首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interactions Between Signaling Compounds Involved in Plant Defense   总被引:17,自引:0,他引:17  
To elude or minimize the effects of disease and herbivory, plants rely on both constitutive and inducible defenses. In response to attack by pathogens or pests, plants activate signaling cascades leading to the accumulation of endogenous hormones that trigger the induction of defenses. Salicylic acid (SA), jasmonic acid (JA), and ethylene (E) are plant-specific hormones involved in communicating the attack by many pathogens and pests in a broad range of plant species. SA, JA and E signaling cascades do not activate defenses independently, but rather establish complex interactions that determine the response mounted in each condition. Deployment of defenses is energetically costly, so a trade-off between the activation of resistance against a particular pest or pathogen and down regulation of other defenses is common. Conversely, activation of broad range resistance in response to an initial attack may serve to deter opportunistic agents. Thus, the interaction among SA, JA and E defense signaling pathways can be antagonistic, cooperative or synergistic, depending on the plant species, the combination of organisms attacking the plants, and the developmental and physiological state of the plant. A characterization of the interactions among defense signaling pathways and the determination of the molecular components mediating cross-talk between the different pathways will be essential for the rational design of transgenic plants with increased resistance to disease and/or herbivores without critically compromising other agronomic traits.  相似文献   

2.
WRKY70 modulates the selection of signaling pathways in plant defense   总被引:16,自引:0,他引:16  
Cross-talk between signal transduction pathways is a central feature of the tightly regulated plant defense signaling network. The potential synergism or antagonism between defense pathways is determined by recognition of the type of pathogen or pathogen-derived elicitor. Our studies have identified WRKY70 as a node of convergence for integrating salicylic acid (SA)- and jasmonic acid (JA)-mediated signaling events during plant response to bacterial pathogens. Here, we challenged transgenic plants altered in WRKY70 expression as well as WRKY70 knockout mutants of Arabidopsis with the fungal pathogens Alternaria brassicicola and Erysiphe cichoracearum to elucidate the role of WRKY70 in modulating the balance between distinct defense responses. Gain or loss of WRKY70 function causes opposite effects on JA-mediated resistance to A. brassicicola and the SA-mediated resistance to E. cichoracearum. While the up-regulation of WRKY70 caused enhanced resistance to E. cichoracearum, it compromised plant resistance to A. brassicicola. Conversely, down-regulation or insertional inactivation of WRKY70 impaired plant resistance to E. cichoracearum. Over-expression of WRKY70 resulted in the suppression of several JA responses including expression of a subset of JA- and A. brassicicola-responsive genes. We show that this WRKY70-controlled suppression of JA-signaling is partly executed by NPR1. The results indicate that WRKY70 has a pivotal role in determining the balance between SA-dependent and JA-dependent defense pathways.  相似文献   

3.
4.
Mewis I  Appel HM  Hom A  Raina R  Schultz JC 《Plant physiology》2005,138(2):1149-1162
Plant responses to enemies are coordinated by several interacting signaling systems. Molecular and genetic studies with mutants and exogenous signal application suggest that jasmonate (JA)-, salicylate (SA)-, and ethylene (ET)-mediated pathways modulate expression of portions of the defense phenotype in Arabidopsis (Arabidopsis thaliana), but have not yet linked these observations directly with plant responses to insect attack. We compared the glucosinolate (GS) profiles of rosette leaves of 4-week-old mutant and transgenic Arabidopsis (Columbia) plants compromised in these three major signaling pathways, and characterized responses by those plants to feeding by two phloem-feeding aphids (generalist Myzus persicae and specialist Brevicoryne brassicae) and one generalist caterpillar species (Spodoptera exigua Hubner). Blocked JA signaling in coronatine-insensitive (coi1) and enhanced expression of SA-signaled disease resistance in hypersensitive response-like (hrl1) mutants reduced constitutive GS concentrations, while blocking SA signaling at the mediator protein npr1 mutant (NPR) increased them. There was no significant impact on constitutive GS contents of blocking ET signaling (at ET resistant [etr1]) or reducing SA concentrations (nahG transgene). We found increased GS accumulation in response to insect feeding, which required functional NPR1 and ETR1 but not COI1 or SA. Insect feeding caused increases primarily in short-chain aliphatic methylsulfinyl GS. By contrast, responses to exogenous JA, a frequent experimental surrogate for insect attack, were characterized by an increase in indolyl GS. Insect performance, measured as population increase or weight increase, was negatively related to GS levels, but we found evidence that other, ET-regulated factors may also be influential. Plant resistance to (consumption by) S. exigua was not related to insect growth because some plant chemistries inhibited growth while others inhibited feeding. These major signaling pathways modulate Arabidopsis GS accumulation and response to both phloem-feeding and chewing insects, often antagonistically; NPR appears to be central to these interactions. Our results indicate that exogenous signal application and plant consumption measures may not provide useful measures of plant responses to actual insect feeding.  相似文献   

