首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Heated human erythrocytes gradually lose their form-maintaining structure as the temperature is increased to 50°C and can behave in some respects as a viscous fluid. We have developed a technique for heating and stressing these cells that is novel, simple and quantitatively precise. We have applied this technique to heated human erythrocytes and have measured instability development in the cells. We have employed instability growth theory to calculate a value for an effective surface tension which, in contrast to other methods of membrane surface tension measurement sought to minimize the effects of membrane supporting structural elements. The value obtained for the surface tension of the heated erythrocyte membrane was 0.9 · 10?6 N/m with a range of variation from 0.4 · 10?6 N/m to 1.4 · 10?6 N/m. The methods described may be useful for determining fundamental physical parameters such as internal viscosity and interfacial tension in other systems.  相似文献   

2.
Morphological changes and fragmentation of human erythrocytes heated at various rates through the spectrin inactivation temperature have been examined by cinephotomicroscopy. Most cells heated in 0.20 ionic strength buffered saline developed a wavy disturbance along the cell rim when heated. Vesicles developed from the crests of the growing waves within 0.3 s of the initiation of a wave when the heating rate was 1°C/s. At an ionic strength of 0.02, only 48% of the cells developed a wave outline. The average number of waves per cell was half that at 0.2 ionic strength. When the cell surface charge was reduced by neuraminidase treatment, only 12% of the cells fragmented. Bovine serum albumin or homologous plasma also reduced fragmentation. The dependence of the wave growth on ionic strength and surface charge was broadly consistent with theoretical predictions for the growth of a displacement instability on a low interfacial tension interface. Attention has been paid to the importance of bending energy in the development of the wave. Where wave development was suppressed, the morphological changes due to heating appeared to involve membrane internalization in the region of the cell dimple.  相似文献   

3.
Quantitative aspects of the binding of free fatty acid to human erythrocytes were studied by measuring the distribution of various amounts of [1-(14)C]lauric acid between washed human erythrocytes and defatted human plasma albumin. Incubations were done at 37 degrees C in an isotonic phosphate-buffered salt solution. Laurate uptake approached a steady state value within 1 hr of incubation over the range of laurate-albumin molar ratios that were tested. Uptake was due primarily to a transfer of laurate from albumin to the cell, not to incorporation of the intact laurate-albumin complex. The fatty acid binding sites of the erythrocyte are located predominantly on or within the cell membrane. The binding model which best fitted the laurate uptake data consisted of two classes of erythrocyte binding sites. This model contains a small number of sites, 2.0 x 10(-13) moles/10(6) cells, that have an average apparent association constant of 1.8 x 10(6) m(-1) for laurate. Thus, the average strength of these sites is of the same order of magnitude as the stronger laurate binding sites of albumin. The binding model also contains a relatively large number of weaker fatty acid binding sites, 1.3 x 10(-11) moles/10(6) cells, that have an average apparent association constant of 1.3 x 10(4) m(-1) for laurate. These sites are too weak to bind appreciable amounts of laurate unless the fatty acid-albumin molar ratio is elevated.  相似文献   

4.
We present a novel approach, based on atomic force microscopy, for exploring the local elastic properties of the membrane-skeleton complex in living cells. Three major elements constitute the basis for the proposed method: (1) pulling the cell membrane by increasing the adhesion of the tip to the cell surface provided via appropriate tip modification; (2) measuring force-distance curves with emphasis on selecting the appropriate withdrawal regions for analysis; (3) fitting of the theoretical model for axisymmetric bending of an annular thick plate to the experimental curve in the withdrawal region, prior to the detachment point of the tip from the cell membrane. This approach, applied to human erythrocytes, suggests a complimentary technique to the commonly used methods. The local use of this methodology for determining the bending modulus of the cell membrane of the human erythrocyte yields a value of (2.07+/-0.32) x 10(-19) J.  相似文献   

5.
The force of attraction between erythrocyte ghosts induced by low frequency electric fields (60 Hz) was measured as a function of the intermembrane separation. It varied from 10(-14) N for separation of the order of the cell diameter to 10(-12) N for close approach and contact in 20 mM sodium phosphate buffers (conductivity 260 mS/m, pH 8.5). For large separations the interaction force followed a dependence on separation as predicted for dipole-dipole interactions. For small separation an empirical formula was obtained. The membranes deformed at close approach (less than 1 microns) before making contact. The contact area increased with time until reaching the final equilibrium state. The ghosts separated reversibly after switching off the electric field. The membrane tension induced by the ghost interaction at contact was estimated to be of the order of 0.1 mN/m. These first quantitative measurements of the force/separation dependence for intermembrane interactions induced by low frequency electric fields indicate that attractive forces, membrane deformation and contact area of cells depend strongly on intermembrane separation and field strength. The quantitative relationship between them are important for measuring membrane surface and mechanical properties, intermembrane forces and understanding mechanisms of membrane adhesion, instability and fusion in electric fields and in general.  相似文献   

