in their ability to distinguish between animals fed marginally deficient diets when compared by group statistics (ANOVA). Further, group statistics revealed no effect of marginal deficiency on six other variables known to change with severe Cu deficiency: heart weight/body weight, hematocrit, red cell distribution width, neutrophil count, glycated hemoglobin, and platelet count. To take into account interanimal variation, the three putative indices were plotted against these six variables and linear regression was performed on points representing marginally deficient rats. None of the variables showed significant regression with liver Cu or serum ceruloplasmin, but three showed significant regression with kidney Cu. These findings indicate that kidney Cu is preferable to liver Cu or ceruloplasmin as an index of Cu status in marginal deficiency and that linear regression is a possible way of testing for effects of marginal Cu deficiency, especially when effects are subtle.  相似文献   

14.
The present investigation was designed to study the uptake of67Cu when administered directly, into the portal vein, along with either functose or glucose, by the liver and extrahepatic tissues. Following weaning, male Sprague-Dawley rats were fed for 3 wk either commercial laboratory ration (chow) or semipurified diets deficient in Cu (0.6 ppm) or supplemented with Cu (6.0 ppm) and containing 62% carbohydrate as either fructuse or cornstarch. After an overnight fast, a single dose of rat plasma (0.1 mL) containing fructose or glucose extrinsically labeled with67Cu was injected directly into their portal vein. Although not always statistically significant, rats fed chow retained more radioactivity in the liver and several extrahepatic tissues when67Cu was administered with fructose than with glucose. Regardless of Cu status, rats fed diets containing fructose retained more radioactivity in extrahepatic tissues than rats fed starch. There was an increased uptake of67Cu by the liver, blood, muscle, and fat pad when fructose as compared to glucose was injected in combination with the isotope. These data strongly suggest that Cu requirements or utilization are greater when fructose is the main dietary carbohydrate. The results may also in part explain the reason for the increased severity of Cu deficiency in rats fed fructose.  相似文献   

15.
The mineral imbalances in magnesium-deficient rats with dietary iron overload were studied. Forty-four male Wister rats were divided into six groups and fed six diets, two by three, fully crossed: magnesium adequate or deficient, and iron deficient, adequate, or excess. The concentrations of iron, magnesium, calcium, and phosphorus in tissues of the rats were measured. The results were as follows: (1) The excess iron intake reinforced the iron accumulation in liver and spleen of magnesium deficient rats; (2) The saturation of iron binding capacity was enormously elevated in the magnesium deficient rats fed excess iron; and (3) Dietary iron deprivation diminished the degree of calcium deposition in kidney of magnesium deficient rats. These results suggest that magnesium-deprived-rats have abnormal iron metabolism losing homeostatic regulation of plasma iron, and magnesium deficient rats with dietary iron overload may be used as an experimental hemochromatosis model.  相似文献   

16.
The purpose of this study was to further examine the hypothesis that variations in hepatic fructose-metabolizing enzymes between males and females might account for the differences in the severity of copper (Cu) deficiency observed in fructose-fed male rats. Weanling rats of both sexes were fed high-fructose diets either adequate or deficient in copper for 45 days. Cu deficiency decreased sorbitol dehydrogenase activity and dihydroxyacetone phosphate levels and increased glyceraldehyde levels in both sexes. Gender effects were expressed by higher activities of glycerol 3-phosphate dehydrogenase and aldehyde dehydrogenase in male than in female rats and higher levels of dihydroxyacetone phosphate and fructose 1,6-diphosphate (F1,6DP) in female than in male rats. The interactions between dietary Cu and gender were as follows: alcohol dehydrogenase activities were higher in female rats and were further increased by Cu deficiency in both sexes; aldehyde dehydrogenase activities were decreased by Cu deficiency only in male rats; sorbitol levels were higher in male rats and were further increased by Cu deficiency in male rats; fructose 1-phosphate (F1P) levels were increased by Cu deficiency in both sexes, but to a greater extent in male rats; glyceraldehyde 3-phosphate levels were higher in female rats, but were decreased by Cu deficiency in female and increased in male rats. Though most of the examined hepatic fructose-metabolizing enzymes and metabolites showed great differences between rats fed diets either adequate or deficient in Cu, it is the activity of fructokinase and aldolase-B, and the concentrations of their common metabolites, F1P and notably F1,6DP, that could be in part responsible for differences in the severity of pathologies associated with Cu deficiency observed between female and male rats.  相似文献   

17.
It has been well documented that dietary copper (Cu) deficiency causes a hypertrophic cardiomyopathy in rodent models. However, a possible alteration in gene expression has not been fully examined. The present study was undertaken to determine the effect of Cu deficiency on protein profiles in rat heart tissue with the combination of the isotope-coded affinity tag (ICAT) method and Western blotting analysis. Male Sprague-Dawley rats were fed diets that were either Cu-adequate (6.0 microg Cu/g diet n=6) or Cu-deficient (0.3 microg Cu/g diet n=6) for 5 week. The ICAT analysis suggested that high-salt buffer (HSB) protein profiles from heart tissue of Cu-deficient rats were different from those of Cu-adequate rats; seven major protein species differed by more than a 100% increase or a 50% decrease. With three available antibodies, our Western blotting analysis confirmed that there was an 85% increase in fibulin-5 (also known DANCE/EVEC) and a 71% decrease in cytochrome C oxidase (CCO) VIb subunit, but no change in succinate dehydrogenase complex (also known complex II) IP subunit in Cu-deficient rat heart. Collectively, these data may be useful in deciphering the molecular basis for the impairments of function related to the hypertrophic-cardiomyopathy of Cu-deficient rats.  相似文献   