5.
植物与植食性昆虫之间存在着复杂的化学相互作用。一方面,当遭受植食性昆虫为害时,植物能识别植食性昆虫相关分子模式,触发早期信号事件和激素信号转导途径,并由此引起转录组与代谢组重组、直接和间接防御化合物含量升高,最后提高对植食性昆虫的抗性。另一方面,植食性昆虫也能识别植物的防御反应,并能通过分泌效应子、选贮、解毒以及降低敏感性等反防御措施抑制或适应植物的化学防御。深入剖析植物与植食性昆虫的化学互作,不仅可在理论上丰富对昆虫与植物互作关系的理解,而且可在实践上为作物害虫防控新技术的开发提供重要的理论与技术指导。  相似文献   

6.
Mitogen-activated protein kinase (MAPK) cascades play important roles in disease resistance in model plant species such as Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum). However, the importance of MAPK signaling pathways in the disease resistance of crops is still largely uninvestigated. To better understand the role of MAPK signaling pathways in disease resistance in soybean (Glycine max), 13, nine, and 10 genes encoding distinct MAPKs, MAPKKs, and MAPKKKs, respectively, were silenced using virus-induced gene silencing mediated by Bean pod mottle virus. Among the plants silenced for various MAPKs, MAPKKs, and MAPKKKs, those in which GmMAPK4 homologs (GmMPK4s) were silenced displayed strong phenotypes including stunted stature and spontaneous cell death on the leaves and stems, the characteristic hallmarks of activated defense responses. Microarray analysis showed that genes involved in defense responses, such as those in salicylic acid (SA) signaling pathways, were significantly up-regulated in GmMPK4-silenced plants, whereas genes involved in growth and development, such as those in auxin signaling pathways and in cell cycle and proliferation, were significantly down-regulated. As expected, SA and hydrogen peroxide accumulation was significantly increased in GmMPK4-silenced plants. Accordingly, GmMPK4-silenced plants were more resistant to downy mildew and Soybean mosaic virus compared with vector control plants. Using bimolecular fluorescence complementation analysis and in vitro kinase assays, we determined that GmMKK1 and GmMKK2 might function upstream of GmMPK4. Taken together, our results indicate that GmMPK4s negatively regulate SA accumulation and defense response but positively regulate plant growth and development, and their functions are conserved across plant species.  相似文献   

7.
Unraveling salt stress signaling in plants   总被引:4,自引:0,他引:4  
Salt stress is a major environmental factor limiting plant growth and productivity. A better understanding of the mechanisms mediating salt resistance will help researchers design ways to improve crop performance under adverse environmental conditions. Salt stress can lead to ionic stress, osmotic stress and secondary stresses, particularly oxidative stress, in plants. Therefore,to adapt to salt stress, plants rely on signals and pathways that re-establish cellular ionic, osmotic, and reactive oxygen species(ROS) homeostasis. Over the past two decades, genetic and biochemical analyses have revealed several core stress signaling pathways that participate in salt resistance. The Salt Overly Sensitive signaling pathway plays a key role in maintaining ionic homeostasis,via extruding sodium ions into the apoplast. Mitogenactivated protein kinase cascades mediate ionic, osmotic,and ROS homeostasis. SnR K2(sucrose nonfermenting1-related protein kinase 2) proteins are involved in maintaining osmotic homeostasis. In this review, we discuss recent progress in identifying the components and pathways involved in the plant's response to salt stress and their regulatory mechanisms. We also review progress in identifying sensors involved in salt-induced stress signaling in plants.  相似文献   

