首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have shown that two CNBr fragments of horse apocytochrome c, [Homoser-lactone65](1-65) and (66-104), bind to the ferric heme fragment (1-25)H to form a non-productive three-fragment complex, and that when the heme of this complex has been kept reduced for 48 h at 25 degrees, the peptide bond between residues 65 and 66 is restored with a yield of 24% or more. We have also shown that another CNBr fragment [Homoser-lactone65](23-65), but not [Homoser-lactone65](39-65), similarly rejoins to fragment (66-104) in the presence of the ferrous heme fragment with 25% or more yield. For complex of ferro-heme fragment [Hse-lacton65](1-65)H and apofragment (66-104) of horse cytochrome c, which restores the peptide bond between residues 65 and 66 (located on the left side of the heme) (cf. Harbury, H.A. (1978) in Semisynthetic Peptides and Proteins (Offord, R.E. & DiBello, C., eds.), pp. 73-89, Academic Press, New York). Corradin & Harbury have suggested that axial ligation of methionine 80 to the heme (on the left side) is important. Consistent with their idea, fragment [Hse80](66-104) was found not to link to [Hse-lactone65](1-65) in the presence of ferro(1-25)H. Furthermore, the present studies indicate that the interaction involving residues 26 to 38 (on the right side) is also important for such a conformation which assists in the rejoining of the two apofragments. Combining these two ideas, we suggest that restoration of the peptide bond between residues 65 and 66 reflects the structural integrity of these complexes in the reduced form. Thus, the present reaction system can be used not only for chemical synthesis of [Homoser65] apocytochrome c but also to extend amino acid substitution studies of cytochrome c to residues 1 to 64.  相似文献   

2.
The previous studies (Juillerat, M. A., and Taniuchi, H. (1986) J. Biol. Chem. 261, 2697-2711), using a three-fragment complex (1-25)H X (28-38) X (39-104) of horse cytochrome c, have shown that invariant leucine 32 and partially invariant leucine 35, both buried in the interior, exhibit a striking difference in perturbation of binding fragment (28-38) by substitution with isoleucine. Then the idea has been proposed that the energy states of leucine 32, the Met-80-S-heme-Fe bond and other distant residues such as tryptophan 59 would be coupled to generate extra force while leucine 35 would be less important for such coupling if it were involved. In the present studies we synthesized three (28-38) analogs substituting invariant proline 30 with glycine or invariant glycine 34 with alanine or serine. Thermodynamic and kinetic studies and UV CD and biological activity measurements were carried out on binding of the analogs to complex (1-25)H X (39-104). The results with the ferric form show that perturbations of delta G, delta H, and delta S associated with formation of the intermediate complex and with the ensuing process by the Gly34----Ala or Ser substitution result in weakening the Met-80-S-heme-Fe bond formed in the latter process; in contrast, perturbation by the Pro30----Gly substitution is small. However, the biological activity is more perturbed by the Pro30----Gly substitution than by the Gly34----Ala or Ser; and in the Gly34----Ala or Ser substitution the complex appears to be more readily activated for both formation and disruption of the Met-80-S-heme-Fe bond at 20 degrees C and below than without substitution. In all cases reduction of the heme strengthens the binding of fragment (28-38). However, striking are the increases in perturbation (less negative) of both delta H and delta S for binding of fragment (28-38) to form the ground state on reduction of the heme in the Pro30----Gly, Gly34----Ala or Ser (the present studies), and Leu32----norvaline (the previous studies) substitutions. It is known that fluctuation of the atomic positions of most residues of tuna ferrocytochrome c including Pro30, Leu32, and Gly34 increases on oxidation of the heme and that these three residues are among those showing the least fluctuating atomic positions (Takano, T., and Dickerson, R.E. (1982) in Electron Transport and Oxygen Utilization (Ho, C., ed) pp. 17-26, Elsevier/North-Holland Biomedical Press, New York).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The previous studies have shown that (a) noncovalent interactions of the ferro-heme fragment of residues 1-38 and apoprotein (1-104) of horse cytochrome c simultaneously and specifically form two isomeric complexes, types I and II resembling the native protein (the redundant residues flexibly protruding from the ordered structure); (b) the type II form but not type I appears to bind to CO; and (c) residues 39-55 are more flexible for type II form than type I (Parr, G. R., and Taniuchi, H. (1981) J. Biol. Chem. 256, 125-132). In the present study, we investigated 1) kinetics and thermodynamics of interconversion between type I and II forms of complex ferro-(1-38)-H.(1-104); 2) the properties of the CO binding population; 3) the rate of dissociation of complexes ferri- and ferro-(1-38)-H.(39-104) (mimicking type II form); and 4) thermal transition of the 695-nm absorption band and biological activity of complexes. The results indicate (a) interconversion between type I and II forms of complex ferro-(1-38)-H.(1-104) occurs without going through dissociation (t1/2 less than or equal to 12 min at 10 degrees C) and is associated with delta H (= -7.2 +/- 3.7 kcal/mol at 10 degrees C) favoring type I form and delta S (= 23 +/- 13 e.u. at 10 degrees C) favoring type II; (b) the CO-binding population correlates with type II; and (c) change from the ferrous to the ferric state of heme appears to perturb the thermodynamic relationship between type I and II forms. Interpreting the results and available evidence, we suggest that "intramolecular" flip between ferro-type I and ferro-type II forms would establish the Boltzmann distribution of these two distinctly different energy states, type I form having more strengthened interatomic interactions and type II more pronounced internal motion.  相似文献   