18.
The teratogenicity of copper (Cu) deficiency may result from increased oxidative stress and oxidative damage. Dams were fed either control (8.0 microg Cu/g) or Cu-deficient (0.5 microg Cu/g) diets. Embryos were collected on Gestational Day 12 for in vivo studies or on Gestational Day 10 and cultured for 48 h in Cu-deficient or Cu-adequate media for in vitro studies. Superoxide dismutase (SOD), glutathione peroxidase (GPX), and glutathione reductase (GR) activities were measured in control and Cu-deficient embryos as markers of the oxidant defense system. Superoxide anions were measured as an index of exposure to reactive oxygen species (ROS). No differences were found in GPX or GR activities among treatment groups. However, SOD activity was lower and superoxide anion concentrations higher in Cu-deficient embryos cultured in Cu-deficient serum compared to control embryos cultured in control serum. Even so, Cu-deficient embryos had similar CuZnSOD protein levels as controls. In the in vitro system, Cu-deficient embryos had a higher frequency of malformations and increased staining for superoxide anions in the forebrain, heart, forelimb, and somites compared to controls. When assessed for lipid and DNA oxidative damage, conjugated diene concentrations were similar among the groups, but a tendency was observed for Cu-deficient embryos to have higher 8-hydroxy-2'-deoxyguanosine concentrations than controls. Thus, Cu deficiency resulted in embryos with malformations and reduced SOD enzyme activity. Increased ROS concentrations in the Cu-deficient embryo may cause oxidative damage and contribute to the occurrence of developmental defects.  相似文献   

19.
Effects of dietary vitamin C (l-ascorbyl-2-monophosphate-Mg, C2MP-Mg) on growth, tissue copper (Cu) accumulation, and haemocyte superoxide anion production of juvenile grass shrimp, Penaeus monodon, fed with either adequate or high (8 x adequate) dietary Cu were studied. Three experimental diets were used: basal diet supplemented with adequate levels of both C2MP-Mg (40 mg kg diet(-1)) and Cu (20mg kg diet(-1)) (NC-NCu); basal diet supplemented with adequate C2MP-Mg and high Cu (8 x adequate) (NC-HCu); and basal diet supplemented with high C2MP-Mg (5 x adequate) and high Cu (HC-HCu). These were each fed to triplicate groups of shrimp (mean initial weight: 0.29+/-0.01 g) for 8 weeks. Highest (P< 0.01) weight gain, feed efficiency (FE) and protein efficiency ratio (PER) were observed in shrimp fed NC-NCu diet, intermediate in shrimp fed HC-HCu diet, and lowest in shrimp fed NC-HCu diet. Cu concentrations in hepatopancreas, muscle and haemolymph were highest in shrimp fed NC-HCu diet, followed by shrimp fed HC-HCu diet, and lowest for shrimp fed NC-NCu diet. Survival, total haemocyte count (THC) and intracellular superoxide anion (O-2) production were higher in shrimp fed NC-NCu diet than shrimp fed NC-HCu diet, whereas hepatosomatic index (HSI) was higher in shrimp fed NC-HCu diet than shrimp fed NC-NCu diet. However, all these parameters were similar in shrimp fed NC-NCu diet and shrimp fed HC-HCu diet. These data suggest that increase of dietary vitamin C improved haemocyte respiratory burst response and growth and prevented tissue Cu accumulation in P. monodon fed with high dietary Cu.  相似文献   

20.
Dietary copper (Cu) restriction causes a hypertrophic cardiomyopathy similar to that induced by work overload in rodent models. However, a possible change in the program of hypertrophic gene expression has not been studied in the Cu-deficient heart. This study was undertaken to fill that gap. Dams of mouse pups were fed a Cu-deficient diet (0.35 mg/kg diet) or a Cu-adequate control diet (6.10 mg/kg) on the fourth day after birth, and weanling mice continued on the dams' diet until they were sacrificed. After 5 weeks of feeding, Cu concentrations were dramatically decreased in the heart and the liver of the mice fed the Cu-deficient diet. Corresponding to these changes, serum ceruloplasmin concentrations and hepatic Cu,Zn-superoxide dismutase activities were significantly (P<0.05) depressed. The size of the Cu-deficient hearts was greatly enlarged as estimated from the absolute heart weight and the ratio of heart weight to body weight. The abundances of mRNAs for atrial natriuretic factor, beta-myosin heavy chain, and alpha-skeletal actin in left ventricles were all significantly increased in the Cu- deficient hearts. Furthermore, Cu deficiency activated the expression of the c-myc oncogene in the left ventricle. This study thus demonstrated that a molecular program of alterations in embryonic genes, similar to that shown in the work-overloaded heart, was activated in the hypertrophied heart induced by Cu deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号