6.
The freezing front technique for solid surface tension measurements was used to obtain the surface tensions of glutaraldehyde-fixed human erythrocytes, and fresh human lymphocytes and grnulocytes in aqueous media. The results agree well with the values obtained by other methods and indicate that the freezing front technique is sufficiently sensitive to detect small differences (of the order of 0.1 ergs/cm2) in surface tension. This property, along with a number of applications for which it is uniquely suited makes the freezing front technique an important new approach to the measurement of the surface tensions of biological cells and of small particles in general.  相似文献   

7.
There is evidence that anaemia is associated with aluminium (Al). We have already reported on the sensitivity to Al, showed by erythroid cell populations of animals chronically exposed to the metal. In order to investigate whether Al could also affect human cells, experiments were carried out both on immature and mature human erythroid cells. Erythroid progenitors (CFU-E, colony-forming units-erythroid) concentrated from human peripheral blood were cultured in an Al-rich medium under erythropoietin stimulation and their development analysed. Human peripheral erythrocytes were aged in the presence of Al. Cells were examined using scanning electron microscopy, and membrane proteins analysed by polyacrylamide gel electrophoresis with sodium dodecyl sulphate and immunoblotting. The development of the Al-treated progenitors was 8750/6600-9200 CFU-E/10(6) cells, a significantly lower median value (P<0.05) than that showed by non-treated cells (12300/11200-20700 CFU-E/10(6) cells). Erythrocyte morphological changes were induced by Al during the in vitro ageing. The cells lost their typical biconcave shape, turning into acanthocytes and stomatocytes. Simultaneously, an increased membrane protein breakdown compatible with band 3 degradation was detected. Besides, Al was found within the cells and attached to the membrane. The present in vitro results suggest that Al may disturb human erythropoiesis through combined effects on mature erythrocytes and cellular metabolism in late erythroid progenitors.  相似文献   

8.
Optical tweezers are used to apply calibrated forces to human erythrocytes, via small silica beads bound to their membrane. The shear modulus mu of the membrane is inferred from measurements of the cell deformation in the small strain linear regime. We find the same result mu = 2.5 +/- 0.4 microN/m for both discotic and nearly spherical swollen cells. This value is smaller than the one deduced from micropipettes experiments. However the two methods do not operate in the same deformation regime and are not expected to lead to the same result.  相似文献   

9.
The solidification front technique is employed to determine the surface tension of fixed erythrocytes of dog, horse, human, chicken, and turkey. The results range from 65.5 erg/cm2 for dog erythrocytes to 67.6 erg/cm2 for turkey erythrocytes. A detailed error analysis shows that the differences obtained are statistically significant. Since cellular interactions are governed to a considerable extent by surface tension effects, it is concluded that caution needs to be exercised when results obtained for one species are used to predict the behavior of cells of another species.  相似文献   

10.
The dynamics of morphological change, when human erythrocytes are heated through the spectrin denaturation temperature in the presence of bovine serum albumin, has been studied using differential interference contrast optics and a television video analysis system. Most washed (control) cells developed a wavy disturbance, with an average of 6.6 ± 0.4 (2 S.E.) waves per cell rim, when heated. The average number of waves per cell rim decreased and the percentage of heated cells showing morphological changes in the dimple region increased with increasing serum albumin concentration, reaching 100% at 1.0 g/l. The change in the dimple region of cells heated in the presence of serum albumin involved the growth of a regular wavy disturbance around the cell dimple rim. The development of the wavy disturbance on the dimple, which resulted in the internalization of membrane, has been examined as an example of an interfacial instability on a biological membrane. Scanning and transmission electron micrographs confirm membrane internalization.  相似文献   