4.
BACKGROUND: The cytochrome bc(1) complex is part of the energy conversion machinery of the respiratory and photosynthetic electron transfer chains. This integral membrane protein complex catalyzes electron transfer from ubiquinol to cytochrome c. It couples the electron transfer to the electrogenic translocation of protons across the membrane via a so-called Q cycle mechanism. RESULTS: The cytochrome bc(1) complex from the yeast Saccharomyces cerevisiae was crystallized together with a bound antibody Fv fragment. The structure was determined at 2.3 A resolution using multiple isomorphous replacement, and refined to a crystallographic R factor of 22.2% (R(free) = 25.4%). The complex is present as a homodimer. Each 'monomer' of the refined model includes 2178 amino acid residues of subunits COR1, QCR2, COB, CYT1, RIP1, QCR6, QCR7, QCR8 and QCR9 of the cytochrome bc(1) complex and of the polypeptides V(H) and V(L) of the Fv fragment, the cofactors heme b(H), heme b(L), heme c(1), the [2Fe-2S] cluster and 346 water molecules. The Fv fragment binds to the extrinsic domain of the [2Fe-2S] Rieske protein and is essential for formation of the crystal lattice. CONCLUSIONS: The approach to crystallize membrane proteins as complexes with specific antibody fragments appears to be of general importance. The structure of the yeast cytochrome bc(1) complex reveals in detail the binding sites of the natural substrate coenzyme Q6 and the inhibitor stigmatellin. Buried water molecules close to the binding sites suggest possible pathways for proton uptake and release. A comparison with other cytochrome bc(1) complexes shows features that are specific to yeast.  相似文献   

5.
The isolated complexes of ferricytochrome c with cytochrome c oxidase, cytochrome c reductase (cytochrome bc1 or complex III), and cytochrome c1 (a subunit of cytochrome c reductase) were investigated by the method of differential chemical modification (Bosshard, H.R. (1979) Methods Biochem. Anal. 25, 273-301). By this method the chemical reactivity of each of the 19 lysyl side chains of horse cytochrome c was compared in free and in complexed cytochrome c and binding sites were deduced from altered chemical reactivities of particular lysyl side chains in complexed cytochrome c. The most important findings follow. 1. The binding sites on cytochrome c for cytochrome c oxidase and cytochrome c reductase, defined in terms of the involvement of particular lysyl residues, are indistinguishable. The two oxidation-reduction partners of cytochrome c interact at the front (exposed heme edge) and top left part of the molecule, shielding mainly lysyl residues 8, 13, 72 + 73, 86, and 87. The chemical reactivity of lysyl residues 22, 39, 53, 55, 60, 99, and 100 is unaffected by complex formation while the remaining lysyl residues in positions 5, 7, 25, 27, 79, and 88 are somewhat less reactive in the complexed molecule. 2. When bound to cytochrome c reductase or to the isolated cytochrome c1 subunit of the reductase the same lysyl side chains of cytochrome c are shielded. This indicates that cytochrome c binds to the c1 subunit of the reductase during the electron transfer process.  相似文献   

