首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Heightened interest in disease models is one very clear outcome of the Human Genome Project. Teams are now racing to identify the genes that cause disease, enabling the study of their function in mouse models for subsequent research into prevention and therapy. The simultaneous evolution of gene knockout and mutation technology in mice has provided the prime opportunity to facilitate the elucidation of genetic etiology of inherited disorders in humans. In this online supplement, leading scientists review such work by disease type, from Alzheimer's disease to DiGeorge syndrome. This valuable collection provides readers with timely, comprehensive reviews of mouse knockout and mutation research, including focus on single candidate gene knockouts to complex transgenics. We hope that you will find this supplement enjoyable and informative reading.  相似文献   

2.
Mouse models of triplet repeat diseases   总被引:3,自引:0,他引:3  
Triplet repeat expansions were first discovered in 1991 and since then have been found to be the mutation underlying a range of neurodegenerative, neuromuscular, and cognitive disorders including fragile X syndrome, myotonic dystrophy, Friedreich's ataxia, and the polyglutamine disorders that include Huntington's disease. The repeats exert their detrimental effects through different molecular mechanisms dependent on whether they are located in coding or noncoding regions of the gene in question. During the past 10 yr, a wide range of strategies have been used to successfully establish mouse models for all of these disorders. This review presents an overview of these mouse models, discusses the insights into the molecular pathogenesis of these disorders that have been gained from their analysis and the strategies that are being used to uncover novel therapeutic options.  相似文献   

3.
4.
5.
6.
Platelets are the small anuclear blood cells that are the product of megakaryocytopoiesis, the process of hematopoietic stem cell commitment to megakaryocyte production and the differentiation and maturation of these cells for platelet release. Deregulation or disruption of megakaryocytopoiesis can result in platelet deficiencies, the thrombocytopenias, with attendant risk of hemorrhage or thrombocytosis, a pathological excess of platelet numbers. Mouse models, particularly those engineered to carry genetic alterations modeling mutations associated with human disease, have provided important insights into megakaryocytopoiesis and deregulation of this process in disease. This review focuses on mouse models of diseases of altered megakaryocyte and platelet number, illustrating the profound contribution of these models in validating suspected roles of disease-associated genetic alterations, promoting discovery of new links between genetic mutations and specific diseases, and providing unique tools for better understanding of disease pathophysiology and progression, as well as resources to define drug action or develop new therapeutic strategies.  相似文献   

7.
The inability to study appropriate human tissues at various stages of development has precluded the elaboration of a thorough understanding of the pathogenic mechanisms leading to diseases linked to mutations in genes for elastic fiber proteins. Recently, new insights have been gained by studying mice harboring targeted mutations in the genes that encode fibrillin-1 and elastin. These genes have been linked to Marfan syndrome (MFS) and supravalvular aortic stenosis (SVAS), respectively. For fibrillin-1, mouse models have revealed that phenotype is determined by the degree of functional impairment. The haploinsufficiency state or the expression of low levels of a product with dominant-negative potential from one allele is associated with mild phenotypes with a predominance of skeletal features. Exuberant expression of a dominant-negative-acting protein leads to the more severe MFS phenotype. Mice harboring targeted deletion of the elastin gene (ELN) show many of the features of SVAS in humans, including abnormalities in the vascular wall and altered hemodynamics associated with changes in wall compliance. The genetically altered mice suggest that SVAS is predominantly a disease of haploinsufficiency. These studies have underscored the prominent role of the elastic matrix in the morphogenesis and homeostasis of the vessel wall.  相似文献   

8.
发展对人类疾病有效的预测、预防、诊断和治疗等途径,一直是人口健康领域关注的焦点.任何人类疾病似乎都可归咎于遗传背景和环境因素的共同作用,并影响到疾病的发生、病程、药物疗效和预后等.最有效的研究策略足直接针对患者的各方面临床研究,但这一策略常常会而临着同一临床症状却有不同病因(异质性)、个体差异显著(如治疗效果因人而异)以及难以回溯性地研究人类疾病的发生、发展(如发病以前的事件或经历)等问题,而且医学伦理学的要求使得大量医学研究和新药新疗法不能直接应用于人体,必须先有动物实验阐明其安全性和必要性.最佳的研究策略足创建人类疾病的动物模型,因为可严格地控制病因、遗传背景、环境因子等,也可跟踪性研究动物模型病症的发生、发展、治疗反应和结局等,但这一策略也常常面临着一系列问题和误解.对此,在<动物学研究>出版<灵长类动物与人类疾病模型>专刊之际,撰写此评述性论文,将系列问题和误解一一提出,并讨论其应对策略.  相似文献   