11.
There is evidence that anaemia is associated with aluminium (Al). We have already reported on the sensitivity to Al, showed by erythroid cell populations of animals chronically exposed to the metal. In order to investigate whether Al could also affect human cells, experiments were carried out both on immature and mature human erythroid cells. Erythroid progenitors (CFU-E, colony-forming units-erythroid) concentrated from human peripheral blood were cultured in an Al-rich medium under erythropoietin stimulation and their development analysed. Human peripheral erythrocytes were aged in the presence of Al. Cells were examined using scanning electron microscopy, and membrane proteins analysed by polyacrylamide gel electrophoresis with sodium dodecyl sulphate and immunoblotting. The development of the Al-treated progenitors was 8750/6600-9200 CFU-E/106 cells, a significantly lower median value (P<0.05) than that showed by non-treated cells (12?300/11?200-20?700 CFU-E/106 cells). Erythrocyte morphological changes were induced by Al during the in vitro ageing. The cells lost their typical biconcave shape, turning into acanthocytes and stomatocytes. Simultaneously, an increased membrane protein breakdown compatible with band 3 degradation was detected. Besides, Al was found within the cells and attached to the membrane. The present in vitro results suggest that Al may disturb human erythropoiesis through combined effects on mature erythrocytes and cellular metabolism in late erythroid progenitors.  相似文献   

12.
Whole blood surface tension of 15 healthy subjects recorded by the ring method was investigated in the temperature range from 20 to 40 degrees C. The surface tension omega as a function of temperature t ( degrees C) is described by an equation of linear regression as omega(t) = (-0.473 t + 70.105) x 10(-3) N/m. Blood serum surface tension in the range from 20 to 40 degrees C is described by linear regression equation omega(t) = (-0.368 t + 66.072) x 10(-3) N/m and linear regression function of blood sediment surface tension is omega(t) = (-0.423 t + 67.223) x10(-3) N/m.  相似文献   

13.
Mammalian auditory outer hair cells generate high-frequency mechanical forces that enhance sound-induced displacements of the basilar membrane within the inner ear. It has been proposed that the resulting cell deformation is directed along the longitudinal axis of the cell by the cortical cytoskeleton. We have tested this proposal by making direct mechanical measurements on outer hair cells. The resultant stiffness modulus along the axis of whole dissociated cells was 3 x 10(-3) N/m, consistent with previously published values. The resultant axial and circumferential stiffness moduli for the cortical lattice were 5 x 10(-4) N/m and 3 x 10(-3) N/m, respectively. Thus the cortical lattice is a highly orthotropic structure. Its axial stiffness is small compared with that of the intact cell, but its circumferential stiffness is within the same order of magnitude. These measurements support the theory that the cortical cytoskeleton directs electrically driven length changes along the longitudinal axis of the cell. The Young's modulus of the circumferential filamentous components of the lattice were calculated to be 1 x 10(7) N/m2. The axial cross-links, believed to be a form of spectrin, were calculated to have a Young's modulus of 3 x 10(6) N/m2. Based on the measured values for the lattice and intact cell cortex, an estimate for the resultant stiffness modulus of the plasma membrane was estimated to be on the order of 10(-3) N/m. Thus, the plasma membrane appears to be relatively stiff and may be the dominant contributor to the axial stiffness of the intact cell.  相似文献   

14.
The contractile vacuole complex is a membrane-bound osmoregulatory organelle of fresh water protozoa such as Paramecium. In Paramecium it consists of a central vacuole (the contractile vacuole) and 5-10 arms that radially extend from the vacuole into the cytosol (the radial arms). Excess cytosolic water, acquired osmotically, is segregated by the radial arms and enters the vacuole, so that the vacuole swells (the fluid-filling phase). The vacuole then rounds (the rounding phase) and the radial arms sever from the vacuole. The vacuole membrane then fuses with the plasma membrane at the pore region and the pore opens. The vacuole shrinks as its fluid is discharged through the pore (the fluid-discharging phase). The pore closes when the fluid has been discharged. The radial arms then reattach to the vacuole, so that the vacuole swells again as the fluid enters from the arms (the next fluid-filling phase). We found that the vacuole continued to show rounding and slackening even after it together with a small amount of cytosol had been isolated from the cell. Using a microcantilever placed on the surface of the vacuole the tension of the in vitro vacuole increased to 5 x 10(-3)N m(-1) as the vacuole rounds, and its lowest value was 1 x 10(-4)N m(-1) during slackening. We propose a hypothesis that an increase in the spontaneous curvature of the organelle's membrane leads to an increase in membrane tension and thus to the vacuole's rounding, severing of the radial arms from the vacuole, and opening of the pore. Conversely, a decrease in the spontaneous curvature accompanied by a decrease in membrane tension could lead to the closing of the pore and reattachment of the radial arm at the start of the fluid-filling phase.  相似文献   