8.
为了抵御植食性昆虫的为害,植物在进化过程中形成了包括组成抗性和诱导抗性在内的复杂防御体系.在通过受体识别茶树害虫为害后,茶树会启动早期信号事件,继而激活茉莉酸、水杨酸、乙烯和赤霉素等植物激素信号通路,从而引起次生代谢物的积累,最终对害虫产生直接和间接抗性.基于近年来茶树害虫为害诱导的茶树防御反应及其相关调控机理的研究进...  相似文献   

9.
In the natural environment, plants communicate with various microorganisms (pathogenic or beneficial) and exhibit differential responses. In recent years, research on microbial volatile compounds (MVCs) has revealed them to be simple, effective and efficient groups of compounds that modulate plant growth and developmental processes. They also interfere with the signaling process. Different MVCs have been shown to promote plant growth via improved photosynthesis rates, increased plant resistance to pathogens, activated phytohormone signaling pathways, or, in some cases, inhibit plant growth, leading to death. Regardless of these exhibited roles, the molecules responsible, the underlying mechanisms, and induced specific metabolic/molecular changes are not fully understood. Here, we review current knowledge on the effects of MVCs on plants, with particular emphasis on their modulation of the salicylic acid, jasmonic acid/ethylene, and auxin signaling pathways. Additionally, opportunities for further research and potential practical applications presented.  相似文献   

10.
Kariola T  Brader G  Li J  Palva ET 《The Plant cell》2005,17(1):282-294
Accumulation of reactive oxygen species (ROS) is central to plant response to several pathogens. One of the sources of ROS is the chloroplast because of the photoactive nature of the chlorophylls. Chlorophyllase 1 (encoded by AtCLH1) of Arabidopsis thaliana is quickly induced after tissue damage (e.g., caused by the bacterial necrotroph Erwinia carotovora or the necrotrophic fungus Alternaria brassicicola). RNA interference silencing of AtCLH1 resulted in failure to degrade free chlorophyll after tissue damage and in resistance to E. carotovora. Both inoculation with E. carotovora and exposure to high light caused elevated accumulation of hydrogen peroxide in AtCLH1 silenced plants. This was accompanied by expression of marker genes for systemic acquired resistance and induction of antioxidant defenses. Interestingly, downregulation of AtCLH1 resulted in increased susceptibility to A. brassicicola, resistance to which requires jasmonate signaling. We propose that AtCLH1 is involved in plant damage control and can modulate the balance between different plant defense pathways.  相似文献   

11.
Nitric oxide (NO), first characterized as an endothelium-derived relaxation factor, is involved in diverse cellular processes including neuronal signaling, blood pressure homeostasis, and immune response. Recent studies have also revealed a role for NO as a signaling molecule in plants. As a developmental regulator, NO promotes germination, leaf extension and root growth, and delays leaf senescence and fruit maturation. Moreover, NO acts as a key signal in plant resistance to incompatible pathogens by triggering resistance-associated hypersensitive cell death. In addition, NO activates the expression of several defense genes (e.g. pathogenesis-related genes, phenylalanine ammonialyase, chalcone synthase) and could play a role in pathways leading to systemic acquired resistance.  相似文献   

12.
大豆类钙调磷酸酶B亚基GmCBL1互作候选蛋白的筛选   总被引:2,自引:0,他引:2  
Ca2+是非生物胁迫信号转导途径中的重要信号分子,植物类钙调磷酸酶B亚基蛋白(CBL,calcineurin B-like proteins)是一类重要的钙信号受体蛋白,主要通过与其他蛋白的特异结合传递信号,使植物形成对非生物胁迫的响应。本实验室已经获得大豆Gm CBL1基因,功能鉴定显示Gm CBL1增强了转基因拟南芥对非生物胁迫的耐性。为了进一步研究Gm CBL1的作用机理,本研究构建诱饵载体p GBKT7::Gm CBL1,利用酵母双杂交技术筛选大豆Gm CBL1的互作蛋白。通过对筛选获得的106个蛋白基因测序和Blast比对分析,并根据其可能的生理功能对这些候选蛋白归类,整理得到4类蛋白:能量代谢相关蛋白、修饰蛋白、防御蛋白、钙信号转导相关蛋白。筛选得到候选蛋白的功能预测初步表明,大豆Gm CBL1参与多条信号途径,为进一步研究探索大豆CBL介导的抗逆信号转导途径奠定了基础。  相似文献   