9.
Proteome analysis is usually performed by separating complex cellular protein extracts by two‐dimensional‐electrophoresis followed by protein identification using mass spectrometry. In this way proteins are compared from normal and diseased tissue in order to detect disease related protein changes. In a strict sense, however, this procedure cannot be called proteome analysis: the tools of proteomics are used just to detect some interesting proteins which are then investigated by protein chemistry as usual. Real proteome research would be studying the cellular proteome as a whole, its composition, organization and its kind of action. At present however, we have no idea how a proteome works as a whole; we have not even a theory about that. If we would know how the proteome of a cell type is arranged, we probably would alter our strategy to detect and analyze disease‐related proteins. I will present a theory of proteomics and show some results from our laboratory which support this theory. The results come from investigations of the mouse brain proteome and include mouse models for neurodegenerative diseases.  相似文献   

10.
Mouse models of human genetic disorders provide a valuable resource for investigating the pathogenesis of genetic disease and for testing potential therapies. The high degree of resolution of linkage mapping in the mouse allows mutant phenotypes to be mapped precisely which, combined with the accurate definition of areas of homology between the mouse and human genomes, greatly facilitates the identification of mouse models. We describe here mouse models of human single gene disorders dividing them into three categories depending on the information available; phenotypic similarities, comparative mapping and identification of the underlying genetic lesion.  相似文献   

11.
12.
Barrientos A 《IUBMB life》2003,55(2):83-95
The yeast Saccharomyces cerevisiae is an excellent model for gaining insights into the molecular basis of human mitochondrial disorders, particularly those resulting from impaired mitochondrial metabolism. Yeast is a very well characterized system and most of our current knowledge about mitochondrial biogenesis in humans derives from yeast genetics and biochemistry. Systematic yeast genome-wide approaches have allowed for the identification of human disease genes. In addition, the functional characterization of a large number of yeast gene products resident in mitochondria has been instrumental for the later identification and characterization of their human orthologs. Here I will review the molecular and biochemical characterization of several mitochondrial diseases that have been ascribed to mutations in genes that were first found in yeast to be necessary for the assembly of the mitochondrial respiratory chain. The usefulness of yeast as a model system for human mitochondrial disorders is evaluated.  相似文献   

13.
Cilia are microtubule‐based structures that either transmit information into the cell or move fluid outside of the cell. There are many human diseases that arise from malfunctioning cilia. Although mammalian models provide vital insights into the underlying pathology of these diseases, aquatic organisms such as Xenopus and zebrafish provide valuable tools to help screen and dissect out the underlying causes of these diseases. In this review we focus on recent studies that identify or describe different types of human ciliopathies and outline how aquatic organisms have aided our understanding of these diseases.  相似文献   

14.
Mouse models of experimental atherosclerosis.   总被引:21,自引:0,他引:21  
Since 1992 the mouse has become an excellent model for experimental atherosclerosis research. Until 1992, the diet -- induced atherosclerosis mouse model has been used effectively, but the lesions tended to be small and were limited to early fatty-streak stage. This model was also criticized because of the toxicity and inflammatory responses due to the diet. In 1992 the first line of gene targeted animal models, namely apolipoprotein E -- knockout mice was developed. Of the genetically engineered models, the apoE -- deficient model is the only one that develops extensive atherosclerotic lesions on a chow diet. It is also the model in which the lesions have been characterized most thoroughly. The lesions develop into fibrous plaques; however, there is no evidence that plaque rupture occurs in this model. The LDL receptor - deficient model has elevated LDL levels, but no lesions, or only very small lesions, form on the chow diet, however, robust lesions do form on the western-type diet. The creation of apoE -- knockout mice has changed the face of atherosclerosis research.  相似文献   

15.
Mouse models for human DNA mismatch-repair gene defects   总被引:1,自引:0,他引:1  
The mammalian DNA mismatch-repair genes belong to a family of genes that comprise several homologs of the Escherichia coli mutS and mutL genes. The observation that mutations in the two human repair genes MSH2 and MLH1 are responsible for hereditary nonpolyposis colorectal cancer, as well as a significant number of sporadic colorectal cancers, raises several questions about the role of these proteins and their family members in the initiation and progression of colorectal cancer. To address these questions, mice with inactivating mutations in all the known mutS and mutL homologs have been generated. The development of these mouse lines has permitted the systematic analysis of the role of each gene in the repair process and has underscored their significance in mutation avoidance and cancer susceptibility. These analyses were critical for our understanding of the function of these genes at the organismal level and also revealed an essential role for some of the DNA mismatch-repair genes in mammalian meiosis.  相似文献   

16.
17.
18.
Mouse models for multistep tumorigenesis.   总被引:3,自引:0,他引:3  
The mouse is an ideal model system for studying the molecular mechanisms underlying the pathogenesis of human cancer. The generation of transgenic and gene-knockout mice has been instrumental in determining the role of major determinants in this process, such as oncogenes and tumor-suppressor genes. In the past few years, modeling cancer in the mouse has increased in its complexity, allowing in vivo dissection of the fundamental concepts underlying cooperative oncogenesis in various tumor types. In this review, we discuss how this transition has been facilitated, providing relevant examples. We also review how, in the post-genome era, novel methodologies will further accelerate the study of multi-step tumorigenesis in the mouse.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号