15.
The major feature of sickle cell anemia is the tendency of erythrocytes to sickle when exposed to decreased oxygen tension and to unsickle when reoxygenated. Irreversible sickle cells (ISCs) are sickle erythrocytes which retain bipolar elongated shapes despite reoxygenation. ISCs are believed to owe their biophysical abnormalities to acquired membrane alterations which decrease membrane deformability. While increased membrane surface viscosity has been measured in ISCs, the lateral dynamics of membrane lipids in these cells have not heretofore been examined. We have measured the lateral diffusion of the lipid analog 3,3'-dioctadecylindocyanine iodide (DiI) in the plasma membrane of intact normal erythrocytes, reversible sickle cells (RSCs), and irreversible sickle cells by fluorescence photobleaching recovery (FPR). The diffusion coefficients +/- standard errors of the mean of DiI in intact normal red blood cells (RBCs), RSCs, and ISCs at 37 degrees C are (8.06 +/- 0.29) X 10(-9) cm2 X s-1, (7.74 +/- 0.22) X 10(-9) cm2 X s-1, and (7.29 +/- 0.24) X 10(-9) cm2 X s-1, respectively. A similar decrease in the diffusion coefficient of DiI in the plasma membranes of the three cell types was observed at 4, 10, 17, 23, and 30 degrees C. ANOVA analysis of the changes in DiI diffusion showed significant differences between the RBC and ISC membranes at all temperatures examined. The characteristic breaks in Arrhenius plots of the diffusion coefficients for the RBCs, RSCs, and ISCs occurred at 20, 19, and 18.6 degrees C, respectively. Photobleaching recovery data were used to estimate (Boullier, J.A., Melnykovich, G. and Barisas, B.G. (1982) Biochim. Biophys. Acta 692, 278-286) the microviscosities of the plasma membranes of the three cell types at 25 degrees C. We find significant differences between our microviscosity values and those obtained in previous fluorescence depolarization studies. However, both methods indicate qualitatively similar differences in membrane microviscosity among the various cell types.  相似文献   

16.
This study aims at precise measurement of the membrane capacity and its frequency dependence of small biological cells using the micropipet technique. The use of AC fields as an input signal enables the magnitude and phase angle of membrane impedance to be measured at various frequencies. The micropipet technique was applied to human erythrocyte, and passive membrane capacity and conductivity were determined between 4 Hz and 10 KHz. Membrane capacity thus determined changed from 1.05 to 0.73 microF/cm2 between 4 Hz and 10 KHz. In addition to the micropipet technique, we used suspension method between 50 KHz and 10 MHz for the purpose of supplementing the new method with the one which has been in use for many years. We obtained a membrane capacity of 0.65-0.8 microF/cm2 using this technique. These values agree with the capacitance obtained with the micropipet method. Although this paper discusses only human erythrocytes, the study has been performed with lymphocytes and various forms of cancer cells. This paper is the first of the series of reports on frequency domain studies of the impedance characteristics of various biological cells.  相似文献   

17.
We have earlier shown through electron spin resonance (ESR) studies of leukocytes that membranes of cells from both Chediak-Higashi syndrome (CHS) mice and humans have abnormally high fluidity. We have extended our studied to erythrocytes. Erythrocytes were labeled with the nitroxide-substituted analogue of stearic acid, 2-(3-carboxypropyl)-4,4- dimethyl-2-tridecyl-3-oxazolidinyloxyl, and ESR spectra were obtained. Order parameter, S, at 23 degrees C, was 0.661 and 0.653 for erythrocytes of normal and CHS mice (P less than 0.001). S was 0.684 for normal human erythrocytes and 0.675 (P less than 0.001) for CHS erythrocytes at 25 degrees C. Because S varies inversely to fluidity, these results indicate that CHS erythrocytes tend to have higher fluidity than normal. In vitro treatment of both mice and human CHS erythrocytes with 10 mM ascorbate returned their membrane fluidity to normal. We prepared erythrocyte ghosts and extracted them with CHCl3:CH3OH (2:1). Gas-liquid chromatography analysis showed a greater number of unsaturated fatty acids for CHS. The average number of double bonds detected in fatty acids for mice on a standard diet was 1.77 for normal and 2.02 for CHS (P less than 0.04); comparison of human erythrocytes from one normal control and one CHS patient showed a similar trend. Our results suggest that an increased proportion of unsaturated fatty acids may contribute to increased fluidity of CHS erythrocytes. Our observation that both leukocytes and erythrocytes of CHS have abnormal fluidity indicates that CHS pathophysiology may relate to a general membrane disorder.  相似文献   