13.
Sheen J  He P 《Cell》2007,128(5):821-823
Innate immunity in plants and animals is mediated through pattern recognition receptors, which were thought to initiate signaling in the cytoplasm to activate defense pathways. Shen et al. (2006) and Burch-Smith et al. (2007) now provide compelling evidence that certain plant disease resistance proteins, which detect specific pathogenic effectors, act in the nucleus to trigger downstream signaling and defense pathways.  相似文献   

14.
Plants are often attacked by many herbivorous insects and pathogens at the same time. Two important suites of responses to attack are mediated by plant hormones, jasmonate and salicylate, which independently provide resistance to herbivorous insects and pathogens, respectively. Several lines of evidence suggest that there is negative cross-talk between the jasmonate and salicylate response pathways. This biochemical link between general plant defense strategies means that deploying defenses against one attacker can positively or negatively affect other attackers. In this study, we tested for cross-talk in the jasmonate and salicylate signaling pathways in a wild tomato and examined the effects of cross-talk on an array of herbivores of cultivated tomato plants. In the wild cultivar, induction of defenses signaled by salicylate reduced biochemical expression of the jasmonate pathway but did not influence performance of S. exigua caterpillars. This indicates that the signal interaction is not a result of agricultural selection. In cultivated tomato, biochemical attenuation of the activity of a defense protein (polyphenol oxidase) in dual-elicited plants resulted in increased of performance of cabbage looper caterpillars, but not thrips, spider mites, hornworm caterpillars or the bacteria Pseudomonas syringae pv. tomato. In addition, we tested the effects of jasmonate-induced resistance on the ability of thrips to vector tomato spotted wilt virus. Although thrips fed less on induced plants, this did not affect the level of disease. Thus, the negative interaction between jasmonate and salicylate signaling had biological consequences for two lepidopteran larvae but not for several other herbivores tested or on the spread of a disease.  相似文献   

15.
植物类受体蛋白激酶的研究进展   总被引:3,自引:0,他引:3  
植物类受体蛋白激酶(receptor-like protein kinase,RLKs)通过胞外结构域识别病原信号分子,发生磷酸化、去磷酸化反应而开启或关闭下游靶蛋白,调节植物固有免疫反应,诱导抗病防御反应.目前对植物类受体蛋白激酶的功能、信号传导和配体识别等方面的研究已成为该领域的重点.本文对近年来国内外有关植物类受体蛋白激酶的结构、功能及其在植物抗病防御反应中的作用研究进行综述,为今后进一步深入研究植物类受体蛋白激酶的生理生化功能及应用提供参考.  相似文献   

16.
Arabidopsis thaliana grown in soil amended with barley grain inocula of Penicillium simplicissimum GP17-2 or receiving root treatment with its culture filtrate (CF) exhibited clear resistance to Pseudomonas syringae pv. tomato DC3000 (Pst). To assess the contribution of different defense pathways, Arabidopsis genotypes implicated in salicylic acid (SA) signaling expressing the NahG transgene or carrying disruption in NPR1 (npr1), jasmonic acid (JA) signaling (jar1) and ethylene (ET) signaling (ein2) were tested. All genotypes screened were protected by GP17-2 or its CF. However, the level of protection was significantly lower in NahG and npr1 plants than it was in similarly treated wild-type plants, indicating that the SA signaling pathway makes a minor contribution to the GP17-2-mediated resistance and is insufficient for a full response. Examination of local and systemic gene expression revealed that GP17-2 and its CF modulate the expression of genes involved in both the SA and JA/ET signaling pathways. Subsequent challenge of GP17-2-colonized plants with Pst was accompanied by direct activation of SA-inducible PR-2 and PR-5 genes as well as potentiated expression of the JA-inducible Vsp gene. In contrast, CF-treated plants infected with Pst exhibited elevated expression of most defense-related genes (PR-1, PR-2, PR-5, PDF1.2 and Hel) studied. Moreover, an initial elevation of SA responses was followed by late induction of JA responses during Pst infection of induced systemic resistance (ISR)-expressing plants. In conclusion, we hypothesize the involvement of multiple defense mechanisms leading to an ISR of Arabidopsis by GP17-2.  相似文献   

17.
ERF家族是植物所特有的APETALA2/乙烯响应因子(APETALA2/ethylene-responsive factor,AP2/ERF)转录因子家族的一个主要亚家族,其成员结构特点是仅含有1个58-60个氨基酸组成的AP2/ERF结构域.有关该家族成员的大多数研究集中在与寒、旱等非生物胁迫方面,最近越来越多的研...  相似文献   