6.
Enzymatically-catalyzed condensation of cytochrome c fragments, ferrous heme fragment (1-38) and apofragment (39-104), has allowed the back-conversion of cytochrome c complex to native cytochrome c. The conversion was accomplished in 90% (v/v) glycerol, a solvent which has been shown to decrease the ionization of the terminal alpha-carboxyl group liberated during hydrolysis of a peptide bond. The effect on the pK is probably the main reason the thermodynamic obstacle to re-synthesis is minimized. A 30% conversion to cytochrome c was obtained. The cytochrome c product was distinguished from the non-covalent complex and separated fragments by molecular weight analysis with sodium dodecyl sulfate polyacrylamide gel electrophoresis, by elution from Sephadex G-50 and sulfopropyl-Sephadex in the presence of denaturant, by amino acid analysis of the product purified under complex-dissociation conditions, and by spectral analysis of the absorption bands of the heme. This method provides an opportunity to study the covalent rather than the complex form of cytochrome c analogs.  相似文献   

7.
Proteolysis experiments have been used to monitor the conformational transitions from an unfolded to a folded state occurring when the apo form of horse cytochrome c (cyt c) binds the heme moiety or when two fragments of cyt c form a native-like 1:1 complex. Proteinase K was used as a proteolytic probe, in view of the fact that the broad substrate specificity of this protease allows digestion at many sites along a polypeptide chain. The rather unfolded apo form of cyt c binds heme with a concomitant conformational transition to a folded species characterized by an enhanced content of helical secondary structure. While the holoprotein is fully resistant to proteolytic digestion and the apoprotein is digested to small peptides, the noncovalent complex of the apoprotein and heme exhibits an intermediate resistance to proteolysis, in agreement with the fact that the more folded structure of the complex makes the protein substrate more resistant to proteolysis. The noncovalent native-like complex of the two fragments 1-56 and 57-104 of cyt c, covering the entire polypeptide chain of 104 residues of the protein, is rather resistant to proteolysis, while the individual fragments are easily digested. Fragment 57-104 is fast degraded to several peptides, while fragment 1-56 is slowly degraded stepwise from its C-terminal end, leading initially mostly to fragments 1-48 and 1-40 and, at later stages of proteolysis, fragments 1-38, 1-35, 1-33, and 1-31. Thus, proteolysis data indicate that the heme containing fragment 1-56 has a rather compact core and a C-terminal flexible tail. Upon prolonged incubation of the complex of fragments 1-56 and 57-104 (nicked cyt c) with proteinase K, a chain segment is removed from the nicked protein, leading to a gapped protein complex of fragments of 1-48 and 57-104 and, on further digestion, fragments 1-40 and 57-104. Of interest, the chain segment being removed by proteolysis of the complex matches the omega-loop which is evolutionarily removed in cyt c of microbial origin. Overall, rates and/or resistance to proteolysis correlates well with the extent of folding of the protein substrates, as deduced from circular dichroism measurements. Thus, our results underscore the utility of proteolytic probes for analyzing conformational and dynamic features of proteins. Finally, a specific interest of the cyt c fragment system herewith investigated resides in the fact that the fragments are exactly the exon products of the cyt c gene.  相似文献   

8.
Forty-six charge-reversal mutants of yeast cytochrome c peroxidase (CcP) have been constructed in order to determine the effect of localized charge on the catalytic properties of the enzyme. The mutants include the conversion of all 20 glutamate residues and 24 of the 25 aspartate residues in CcP, one at a time, to lysine residues. In addition, two positive-to-negative charge-reversal mutants, R31E and K149D, are included in the study. The mutants have been characterized by absorption spectroscopy and hydrogen peroxide reactivity at pH 6.0 and 7.5 and by steady-state kinetic studies using recombinant yeast iso-1 ferrocytochrome c (C102T) as substrate at pH 7.5. Many of the charge-reversal mutations cause detectable changes in the absorption spectrum of the enzyme reflecting increased amounts of hexacoordinate heme compared to wild-type CcP. The increase in hexacoordinate heme in the mutant enzymes correlates with an increase in H 2O 2-inactive enzyme. The maximum velocity of the mutants decreases with increasing hexacoordination of the heme group. Steady-state velocity studies indicate that 5 of the 46 mutations (R31E, D34K, D37K, E118K, and E290K) cause large increases in the Michaelis constant indicating a reduced affinity for cytochrome c. Four of the mutations occur within the cytochrome c binding site identified in the crystal structure of the 1:1 complex of yeast cytochrome c and CcP [Pelletier, H., and Kraut, J. (1992) Science 258, 1748-1755] while the fifth mutation site lies outside, but near, the crystallographic site. These data support the hypothesis that the CcP has a single, catalytically active cytochrome c binding domain, that observed in the crystal structures of the cytochrome c/CcP complex.  相似文献   