18.
The elastic properties of the cell membrane play a crucial role in determining the equilibrium shape of the cell, as well as its response to the external forces it experiences in its physiological environment. Red blood cells are a favored system for studying membrane properties because of their simple structure: a lipid bilayer coupled to a membrane cytoskeleton and no cytoplasmic cytoskeleton. An optical trap is used to stretch a red blood cell, fixed to a glass surface, along its symmetry axis by pulling on a micron-sized latex bead that is bound at the center of the exposed cell dimple. The system, at equilibrium, shows Hookean behavior with a spring constant of 1.5×10(-6)?N/m over a 1-2 μm range of extension. This choice of simple experimental geometry preserves the axial symmetry of the native cell throughout the stretch, probes membrane deformations in the small-extension regime, and facilitates theoretical analysis. The axisymmetry makes the experiment amenable to simulation using a simple model that makes no a priori assumption on the relative importance of shear and bending in membrane deformations. We use an iterative relaxation algorithm to solve for the geometrical configuration of the membrane at mechanical equilibrium for a range of applied forces. We obtain estimates for the out-of-plane membrane bending modulus B≈1×10(-19)?Nm and an upper limit to the in-plane shear modulus H<2×10(-6)?N/m. The partial agreement of these results with other published values may serve to highlight the dependence of the cell's resistance to deformation on the scale and geometry of the deformation.  相似文献   

19.
Though the cytomechanics of spectrin have been explored only for erythrocytes, it is thought that the spectrin skeleton acts universally to support the otherwise mechanically vulnerable cell surface bilayer. Evidence for this role is beginning to accumulate and is reviewed here. Compared to that for erythrocytes, cells whose simplicity facilitates biophysical approaches, the evidence is indirect. One way that membrane skeleton/bilayer interactions have been probed is via the behavior of mechanosusceptible ion channels - channel whose gating is perturbed by abnormally high bilayer tension. These initially unresponsive channels become progressively more mechanoresponsive as stretch and chemical reagents damage the membrane skeleton. The straightforward implication is that the intact membrane skeleton is mechanoprotective. In non-erythroid cells there is continual trafficking of bilayer to and from the plasma membrane. Some of the traffic involves spectrin-lined vacuolar membrane. Several lines of evidence suggest that when neurons elongate and remodel their neurites, membrane skeleton-based mechanoprotection allows the dynamic vacuoles and the plasma membrane to participate in mechanosensitive surface area expansion and retrieval.  相似文献   

20.
Bovine and equine erythrocytes have been studied by three different surface modification techniques to investigate the accessibility of the surface components to the external medium. Lactoperoxidase labeling of equine erythrocytes results in a significant labeling of only one membrane component, a 100 000-mol.wt polypeptide corresponding to the membrane-spanning Component III of human erythrocytes. The major sialoglycoprotein of the equine erythrocyte is not labeled. This is in contradistinction to the situation for human and bovine cells, where both components are labeled. The equine membrane sialoglycoprotein is also not markedly affected by pronase, chymotrypsin or trypsin treatment of whole cells under the treatment conditions used, although it can be cleaved by pronase in isolated membranes. Experiments with the isolated glycoprotein show that its cleavage by trypsin is quite selective, whereas cleavage by pronase and chymotrypsin is much more extensive. Labelling of bovine red cells by galactose oxidase treatment followed by reduction with 3H-labeled borohydride yields radioactivity in only one major peak, that corresponding to the glycoprotein. Pretreatment of the cells with neuraminidase causes a dramatic increase in the labeling. Equine erythrocytes do not show significant labeling by this technique unless a neuraminidase pretreatment has been performed. Then only the major glycoprotein is labeled. Thus the equine glycoprotein is apparently inaccessible to the cell surface by standard surface modification methods, although it is clearly a surface component. These experiments point out some of the limitations of surface labeling and proteolysis methods in probing the accessibility of membrane components. The results suggest that the apparent inaccessibility of the equine glycoprotein is due partially to its structure and partially to its localization in the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号