18.
Aphid feeding induces various defense signaling mechanisms in plants. The recognition of feeding activities by plants occurs through the use of transmembrane pattern recognition receptors (PRRS) or, acting largely inside the cell, polymorphic nucleotide-binding leucine-rich-repeat (NB-LRR) protein products, encoded by most R genes. Activation may induce defensive reactions which are the result of highly coordinated sequential changes at the cellular level comprising, among other changes, the synthesis of signaling molecules. The ensuing plant responses are followed by the transmission of defense response signal cascades. Signals are mediated by bioactive endogenous molecules, i.e. phytohormones, such as jasmonic acid (JA), salicylic acid (SA), ethylene (ET), abscisic acid (ABA), gibberellic acid (GA) and free radicals such as hydrogen peroxide (H2O2) and nitric oxide (NO) which independently provide direct chemical resistance. Plant-induced defenses are also regulated by a network of inter-connecting signaling pathways, in which JA, SA, and ET play dominant roles. Both synergistic and inhibitory aspects of the cross-talk among these pathways have been reported. This paper presents molecular mechanisms of plant response to aphid feeding, the precise activation of various endogenous bioactive molecules signaling in the response of many plant species and their participation in the regulation of numerous defense genes, which lead to a specific metabolic effect. Selected important points in signal transduction pathways were also discussed in studies on plant response to aphid feeding.  相似文献   

19.
The native resistance of most plant species against a wide variety of pathogens is known as non-host resistance (NHR), which confers durable protection to plant species. Only a few pathogens or parasites can successfully cause diseases. NHR is polygenic and appears to be linked with basal plant resistance, a form of elicited protection. Sensing of pathogens by plants is brought about through the recognition of invariant pathogen-associated molecular patterns (PAMPs) that trigger downstream defense signaling pathways. Race-specific resistance, (R)-gene mediated resistance, has been extensively studied and reviewed, while our knowledge of NHR has advanced only recently due to the improved access to excellent model systems. The continuum of the cell wall (CW) and the CW-plasma membrane (PM)-cytoskeleton plays a crucial role in perceiving external cues and activating defense signaling cascades during NHR. Based on the type of hypersensitive reaction (HR) triggered, NHR was classified into two types, namely type-I and type-II. Genetic analysis of Arabidopsis mutants has revealed important roles for a number of specific molecules in NHR, including the role of SNARE-complex mediated exocytosis, lipid rafts and vesicle trafficking. As might be expected, R-gene mediated resistance is found to overlap with NHR, but the extent to which the genes/pathways are common between these two forms of disease resistance is unknown. The present review focuses on the various components involved in the known mechanisms of NHR in plants with special reference to the role of CW-PM components.  相似文献   

20.
We evaluated a commercial biopreparation of plant growth-promoting rhizobacteria (PGPR) strains Bacillus subtilis GB03 and B. amyloliquefaciens IN937a formulated with the carrier chitosan (BioYield) for its capacity to elicit growth promotion and induced systemic resistance against infection by Cucumber Mosaic Virus (CMV) and Pseudomonas syringae pv. tomato DC3000 in Arabidopsis thaliana. The biopreparation promoted plant growth of Arabidopsis hormonal mutants, which included auxin, gibberellic acid, ethylene, jasmonate, salicylic acid, and brassinosteroid insensitive lines as well as each wild-type. The biopreparation protected plants against CMV based on disease severity in wild-type plants. However, virus titre was not lower in control plants and those treated with biopreparation, suggesting that the biopreparation induced tolerance rather than resistance against CMV. Interestingly, the biopreparation induced resistance against CMV in NahG plants, as evidenced by both reduced disease severity and virus titer. The biopreparation also elicited induced resistance against P. syringae pv. tomato in the wild-type but not in NahG transgenic plants, which degrade endogenous salicylic acid, indicating the involvement of salicylic acid signaling. Our results indicate that some PGPR strains can elicit plant growth promotion by mechanisms that are different from known hormonal signaling pathways. In addition, the mechanism for elicitation of induced resistance by PGPR may be pathogen-dependent. Collectively, the two-Bacilli strain mixture can be utilized as a biological inoculant for both protection of plant against bacterial and viral pathogens and enhancement of plant growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号