9.
Recombination of two fragments of horse cytochrome c (the heme-containing N-fragment, residues 1-56, and the C-fragment, residues 57-104), which are substantially unstructured at neutral pH, gives rise to a 1:1 fragment complex with a compact conformation, in which the alpha helical structure and the native Met80-Fe(III) axial bond are recovered. With respect to the native protein, the ferric complex shows a less rigid atomic packing and a decreased stability [Delta(DeltaG(o))D = 14.7 kJ.mol(-1)], ascribed to perturbations involving the Trp59 microenvironment and, to a lower extent, the heme pocket region. The redox potential, E1/2 = 234 +/- 5 mV vs. normal hydrogen electrode at 25 degrees C, is close to that of the intact protein, consistent with recovery of the native Met80-heme Fe(III) axial bond. Furthermore, the fragment complex shows reactivity similar to intact cytochrome c, in the reaction with cytochrome c oxidase. We conclude that the absence in the complex of some native cross-links and interlocked packing important for protein rigidity and stability is not as relevant for maintaining the native redox properties of the protein, provided that some structural requirements (i.e. recovering of the native-like alpha helical structure) are fulfilled and coordination of Met80 to the heme-iron is restored.  相似文献   

10.
The peptide resonances of the 1H and 15N nuclear magnetic resonance spectra of ferrocytochrome c2 from Rhodobacter capsulatus are sequentially assigned by a combination of 2D 1H-1H and 1H-15N spectroscopy, the latter performed on 15N-enriched protein. Short-range nuclear Overhauser effect (NOE) data show alpha-helices from residues 3-17, 55-65, 69-88, and 103-115. Within the latter two alpha-helices, there are three single 3(10) turns, 70-72, 76-78, and 107-109. In addition alpha H-NHi+1 and alpha H-NHi+2 NOEs indicate that the N-terminal helix (3-17) is distorted. Compared to horse or tuna cytochrome c and cytochrome c2 of Rhodospirillium rubrum, there is a 6-residue insertion at residues 23-29 in R. capsulatus cytochrome c2. The NOE data show that this insertion forms a loop, probably an omega loop. 1H-15N heteronuclear multiple quantum correlation experiments are used to follow NH exchange over a period of 40 h. As the 2D spectra are acquired in short time periods (30 min), rates for intermediate exchanging protons can be measured. Comparison of the NH exchange data for the N-terminal helix of cytochrome c2 of R. capsulatus with the highly homologous horse heart cytochrome c [Wand, A. J., Roder, H., & Englander, S. W. (1986) Biochemistry 25, 1107-1114] shows that this helix is less stable in cytochrome c2.  相似文献   

11.
Xiao K  Liu X  Yu CA  Yu L 《Biochemistry》2004,43(6):1488-1495
Sequence alignment of the Rieske iron-sulfur protein (ISP) of cytochrome bc(1) complex from various sources reveals that bacterial ISPs contain an extra fragment. To study the role of this fragment in bacterial cytochrome bc(1) complex, Rhodobacter sphaeroides mutants expressing His-tagged cytochrome bc(1) complexes with deletion or single- or multiple-alanine substitution at various positions of this fragment (residues 96-107) were generated and characterized. The ISPDelta(96-107), ISP(96-107)A, and ISP(104-107)A mutant cells, in which residues 96-107 of ISP are deleted, and residues 96-107 and 104-107 are substituted with alanine, respectively, do not grow photosynthetically and show no bc(1) complex activity in intracytoplasmic membranes prepared from these mutant cells. The ISP(96-99)A, in which residues 96-99 are substituted with alanine, grows photosynthetically at a rate comparable to that of the complement cells, whereas ISP(100-103)A, in which residues 100-103 are substituted with alanine, has a longer lag period prior to photosynthetic growth. Chromatophores prepared from these two mutant cells have 48% and 9% of the bc(1) activity found in the complement chromatophores. The loss (or decrease) of bc(1) activity in these mutant membranes results from a lack (or decrease) of ISP in the membrane due to ISP protein instability and not from mutations affecting the assembly of cytochromes b and c(1) into the membrane, the binding affinity of cytochrome b to cytochrome c(1), or the ability of these two cytochromes to interact with ISP or subunit IV. The order of essentiality of residues in this fragment is residues 104-107 > residues 100-103 > residues 96-99.  相似文献   

12.
A study on the role of evolutionarily invariant leucine 32 of cytochrome c   总被引:1,自引:0,他引:1  
To investigate the role of evolutionarily invariant leucine 32 of horse cytochrome c, analogs of residues 28-38, (28-38), each containing a substituted amino acid at positions 32 or 35 were synthesized using Merrifield's method. Position 35 is leucine in horse cytochrome c but replaced by nonpolar amino acids in some species. The ability of the analogs to bind to the two-fragment complex of ferri- or ferro heme fragment (1-25)H and apofragment (39-104) was measured using gel filtration and equilibrium dialysis. Replacement of leucine 32 with isoleucine, for example, increased the dissociation constant by more than 400-fold for the ferrous complex. In contrast, replacement of leucine 35 with isoleucine seems to increase it only by a small degree. Since both leucine 32 and leucine 35 are completely buried within the structure, hydrophobic interaction would not explain this striking difference. However, thermodynamic analyses and absorption spectra of the ferric complex have indicated that replacement with norvaline of leucine 32 increases both delta H and delta S (more positive) associated with formation of an intermediate three-fragment complex and decreases both delta H and delta S (more negative) associated with transformation from the intermediate to the ground state, resulting in weakening the methionine 80--S--heme-Fe bond formed in the latter step. Taking the results together with the fragment exchange studies on the ferrous complex and available evidence, we suggest that the interaction involving leucine 32 would be coupled not only with the methionine 80--S--heme-Fe bond but also with the energy state of other distant residues such as tryptophan 59, generating extra energy for modulating the binding of the complex, i.e. the force of folding. In contrast, leucine 35 would be less important even if it were involved in such coupling.  相似文献   

13.
A biologically active semisynthetic hybrid of horse heart cytochrome c has been prepared by combining the heme peptide 1 through 65 (HP 1-65), prepared by CNBr cleavage of natural cytochrome c, with a semisynthetic peptide corresponding to positions 66 through 104. A fully protected synthetic peptide 66--79 was prepared by a modified solid phase peptide synthesis procedure and was converted to its N-hydroxysuccinimide ester. A peptide corresponding to residues 81--104 of cytochrome c was also isolated from the CNBr cleavage mixture and its epsilon-amino groups and tyrosyl hydroxyl group were protected selectively with the t-butyloxycarbonyl group. This partially protected peptide was reacted with t-butyloxycarbonyl methionine N-hydroxysuccinimide ester to give a derivative having methionine at position 80. This product was deprotected, purified and then t-butyloxycarbonyl groups were again introduced specifically on the epsilon-amino groups to give the peptide, Boc(Lys,Tyr)80--104. A semisynthetic peptide corresponding to residues 66 through 104 of cytochrome c was prepared by condensing the synthetic peptide 66--79 N-hydroxysuccinimide ester with t-butyloxycarbonyl (Lys,Tyr)80--104. The semisynthetic product was deprotected, purified and combined under anaerobic conditions with a heme peptide, HP 1-65, that was isolated from the products of CNBr cleavage of native cytochrome c. The reconstituted semisynthetic cytochrome c was purified by ion exchange chromatography and was shown to have the same oxygen uptake as native cytochrome c when assayed in the succinate oxidase system.  相似文献   

14.
The structural and redox properties of a heme-containing fragment (1-56 residues) of cytochrome c have been investigated by spectroscopic (circular dichroism, electronic absorption, and EPR) and voltammetric techniques. The results indicate that the N-fragment lacks ordered secondary structure and has two histidines axially bound to the heme-iron (the native His18 and a misligated His26 or His33). Despite the absence of ordered secondary structure, the peptide chain shields the heme group from solvent, as shown by (i) the pK(a) of protonation of the nonnative histidine ligand (5.18 +/- 0.05), lower than that of the bis-histidine guanidine-unfolded cytochrome c (5.58 +/- 0.05), and (ii) the redox potential, E(o) = 0 +/- 5 mV versus NHE, close to that of bis-histidine cytochrome c mutants but less negative than that of bis-histidine complexes of microperoxidase with short peptides. The electroactive N-fragment may be taken as a "minichrome c" model, with interesting potential for application to biosensor technology; further, the system provides useful information for a deeper understanding of cytochrome c folding and structural/functional organization.  相似文献   

15.
The interaction domain for cytochrome c on the cytochrome bc(1) complex was studied using a series of Rhodobacter sphaeroides cytochrome bc(1) mutants in which acidic residues on the surface of cytochrome c(1) were substituted with neutral or basic residues. Intracomplex electron transfer was studied using a cytochrome c derivative labeled with ruthenium trisbipyridine at lysine 72 (Ru-72-Cc). Flash photolysis of a 1:1 complex between Ru-72-Cc and cytochrome bc(1) at low ionic strength resulted in electron transfer from photoreduced heme c to cytochrome c(1) with a rate constant of k(et) = 6 x 10(4) s(-1). Compared with the wild-type enzyme, the mutants substituted at Glu-74, Glu-101, Asp-102, Glu-104, Asp-109, Glu-162, Glu-163, and Glu-168 have significantly lower k(et) values as well as significantly higher equilibrium dissociation constants and steady-state K(m) values. Mutations at acidic residues 56, 79, 82, 83, 97, 98, 213, 214, 217, 220, and 223 have no significant effect on either rapid kinetics or steady-state kinetics. These studies indicate that acidic residues on opposite sides of the heme crevice of cytochrome c(1) are involved in binding positively charged cytochrome c. These acidic residues on the intramembrane surface of cytochrome c(1) direct the diffusion and binding of cytochrome c from the intramembrane space.  相似文献   

16.
B10.A mice were immunized with either the carboxyl terminal peptide fragment 81-104 of pigeon cytochrome c or its acetimidyl derivative and an immune response was seen with strong preference for the immunogen. Strain distribution studies and blocking with an anti-Ia monoclonal antibody indicated that the same immune response (Ir) gene and restriction element were utilized in both responses. The specificity of the responses were evaluated by restimulating in vitro with a set of cytochrome c fragments from various species. Even though the derivatized and native fragments were poorly cross-reactive, the same phylogenetic pattern was seen when pigeon cytochrome c fragment 81-104 primed cells were tested with the set of underivatized fragments and when acetimidyl pigeon cytochrome c fragment 81-104 primed cells were tested with the same set of derivatized fragments. Primed cells from a 2nd major histocompatibility complex congenic strain of mice, B10.A(5R), displayed equivalent discrimination between derivatized and native forms but showed a markedly different phylogenetic pattern of cross-reactivity. These data indicate that the immune system recognizes 2 sites on the nominal antigen. One site, which accounts for the common hierarchy and is under Ir gene control, contains residues Gln-100, and possibly other carboxyl terminal residues. The 2nd site, which effects the distinction between native and derivatized fragments, contains at least 1 lysine other than at the carboxyl terminal. The implications of these data for theories of T cell recognition and Ir gene function are discussed.  相似文献   

17.
The kinetics of formation of noncovalently bound ferrous complexes derived from fragments of horse heart cytochrome c have been investigated. When the reactions are initiated by combining ferrous heme fragments with an appropriate apofragment, in the presence of 50 mM imidazole, second order rate processes are observed with rate constants essentially the same as those reported with ferric heme fragments (Parr, G. R., and Taniuchi, H. (1979) J. Biol. Chem. 254, 4836-4842). An additional, probably consecutive, kinetic process is also demonstrated. If imidazole is not present in the reaction buffer, the kinetic profiles are dramatically altered. While this is partially due to aggregation (dimerization) of the ferrous heme fragments, it can nevertheless be demonstrated that the complementation reactions with apofragments are much faster than those observed with the corresponding ferric heme fragments (in the absence of imidazole). These results reflect the effect of the oxidation state of the heme iron on the folding mechanism and, thus, the manifold nature of protein folding pathways. The rate of reduction of productive ferric complexes by sodium ascorbate was investigated and biphasic reactions were found in all cases. The data indicate an equilibrium between two forms of the ferric complexes. The results of an experiment in which the complementation of ferric (1-25)H and (23-104) was carried out in the presence of sodium ascorbate indicate that the intermediate complex (Parr, G. R., and Taniuchi, H. (1980) J. Biol. Chem. 255, 8914-8918) is not reducible by ascorbate. Thus, the increase in oxidation-reduction potential occurring on formation of the productive complex from the unbound heme fragment occurs at a late stage of the overall reaction, possibly coinciding with ligation of methionine 80 to the heme iron.  相似文献   

18.
M M Frauenhoff  R A Scott 《Proteins》1992,14(2):202-212
Tyr-67 of mitochondrial cytochrome c is thought to be involved in important hydrogen bonding interactions in the hydrophobic heme pocket of the protein (Takano, T., Dickerson, R. E. (1981) J. Mol. Biol. 153:95-115). The role of this highly conserved residue in heme pocket stability was studied by comparing properties of semisynthetic (Phe-67) and (p-F-Phe-67) analogs with those of native cytochrome c and a "control" analog, (Hse-65)cytochrome c. The (Phe-67) and (p-F-Phe-67) analogs have well-developed 695-nm visible absorption bands and are active in a cytochrome c oxidase assay. The reduction potentials of both analogs are lower than the native protein by approximately 50 mV. Although both analogs bind imidazole with higher affinity than the native protein, only the (p-F-Phe-67) analog has a 3- to 5-fold lower binding constant for cyanide. Only the (Phe-67) analog was significantly more stable toward alkaline isomerization. These results are not consistent with stabilization of the native protein heme pocket via hydrogen bonding of Tyr-67 to Met-80. An alternative steric role for Tyr-67 is proposed in which the residue controls the heme reduction potential by limiting the number of internal H2O molecules in the heme pocket.  相似文献   

19.
Cytochrome c peroxidase forms an electron transfer complex with cytochrome c. The complex is governed by ionic bonds between side chain amino groups of cytochrome c and carboxyl groups of peroxidase. To localize the binding site for cytochrome c on the peroxidase, we have used the method of differential chemical modification. By this method the chemical reactivity of carboxyl groups (toward carbodiimide/aminoethane sulfonate) was compared in free and in complexed peroxidase. When ferricytochrome c was bound to cytochrome c peroxidase, acidic residues 33, 34, 35, 37, 221, 224, and 1 to 3 carboxyls at the C terminus became less reactive by a factor of approximately 4, relative to the remaining 39 carboxylates of peroxidase. Of the less reactive residues those in the 30-40 region and the 221/224 pair are on opposite sides of the surface area which contains the heme propionates. We, therefore, propose that the binding site for cytochrome c on cytochrome c peroxidase spans the area where one heme edge comes close to the molecular surface. The results are in very good agreement with chemical cross-linking studies (Waldmeyer, B., and Bosshard, H.R. (1985) J. Biol. Chem. 260, 5184-5190); they also support a hypothetical model predicted on the basis of the known crystal structures of cytochrome c and peroxidase (Poulos, T.L., and Kraut, J. (1980) J. Biol. Chem. 255, 10322-10330).  相似文献   

20.
The interactions of cytochrome c1 and cytochrome c from bovine cardiac mitochondria were investigated. Cytochrome c1 and cytochrome c formed a 1:1 molecular complex in aqueous solutions of low ionic strength. The complex was stable to Sephadex G-75 chromatography. The formation and stability of the complex were independent of the oxidation state of the cytochrome components as far as those reactions studied were concerned. The complex was dissociated in solutions of ionic strength higher than 0.07 or pH exceeding 10 and only partially dissociated in 8 M urea. No complexation occurred when cytochrome c was acetylated on 64% of its lysine residues or photooxidized on its 2 methionine residues. Complexes with molecular ratios of less than 1:1 (i.e. more cytochrome c) were obtained when polymerized cytochrome c, or cytochrome c with all lysine residues guanidinated, or a "1-65 heme peptide" from cyanogen bromide cleavage of cytochrome c was used. These results were interpreted to imply that the complex was predominantly maintained by ionic interactions probably involving some of the lysine residues of cytochrome c but with major stabilization dependent on the native conformations of both cytochromes. The reduced complex was autooxidizable with biphasic kinetics with first order rate constants of 6 X 10(-5) and 5 X U0(-5) s-1 but did not react with carbon monoxide. The complex reacted with cyanide and was reduced by ascorbate at about 32% and 40% respectively, of the rates of reaction with cytochrome c alone. The complex was less photoreducible than cytochrome c1 alone. The complex exhibited remarkably different circular dichroic behavior from that of the summation of cytochrome c1 plus cytochrome c. We concluded that when cytochromes c1 and c interacted they underwent dramatic conformational changes resulting in weakening of their heme crevices. All results available would indicate that in the complex cytochrome c1 was bound at the entrance to the heme crevice of cytochrome c on the methionine-80 side of the heme crevice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号